
Reactivity in a Logic-Based Robot Programming Framework

Yves Lespérance, Kenneth Tam, and Michael Jenkin
Dept. of Computer Science, York University, Toronto, ON Canada, M3J 1P3

{lesperan,kenneth,jenkin}@cs.yorku.ca

Abstract

A robot must often react to events in its environment and ex-
ceptional conditions by suspendingor abandoning its current
plan and selecting a new plan that is an appropriate response
to the event. This paper describes how high-level controllers
for robots that are reactive in this sense can conveniently be
implemented in ConGolog, a new logic-based robot/agent
programming language. Reactivity is achieved by exploiting
ConGolog’s prioritized concurrent processes and interrupts
facilities. The language also provides nondeterministic con-
structs that support a form of planning. Program execution
relies on a declarative domain theory to model the state of
the robot and its environment. The approach is illustrated
with a mail delivery application.

Introduction
Reactivity is usually understood as having mainly to do with
strict constraints on reaction time. As such, much work on
the design of reactive agents has involved non-deliberative
approaches where behavior is hardwired (Brooks 1986) or
produced from compiled universal plans (Schoppers 1987;
Rosenschein & Kaelbling 1995). However, there is more to
reacting to environmental events or exceptional conditions
than reaction time. While some events/conditions can be
handled at a low level, e.g., a robot going down a hallway
can avoid collision with an oncoming person by slowing
down and making local adjustments in its trajectory, oth-
ers require changes in high-level plans. For example, an
obstacle blocking the path of a robot attempting a delivery
may mean that the delivery must be rescheduled. Here as in
many other cases, the issue is not real-time response. What
is required is reconsideration of the robot’s plans in rela-
tion to its goals and the changed environmental conditions.
Current plans may need to be suspended or terminated and
new plans devised to deal with the exceptional event or
condition.

To provide the range of responses required by environ-
mental events and exceptional conditions, i.e. reactivity in
the wide sense, the best framework seems to be a hierarchi-
cal architecture. Then, urgent conditions can be handled in
real-time by a low-level control module, while conditions
requiring replanning are handled by a high-level control
module that models the environment and task, and manages
the generation, selection, and scheduling of plans.

Synthesizing plans at run-time provides great flexibility,
but it is often computationally infeasible in complex do-
mains, especially when the agent does not have complete
knowledge and there are exogenous events (i.e. actions by
other agents or natural events). In (Levesque et al. 1997),
it was argued that high-level program execution was a more
practical alternative. The idea, roughly, is that instead of
searching for a sequence of actions that takes the robot from
an initial state to some goal state, the task is to find a se-
quence of actions that constitutes a legal execution of some
high-level program. By high-level program, we mean one
whose primitive instructions are domain-dependent actions
of the robot, whose tests involve domain-dependent predi-
cates that are affected by the actions, and whose code may
contain nondeterministic choice points where lookahead is
necessary to make a choice that leads to successful termi-
nation. As in planning, to find a sequence that constitutes
a legal execution of a high-level program, one must reason
about the preconditions and effects of the actions within the
program. However, if the program happens to be almost
deterministic, very little searching is required; as more and
more nondeterminism is included, the search task begins
to resemble traditional planning. Thus, in formulating a
high-level program, the user gets to control the search effort
required.

In (Levesque et al. 1997), Golog was proposed as a suit-
able language for expressing high-level programs for robots
and autonomous agents. Golog was used to design a high-
level robot control module for a mail delivery application
(Tam et al. 1997). This module was interfaced to sys-
tems providing path planning and low-level motion control,
and successfully tested on several different robot platforms,
including a Nomad 200, a RWI B21, and a RWI B12.

A limitation of Golog for this kind of applications is that
it provides limited support for writing reactive programs. In
(De Giacomo, Lespérance, & Levesque 1997), GonGolog,
an extension of Golog that provides concurrent processes
with possibly different priorities as well as interrupts was
introduced. In this paper, we try to show that ConGolog is
an effective tool for the design of high-level reactive control
modules for robotics applications. We provide an example
of such a module for a mail delivery application.



ConGolog
As mentioned, our high-level programs contain primitive
actions and tests of predicates that are domain-dependent.
Moreover, an interpreter for such programs must reason
about the preconditions and effects of the actions in the
program to find a legal terminating execution. We spec-
ify the required domain theories in the situation calculus
(McCarthy & Hayes 1979), a language of predicate logic
for representing dynamically changing worlds. In this lan-
guage, a possible world history, which is simply a sequence
of actions, is represented by a first order term called a situ-
ation. The constant S0 is used to denote the initial situation
— that in which no actions (of interest) have yet occurred.
There is a distinguished binary function symbol do and the
term do(�; s) denotes the situation resulting from action �
being performed in situation s. Relations whose truth val-
ues vary from situation to situation, called predicate fluents,
are denoted by predicate symbols taking a situation term as
the last argument. For example, Holding(o; s) might mean
that the robot is holding object o in situation s. Similarly,
functions whose value varies with the situation, functional
fluents, are represented by function symbols that take a sit-
uation argument. The special predicate Poss(�; s) is used
to represent the fact that primitive action � is executable in
situation s. A domain of application will be specified by
theory that includes the following types of axioms:

� Axioms describing the initial situation, S0.

� Action preconditionaxioms, one for each primitiveaction
�, which characterizes Poss(�; s).

� Successor state axioms, one for each fluent F , which
characterize the conditions under which F (~x; do(a; s))
holds in terms of what holds in situation s; these ax-
ioms may be compiled from effects axioms, but provide
a solution to the frame problem (Reiter 1991).

� Unique names axioms for the primitive actions.

� Some foundational, domain independent axioms.

Thus, the declarative part of a ConGolog program imple-
menting a high-level controller for a robot will be such a
theory.

A ConGolog program also includes a procedural part
which specifies the behavior of the robot. This is specified
using the following constructs:

�, primitive action
�?, wait for a condition1

(�1;�2), sequence
(�1 j �2), nondeterministic choice between actions
� ~x [�], nondeterministic choice of arguments
��, nondeterministic iteration
if � then �1 else �2 endIf, conditional
while � do � endWhile, loop
(�1 k �2), concurrent execution
(�1 ii �2), concurrency with different priorities

1Here, � stands for a situation calculus formula with all situa-
tion arguments suppressed;�(s) will denote the formula obtained
by restoring situation variable s to all fluents appearing in �.

�jj, concurrent iteration
<~x : �! �>, interrupt
proc �(~x) � endProc, procedure definition
�(~t), procedure call
noOp do nothing

The nondeterministic constructs include (�1 j �2), which
nondeterministically choses between programs �1 and �2,
�~x[�], which nondeterministically picks a binding for the
variables ~x and performs the program � for this binding of
~x, and ��, which means performing � zero or more times.
Concurrent processes are modeled as interleavings of the
primitive actions involved. A process may become blocked
when it reaches a primitive action whose preconditions are
false or a wait action �? whose condition � is false. Then,
execution of the program may continue provided another
process executes next. In (�1 ii �2), �1 has higher prior-
ity than �2, and �2 may only execute when �1 is done or
blocked. �jj is like nondeterministic iteration ��, but the
instances of � are executed concurrently rather than in se-
quence. Finally, an interrupt <~x : �! �> has variables
~x, a trigger condition �, and a body �. If the interrupt gets
control from higher priorityprocesses and the condition� is
true for some binding of the variables, the interrupt triggers
and the body is executed with the variables taking these val-
ues. Once the body completes execution, the interrupt may
trigger again. With interrupts, it is easy to write programs
that are reactive in that they will suspend whatever task they
are doing to handle given conditions as they arise. A more
detailed description of ConGolog and a formal semantics
appear in (De Giacomo, Lespérance, & Levesque 1997).
We give an example ConGolog program in section 4.

A prototype ConGolog interpreter has been implemented
in Prolog. This implementation requires that the axioms
in the program’s domain theory be expressible as Prolog
clauses; note that this is a limitation of the implementation,
not the framework.

In applications areas such as robotics, we want to use
ConGolog to program an embedded system. The system
must sense conditions in its environment and update its the-
ory appropriately as it is executing the ConGolog control
program.2 This requires adapting the high-level program
execution model presented earlier: the interpreter cannot
simply search all the way to a final situation of the program.
An adapted model involving incremental high-level pro-
gram execution is developed in (De Giacomo & Levesque
1998). However in this paper, we sidestep these issues by
making two simplifying assumptions:

1. that the interpreter immediately commits to and executes
any primitive action it reaches when its preconditions are
satisfied, and

2. that there is a set of exogenous events detectable by the
system’s sensors (e.g. a mail pick up request is received
or the robot has arrived at the current destination) and

2Here, the environment is anything outside the ConGolog con-
trol module about which information must be maintained; so the
sensing might only involve reading messages from another module
through a communication socket.



that the environment is continuously monitored for these;
whenever such an exogenous event is detected to have
occurred, it is immediately inserted in the execution.

We can get away with this because our application pro-
gram performs very little search and the exogenous events
involved are easy to detect.

Interfacing the High-Level Control Module
As mentioned earlier, we use a hierarchical architecture to
provide both real-time response as well as high-level plan
reconsideration when appropriate. At the lowest level, we
have a reactive control system that performs time-critical
tasks such as collision avoidance and straight line path ex-
ecution. In a middle layer, we have a set of components
that support navigation through path planning, map build-
ing and/or maintenance, keeping track of the robot’s posi-
tion, etc. and support path following by interacting with
the low-level control module. On top of this, there is the
ConGolog-based control module that supports high-level
plan execution to accomplish the robot’s tasks; this level
treats navigation more or less as a black box.

In this section, we describe how the ConGolog-based
high-level control module is interfaced to rest of the archi-
tecture. The high-level control module needs to run asyn-
chronously with the rest of the architecture so that other
tasks can be attended to while the robot is navigating to-
wards a destination. To support this and allow for interaction
between the high-level control module and the navigation
module, we have defined the following simple model. With
respect to navigation, the robot is viewed by the high-level
control module as always being in one of the following set
of states:

RS = fIdle;Moving;Reached; Stuck; Frozeng:

The current robot state is represented by the functional flu-
ent robotState(s). The robot’s default state is Idle; when
in this state, the robot is not moving towards a destina-
tion, but collision avoidance is turned on and the robot may
move locally to avoid oncoming bodies. With the robot
in Idle state, the high-level control module may execute
the primitive action startGoTo(place); this changes the
robot’s state to Moving and causes the navigation module
to attempt to move the robot to place. If and when the
robot reaches the destination, the navigation module gen-
erates the exogenous event reachDest, which changes the
robot’s state toReached. If on the other hand the navigation
module encounters obstacles it cannot get around and finds
the destination unreachable, then it generates the exogenous
event getStuck, which changes the robot’s state to Stuck.
In any state, the high-level control module may execute the
primitive action resetRobot, which aborts any navigation
that may be under way and returns the robot to Idle state.
Finally, there is the Frozen state where collision avoidance
is disabled and the robot will not move even if something
approaches it; this is useful when the robot is picking up
or dropping off things; humans may reach into the robot’s
carrying bins without it moving away. All other actions

leave the robot’s state unchanged. This is specified in the
following successor state axiom for the robotState fluent:

robotState(do(a; s)) = i �
9p a = startGoTo(p) ^ i = Moving _
a = reachDest ^ i = Reached _
a = getStuck ^ i = Stuck _
a = resetRobot ^ i = Idle _
a = frezeRobot ^ i = Frozen _
i = robotState(s) ^ 8p a 6= startGoTo(p) ^
a 6= reachDest ^ a 6= getStuck ^
a 6= resetRobot ^ a 6= frezeRobot

We also have precondition axioms that specify when these
primitive actions and exogenous events are possible. For
example, the following says that the action of directing the
robot to start moving toward a destination p is possible
whenever the robot is in Idle state:

Poss(startGoTo(p); s) � robotState(s) = Idle

We omit the other precondition axioms as they are obvious
from the model description.

We also use two additional functional fluents:
robotDestination(s) refers to the last destination the robot
was set in motion towards, and robotP lace(s) refers to the
current location of robot as determined from the model.
Their successor state axioms are:

robotDestination(do(a; s)) = p �
a = startGoTo(p) _
p = robotDestination(s) ^ 8p a 6= startGoTo(p)

robotP lace(do(a; s)) = p �
9p0 a = startGoTo(p0) ^ p = Unknown _
a = reachDest ^ p = robotDestination(s) _
p = robotP lace(s) ^
8p a 6= startGoTo(p) ^ a 6= reachDest

A Mail Delivery Example
To test our approach, we have implemented a simple mail
delivery application. The high-level control module for the
application must react to two kinds of exogenous events:

� new shipment orders, which are represented by the event
orderShipment(sender; recipient; priority), and

� signals from the navigation module, namely the
reachDest event announcing that the destination has
been reached and the getStuck event announcing that
the robot has failed to reach its destination.

The first kind is typical of the communication interactions a
robot may have with its environment, while the second kind
is typical of the control interactions a task-level module may
have with the rest of the robot’s architecture. To require
more reactivity from the robot, we assume that shipment
orders come with different prioritylevels and that the system
must interrupt service of a lower priority order when a higher
priority one comes in. Also, we want the robot to make a
certain number of attempts to get to a customer’s mailbox as
some of the obstacles it runs into may be temporary. This is
handled by assigning a certain amount of credit to customers



initially and reducing their credit when an attempt to go to
their mailbox fails. When customers run out of credit, they
are suspended and shipments sent to them are returned to
the sender when possible.

In addition to the navigation primitive actions and ex-
ogenous events already described, the application uses the
following primitive actions:

ackOrder(n) acknowledge reception of servable order
declineOrder(n) decline an unservable order
pickUpShipment(n) pick up shipment n
dropOffShipment(n) drop off shipment n
cancelOrder(n) cancel an unservable order
reduceCredit(c) reduce customer c’s credit
notifyStopServing(c) notify unreachable customer

Note that shipment orders are identified by a number n that
is assigned from a counter when the orderShipment event
occurs. We have precondition axioms for these primitive
actions, for example:

Poss(pickUpShipment(n); s) �
orderState(n; s) = ToP ickUp^
robotP lace(s) = mailbox(sender(n; s))

The primitive fluents for the application are:

orderState(n; s) = i order n is in state i
sender(n; s) = c sender of order n is c
recipient(n; s) = c recipient of order n is c
orderPrio(n; s) = p priority of order n is p
orderCtr(s) = n counter for orders arriving
credit(c; s) = k customer c has credit k
Suspended(c; s) service to customer c is suspended

We have successor state axioms for these fluents. For ex-
ample, the state of an order starts out as NonExistent,
then changes to JustIn when the orderShipment event
occurs, etc.; the following successor state axiom specifies
this:
orderState(n; do(a; s)) = i �
9c; r; p a = orderShipment(c; r; p) ^ orderCtr = n
^ i = JustIn _

a = ackOrder(n) ^ i = ToP ickUp _
a = pickUpShipment(n) ^ i = OnBoard _
a = dropOffShipment(n) ^
robotP lace(s) = mailbox(recipient(n; s))
^ i = Delivered _

a = dropOffShipment(n) ^
robotP lace(s) = mailbox(sender(n; s))
^ i = Returned _

a = dropOffShipment(n) ^
robotP lace(s) = CentralOffice
^ i = AtCentralOffice _

a = cancelOrder(n) ^ i = Cancelled _
a = declineOrder(n) ^ i = Declined _
i = orderState(n; s) ^
:(9c; r; p a = orderShipment(c; r; p) ^ orderCtr = n)
^ a 6= ackOrder(n)^ a 6= pickUpShipment(n) ^
a 6= dropOffShipment(n) ^ a 6= cancelOrder(n)

We omit the rest of the successor state and action precondi-
tion axioms for space reasons.

The initial state of the domain might be specified by the
following axioms:

Customer(Y ves) Customer(Ken)
Customer(Hector) Customer(Michael)
Customer(c) � credit(c; S0) = 3
orderCtr(S0) = 0
orderState(n; S0) = NonExistent
robotState(S0) = Idle
robotP lace(S0) = CentralOffice

Let us now specify the behavior of our robot using a
ConGolog program. Exogenous events are handled using
prioritized interrupts. The main control procedure concur-
rently executes four interrupts at different priorities:
proc mainControl
hn : orderState(n) = JustIn

! handleNewOrder(n) i
�
hn : (orderState(n) = ToP ickUp

^ Suspended(sender(n)))
! cancelOrder(n) i

k
hn : (orderState(n) = ToP ickUp

_ orderState(n) = OnBoard
_ robotP lace 6= CentralOffice)

! robotMotionControl i
�
h robotState = Moving ! noOp i

endProc
The top priority interrupt takes care of acknowledging or
declining new shipment orders. This ensures that customers
get fast feedback when they make an order. At the next level
of priority, we have two other interrupts, one that takes care
of cancelling orders whose senders have been suspended
service, and another that controls the robot’s motion. At the
lowest priority level, we have an interrupt with an empty
body that prevents the program from terminating when the
robot is in motion and all other threads are blocked.

The top priority interrupt deals with a new shipment order
n by executing the following procedure:
proc handleNewOrder(n)

if Suspended(sender(n)) _ Suspended(recipient(n))
then declineOrder(n)

else
ackOrder(n);
if robotState = Moving ^

orderPrio(n) > curOrderPrio then
resetRobot % abort current service

endIf
endIf

endProc
This sends a rejection notice to customers making an or-
der whose sender or recipient is suspended; otherwise an
acknowledgement is sent. In addition, when the new ship-
ment order has higher priority than the order currently being
served, the robot’s motion is aborted, causing a reevaluation
of which order to serve (curOrderPrio is a defined fluent
whose definition appears below).



The second interrupt in mainControl handles the can-
cellation of orders when the sender gets suspended; its body
executes the primitive action cancelOrder(n).

The third interrupt in mainControl handles the robot’s
navigation, pick ups, and deliveries. When the interrupt’s
condition is satisfied, the following procedure is called:

proc robotMotionControl
if 9cCustToServe(c) then tryServeCustomer
else tryToWrapUp;
endIf

endProc

This tries to serve a customer when there is one to be served
and tries to return to the central office and wrap up otherwise.
CustToServe(c; s) is a defined fluent:

CustToServe(c; s)
def
=9n[

(orderState(n; s) = ToP ickUp ^ sender(n; s) = c
^:Suspended(recipient(n; s); s)) _

(orderState(n; s) = OnBoard ^ (recipient(n; s) = c
_ sender(n; s) = c ^ Suspended(recipient(n; s); s)))]

^ :Suspended(c; s)

To try to serve a customer, we execute the following:

proc tryServeCustomer
� c [BestCustToServe(c)?;

startGoTo(mailbox(c));
(robotState 6= Moving)?;
if robotState = Reached then
freezeRobot;
dropOffShipmentsTo(c);
pickUpShipmentsFrom(c);
resetRobot

else if robotState = Stuck then
resetRobot; % abandon attempt
handleServiceFailure(c)

% else when service aborted nothing more to do
endIf ]

endProc

This first picks one of the best customers to serve, directs the
robot to start navigating towards the customer’s mailbox,
and waits until the robot halts. If the robot reaches the
customer’s mailbox, then shipments for the customer are
dropped off and shipments from him/her are picked up. If
on the other hand, the robot halts because it got stuck, the
handleServiceFailure procedure is executed. Finally,
if the robot halts because a higher priority order came in
and the top priority interrupt executed a resetRobot, then
there is nothing more to be done. BestCustToServe(c; s)
is a defined fluent that captures all of the robot’s order
scheduling criteria:

BestCustToServe(c; s)
def
=CustToServe(c; s) ^

custPriority(c; s) = maxCustPriority(s) ^
credit(c; s) = maxCreditFor(maxCustPriority(s); s)

custPriority(c; s) = p
def
=

9nOrderForCustAtPrio(n; c; p; s)^
8n0; p0(OrderForCustAtPrio(n0; c; p0; s) � p0 � p)

OrderForCustAtPrio(n; c; p; s)
def
=

orderState(n; s) = ToP ickUp ^ sender(n; s) = c ^
orderPrio(n; s) = p _

orderState(n; s) = OnBoard ^ orderPrio(n; s) = p ^
(recipient(n; s) = c _
sender(n; s) = c ^ Suspended(recipient(n; s); s))

maxCustPriority(s) = p
def
= 9c custPriority(c; s) = p

^ 8c0 custPriority(c0; s) � p

maxCreditFor(p; s) = k
def
=

9c[custPriority(c; s) = p ^ credit(c; s) = k ^
8c0(custPriority(c0; s) = p � credit(c0; s) � k)]

This essentially says that the best customers to serve are
those that have the highest credit among those having the
highest priority orders. We can now also define the priority
of the order currently being served as follows:

curOrderPrio(s) = p
def
=

8c[robotState(s) = Moving ^
robotDestination(s) = mailbox(c)
� p = custPriority(c; s)] ^

[:(robotState(s) = Moving ^
9c robotDestination(s) = mailbox(c)) � p = �1]

The handleServiceFailure procedure goes as follows:

proc handleServiceFailure(c)
reduceCredit(c);
if credit(c) = 0 then
notifyStopServing(p);

endIf;
endProc

When the robot gets stuck on the way to customer c’s mail-
box, it first reduces c’s credit and then checks whether it has
reached zero and c has just become Suspended. If so, c is
notified that he/she will no longer be served.

The tryToWrapUp procedure is similar to
tryServeCustomer:

proc tryToWrapUp
startGoTo(CentralOffice);
(robotState 6= Moving)?;
if robotState = Reached then
freezeRobot;
dropOffToCentralOffice
resetRobot

else if robotState = Stuck then
resetRobot % abandon attempt

% else when service aborted nothing more to do
endIf

endProc

It starts the robot on its way to the central office. The thread
then waits until the robot halts. If the robot reaches the
central office, then all undeliverable shipments on board are
dropped off, and unless a new order comes in the program
terminates. If the robot gets stuck, then the robot is reset
and the procedure ends. If motion is aborted, the proce-
dure ends immediately. In both cases control returns to the
mainControl procedure, which will serve a new order if



Figure 1: Our robot facing an obstacle.

one has come in or make a new attempt to return to the
central office.

Procedure dropOffShipmentsT o(c) delivers to cus-
tomer c all shipments on board such that c is the shipment’s
recipient or c is the shipment’s sender and the recipient has
been suspended:

proc dropOffShipmentsTo(c)
while 9n (orderState(n) = OnBoard ^

(recipient(n) = c _
sender(n) = c ^ Suspended(recipient(n)))) do

� n [(orderState(n) = OnBoard ^
(recipient(n) = c _

sender(n) = c ^ Suspended(recipient(n))))?;
dropOffShipment(n)]

endWhile
endProc

Procedure pickUpShipmentsFrom(c) simply picks up all
outgoing shipments from customer c’s mailbox. Proce-
dure dropOffToCentralOffice drops off all shipments
whose recipient and senders are both suspended to the cen-
tral office. These are similar to dropOffShipmentsT o(c)
and we omit their code.

Note that by handling the cancellation of pick ups in a
separate thread from that dealing with navigation and order
serving, we allow the robot to be productive while it is in
motion and waiting to reach its destination. This makes a
better use of resources.

To run the system, we execute mainControl after plac-
ing a few initial orders:

orderShipment(Y ves;Ken; 0) k
orderShipment(Ken;Hector; 1) �
mainControl

Experimentation
The high-level control module for the mail delivery applica-
tion has been ported to an RWI B12 mobile robot and tested
in experiments (see figure 1). The other software compo-
nents for this were based on a system developed during
an earlier project concerned with building an experimental
vehicle to conduct survey/inspection tasks in an industrial
environment (Jenkin et al. 1994). The system supports

point to point navigation in a previously mapped environ-
ment and can use pre-positioned visual landmarks to correct
odometry errors. It relies on sonar sensors to sense unmod-
eled obstacles.

The system’s architecture conforms to the general scheme
described earlier. It provides two levels of control. An on-
board low-level controller (Robinson & Jenkin 1994) per-
forms all time-critical tasks such as collision avoidance and
straight line path execution. The low-level controller as-
sumes that the robot is always in motion and communicates
with an offboard global path planner and user interface mod-
ule known as the Navigator. The Navigator takes as inputs
a metric/topological map of the environment in which the
robot is located and the coordinates (as defined in the map)
of the two end points, i.e., the source and the destination
of a path. By making use of some predefined path-finding
algorithms such as breadth-first search or A� the Navigator
identifies a feasible path between the source and the des-
tination. To follow the path, the Navigator decomposes it
into segments (a segment is a straight line between two ad-
jacent way-points) and then forwards the segments to the
low-level controller for execution. The Navigator super-
vises the low-level controller and identifies failures in the
low-level controller’s ability to execute a path segment.

The ConGolog-based high-level control module inter-
acts with the rest of the architecture by communicat-
ing with the Navigator through a socket interface. The
high-level controller, Navigator, and low-level controller
all run asynchronously. The primitive actions in the
ConGolog interface model are implemented using op-
erations provided by the Navigator (currently, the mail
pickup and drop off actions are only simulated). For
example, the ConGolog primitive action startGoTo(p)
is implemented as [planPath(coordinatesOf(p));
followPath], where planPath and follow path are op-
erations supplied by the Navigator.

Our experiments confirmed the system’s ability to deal
with navigation failures and to interrupt the current task
when an urgent shipment order is made. For more details
on the system, see (Tam 1998).

Discussion
We have described how ConGolog can be used to imple-
ment high-level robot controllers that can cope with dy-
namic and unpredictable environments — controllers that
are reactive and support high-level plan reconsideration in
response to exogenous events and exceptional conditions.
Our work shows how a logic-based approach can be used to
build effective systems while retaining features such as clear
specifications, inferential power, and easy extensibility.

One limitation of the work accomplished so far is that
the system developed is rather small. We need to experi-
ment with more complex systems to see whether the general
approach and the use of prioritized interrupts to provide re-
activity scales up. As well, interrupts support the suspension
of the current plan but not its termination. The addition of a
conventional exception throwing and catching mechanism
that terminates the current plan is being investigated.



Another limitation concerns the lack of search/planning
in the current high-level program. However, the new model
of De Giacomo and Levesque (De Giacomo & Levesque
1998) provides a clean specification of incremental high-
level program execution in the presence of sensing. This
will allow us to incorporate controlled search/planning in
our programs while retaining a clean semantics. This might
be most useful for dealing with unexpected plan failures.
A Golog-based approach to execution monitoring and plan
repair is developed in (De Giacomo, Reiter, & Soutchanski
1998). The use for Golog for planning is investigated in
(Reiter 1998).

Another area under investigation is perceptual tasks.
Such tasks often require sophisticated plan selection and
involve information acquisition. We are currently working
on an application where packages must be delivered to the
recipient “in person” and where the robot must use sophis-
ticated search strategies to locate the recipient, for example,
asking whether a co-worker has seen the recipient (Tam
1998).

The high-level program execution model of robot/agent
control that underlies our approach is related to work on
resource-bounded deliberative architectures (Bratman, Is-
rael, & Pollack 1988; Rao & Georgeff 1992) and agent
programming languages (Shoham 1993). One difference is
that in our approach, plan selection is coded in the program.
This makes for a less declarative and in some cases more
complex specification, but eliminates some overhead. On
the other hand, the robot’s world is modeled using a domain
action theory and the world model is updated automatically
using the successor state axioms; there is no need to perform
asserts and retracts. Moreover, the evaluation of a test may
involve arbitrary amounts of inference, although following
logic programming philosophy, we take the programmer
to be responsible for its efficiency/termination. Perhaps a
more central difference is that our robots/agents can be un-
derstood as executing programs, albeit in a rather smart way;
they have a simple operational semantics. Modeling the op-
eration of an agent implemented using a resource-bounded
deliberative architecture requires a much more complex ac-
count.

Acknowledgements

This research received financial support from the Informa-
tion Technology Research Center (Ontario, Canada) and
the Natural Science and Engineering Research Council
(Canada). Hector Levesque came up with the idea of han-
dling sensing through exogenous events. We thank him
as well as Ray Reiter, Jeff Lloyd, Mikhail Soutchanski,
Giuseppe De Giacomo, and Daniele Nardi for helpful dis-
cussions related to this work. Many of our papers are avail-
able at http://www.cs.yorku.ca/�lesperan/.

References
Bratman, M.; Israel, D.; and Pollack, M. 1988. Plans and
ressource-bounded practical reasoning. ComputationalIn-
telligence 4:349–355.

Brooks, R. 1986. A robust layered control system for a
mobile robot. IEEE Journal on Robotics and Automation
2(1):14–23.

De Giacomo, G., and Levesque, H. J. 1998. An incre-
mental interpreter for high-level programs with sensing.
In Working Notes of the 1998 AAAI Fall Symposium on
Cognitive Robotics.

De Giacomo, G.; Lespérance, Y.; and Levesque, H. J.
1997. Reasoning about concurrent execution, prioritized
interrupts, and exogenous actions in the situation calcu-
lus. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, 1221–1226.

De Giacomo, G.; Reiter, R.; and Soutchanski, M. E.
1998. Execution monitoring of high-level robot programs.
In Principles of Knowledge Representation and Reason-
ing: Proceedings of the Sixth International Conference
(KR’98), 453–464.

Jenkin, M.; Bains, N.; Bruce, J.; Campbell, T.; Down,
B.; Jasiobedzki, P.; Jepson, A.; Majarais, B.; Milios, E.;
Nickerson, B.; Service, J.; Terzopoulos, D.; Tsotsos, J.;
and Wilkes, D. 1994. ARK: Autonomous mobile robot for
an industrial environment. In Proc. IEEE/RSJ IROS.

Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(59–84).

McCarthy, J., and Hayes, P. 1979. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence,
volume 4. Edinburgh, UK: Edinburgh University Press.
463–502.

Rao, A., and Georgeff, M. 1992. An abstract archi-
tecture for rational agents. In Nebel, B.; Rich, C.; and
Swartout, W., eds., Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Third Interna-
tional Conference, 439–449. Cambridge, MA: Morgan
Kaufmann Publishing.

Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial
Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy. San Diego, CA: Aca-
demic Press. 359–380.

Reiter, R. 1998. Knowledge in action: Logi-
cal foundations for describing and implementing dy-
namical systems. Draft Monograph, available at
http://www.cs.toronto.edu/~cogrobo.

Robinson, M., and Jenkin, M. 1994. Reactive low level
control of the ARK. In Proceedings, Vision Interface ’94,
41–47.

Rosenschein, S. J., and Kaelbling, L. P. 1995. A situated
view of representation and control. Artificial Intelligence
73:149–173.

Schoppers, M. J. 1987. Universal plans for reactive robots
in unpredictable environments. In Proceedings of the Tenth



International Joint Conference on Artificial Intelligence,
1039–1046.
Shoham, Y. 1993. Agent-oriented programming. Artificial
Intelligence 60(1):51–92.
Tam, K.; LLoyd, J.; Lespérance, Y.; Levesque, H.; Lin, F.;
Marcu, D.; Reiter, R.; and Jenkin, M. 1997. Controlling
autonomous robots with GOLOG. In Proceedings of the
Tenth Australian Joint Conference on Artificial Intelligence
(AI-97), 1–12. Perth, Australia.
Tam, K. 1998. Experiments in high-level robot con-
trol using ConGolog — reactivity, failure handling, and
knowledge-based search. Master’s thesis, Dept. of Com-
puter Science, York University.


