ITEC 1630
Week 8: Multithreading

Yves Lespérance
Readings: Horstmann Ch. 23

Multithreading

When multiple threads/processes run
concurrently/in parallel

Often timesliced, but may run in parallel
on a multiprocessor

Many applications

Multithreading basics

» Package tasks to be run by threads in
classes that implement the Runnable
interface

* Put code performing task in the run ()
method

» Create a thread and use it to execute
the task

The class Thread

To create a thread:

Thread t = new Thread(runnableObject);
Ol Thread t = new Thread();

To start running it: t.start();

To make it go to sleep:
Thread.sleep(milliseconds);

See Greetings e.g.




Stopping/interrupting a thread

To interrupt a thread: t.interrupt();
Thread decides how/when to stop

Can use Thread.interrupted() tO check
if interrupted

If thread is interrupted while sleeping,
InterruptedException is thl"OWﬂ; catch it
and wind up the task

Race conditions

When several threads are using shared data
structures, they must take turns to ensure the
data is not corrupted

Such corruption may occur if the threads are
interleaved in a very particular way

This is called a race condition
See BankAccountThreadTester without lock
e.g.

Using Locks

To ensure mutual exclusion when accessing
the data structure, use a lock

Create a lock: 1 = new ReentrantLock();

To get the lock (before accessing the data):
l.lock();

To release the lock (after accessing the data):

l.unlock();
See BankAccountThreadTester with lock e.g.

synchronized methods

Another way to ensure mutually exclusive
access to data and do synchronization
Only one thread can be executing a
synchronized method at any one time
Each object has a built-in lock which is
acquired when entering a synchronized
method and released when leaving it

See modified BankAccount with
synchronized e.g.




deadlock

» Deadlock occurs when a thread acquires a

lock and then must wait for another thread to
do some work before proceeding, but where
the second thread needs the lock to proceed

E.g. withdraw waits for balance to increase
while holding lock

E.g. t1 has resource1 and needs resource?2 to
proceed while t2 has resource2 and needs
resource1

Waiting and signaling

Can be used to do advanced synchronization

A thread waits on a condition (e.g. balance
> 0) and another thread signals when the
condition becomes true

To create a condition:

Condition ¢ = alock.newCondition();
To start waiting on a condition: c.await();

To signal that a condition has become true:
c.signalAll() OrF c.signal()

Waiting and signaling

Waiting threads are blocked and will not be
considered for execution until the condition is
signaled

The lock must still be released before they
can run

See modified BankAccount with wait/signal

Can also be done with an object’s built-in lock
and condition: wait () to wait and
notifyAll() ornotify () to signal




