
1

ITEC 1630
Week 8: Multithreading

Yves Lespérance
Readings: Horstmann Ch. 23

Multithreading

• When multiple threads/processes run
concurrently/in parallel

• Often timesliced, but may run in parallel
on a multiprocessor

• Many applications

Multithreading basics

• Package tasks to be run by threads in
classes that implement the Runnable
interface

• Put code performing task in the run()
method

• Create a thread and use it to execute
the task

The class Thread

• To create a thread:
Thread t = new Thread(runnableObject);

or Thread t = new Thread();
• To start running it: t.start();
• To make it go to sleep:

Thread.sleep(milliseconds);

• See Greetings e.g.



2

Stopping/interrupting a thread

• To interrupt a thread: t.interrupt();
• Thread decides how/when to stop
• Can use Thread.interrupted() to check

if interrupted
• If thread is interrupted while sleeping,
InterruptedException is thrown; catch it
and wind up the task

Race conditions

• When several threads are using shared data
structures, they must take turns to ensure the
data is not corrupted

• Such corruption may occur if the threads are
interleaved in a very particular way

• This is called a race condition
• See BankAccountThreadTester without lock

e.g.

Using Locks

• To ensure mutual exclusion when accessing
the data structure, use a lock

• Create a lock: l = new ReentrantLock();
• To get the lock (before accessing the data):

l.lock();

• To release the lock (after accessing the data):
l.unlock();

• See BankAccountThreadTester with lock e.g.

synchronized methods

• Another way to ensure mutually exclusive
access to data and do synchronization

• Only one thread can be executing a
synchronized method at any one time

• Each object has a built-in lock which is
acquired when entering a synchronized
method and released when leaving it

• See modified BankAccount with
synchronized e.g.



3

deadlock

• Deadlock occurs when a thread acquires a
lock and then must wait for another thread to
do some work before proceeding, but where
the second thread needs the lock to proceed

• E.g. withdraw waits for balance to increase
while holding lock

• E.g. t1 has resource1 and needs resource2 to
proceed while t2 has resource2 and needs
resource1

Waiting and signaling

• Can be used to do advanced synchronization
• A thread waits on a condition (e.g. balance
> 0) and another thread signals when the
condition becomes true

• To create a condition:
Condition c = alock.newCondition();

• To start waiting on a condition: c.await();
• To signal that a condition has become true:

c.signalAll() or c.signal()

Waiting and signaling

• Waiting threads are blocked and will not be
considered for execution until the condition is
signaled

• The lock must still be released before they
can run

• See modified BankAccount with wait/signal
• Can also be done with an object’s built-in lock

and condition: wait() to wait and
notifyAll() or notify() to signal


