
CSE 1030

Yves Lespérance

Lecture Notes
Week 10 — Algorithm Analysis, Searching and Sorting

Recommended Readings:
Van Breugel & Roumani Ch. 8 and Savitch Ch. 6

Program Efficiency

The cost of executing a program or algorithm can be measured by the
amounts of time and space it uses. Generally, time is more critical.

Why should we want to know?

• to estimate the program’s running time,

• to see how large an input it can cope with,

• to compare different algorithms for solving the same problem.

Can study efficiency by measuring actual running time on a particular
computer for sample inputs of different sizes. Informative, but the re-
sults depends on hardware, language, and compiler used. Also time
consuming.

2

Algorithm Analysis

Also possible to analyze efficiency of algorithms using mathematical
methods; studied in area of CS called analysis of algorithms.

In general, execution time increases with the size of the input; e.g.
computing factorial of n, sorting an array of size n. So use a function
T(n) of input size n to represent running time of algorithm.

However, running time may not be the same for all inputs of the same
size, e.g. sorting. Can analyze average case running time, but this
requires statistical methods. More often, analyze worst case running
time. This is simpler, provides a guarantee, and often gives the same
results.

3

We do the analysis by counting the number of operations performed
by the algorithm for the worst input of size n.

Simple e.g., calculating n! = n ∗ (n− 1) ∗ . . . ∗ 1:

int prod = 1;

for (int i = 1; i <= n; i++)

prod = prod * i;

T(n) = n multiplications +

n assignments +

n tests +

n incrementations +

2 assignments for initialization+

1 final test

= 4n+3 operations

4

Approximating, we drop the lower order term 3 as it becomes neglige-
able when n gets large. Also, we drop the constant 4 since the time to
perform an operation depends on the computer. So we say that T(n)

is O(n), i.e. Big-Oh n.

Big-oh can be defined formally:

f(n) is O(g(n)) iff there exist positive constants C and K such that
f(n) ≤ C · g(n) for all n ≥ K.

Big-oh gives us an estimate of how fast running time grows as n grows.

In doing the analysis, don’t need to count all operations, only pick one
that reflects the overall performance of the algorithm — is executed
most often, is in the inner most loop. E.g. for iterative factorial, count
multiplications. E.g. for sorting: count array accesses or comparisons
between elements.

5

Sorting

Sorting an array or list is a very common operation. The array/list is
sorted if all its elements appear in the right order.

What “right order” means is application dependent. E.g. sort array
of Student objects so that they appear in increasing order of student
number. Could also sort by names using lexicographic order. Another
e.g.: could sort marks in a class in decreasing order.

It is much easier to find an item if the array/list is sorted than if it is not
(e.g. in a phone book).

There are many different algorithms for array sorting. Much work has
been done to analyse them and determine which are the best in terms
of running time.

6

Merge Sort — A Recursive Array Sorting Algorithm

Steps:

1. divide the array into 2 halves;

2. sort each half recursively;

3. merge the sorted halves back into a single array.

public static void mergeSort(int[] a, int from, int to)
{ if(from == to) return;

int mid = (from + to) / 2;
// sort both halves recursively and merge back
mergeSort(a, from, mid);
mergeSort(a, mid + 1, to);
merge(a, from, mid, to);

}

public static void sort(int[] a)
{ mergeSort(a, 0, a.length - 1);
}

7

public static void merge(int[] a, int from, int mid, int to)
{ // create temporary array

int both = to - from + 1;
int[] tempA = new int[both];
// merge until one array runs out
int i1 = from;
int i2 = mid + 1;
int j = 0;
while(i1 <= mid && i2 <= to)
{ if (a[i1] < a[i2])

{ tempA[j] = a[i1];
i1++;

}
else
{ tempA[j] = a[i2];

i2++;
}
j++;

}

8

// copy rest of remaining half
while(i1 <= mid){

tempA[j] = a[i1];
i1++;
j++;

}
while(i2 <= to){

tempA[j] = a[i2];
i2++;
j++;

}
// copy tempA back into a
for (j = 0; j < both; j++)

a[from + j] = tempA[j];
}

9

Tracing execution of Merge Sort on a = [18, 33, 4, 21, 17,

35, 20]

mergeSort(a,0, 6) calls mergeSort(a,0,3)
mergeSort(a,0,3) calls mergeSort(a,0,1)

mergeSort(a,0,1) calls mergeSort(a,0,0)
mergeSort(a,0,0) returns

mergeSort(a,0,1) calls mergeSort(a,1,1)
mergeSort(a,1,1) returns

mergeSort(a,0,1) calls merge(a,0,0,1)
merge(a,0,0,1) merges [18] and [33] returns with a unchanged

mergeSort(a,0,1) returns with a unchanged
mergeSort(a,0,3) calls mergeSort(a,2,3)

mergeSort(a,2,3) calls mergeSort(a,2,2)
mergeSort(a,2,2) returns

mergeSort(a,2,3) calls mergeSort(a,3,3)
mergeSort(a,3,3) returns

mergeSort(a,2,3) calls merge(a,2,2,3)
merge(a,2,2,3) merges [4] and [21] returns with a unchanged

mergeSort(a,2,3) returns with a unchanged
mergeSort(a,0,3) calls merge(a,0,1,3)

merge(a,0,1,3) merges [18, 33] and [4, 21]
returns with a = [4, 18, 21, 33, 17, 35, 20]

mergeSort(a,0,3) returns with a as above

10

mergeSort(a,0,6) calls mergeSort(a,4,6)
mergeSort(a,4,6) calls mergeSort(a,4,5)
mergeSort(a,4,5) calls mergeSort(a,4,4)

mergeSort(a,4,4) returns
mergeSort(a,4,5) calls mergeSort(a,5,5)
mergeSort(a,5,5) returns

mergeSort(a,4,5) calls merge(a,4,4,5)
merge(a,4,4,5) merges [17] and [35] returns with a unchanged

mergeSort(a,4,5) returns with a unchanged
mergeSort(a,4,6) calls mergeSort(a,6,6)

mergeSort(a,6,6) returns
mergeSort(a,4,6) calls merge(a,4,5,6)

merge(a,4,5,5) merges [17, 35] and [20]
returns with a = [4, 18, 21, 33, 17, 20, 35]

mergeSort(a,4,6) returns with a as above
mergeSort(a,0,6) calls merge(a,0,3,6)
merge(a,0,3,6) merges [4, 18, 21, 33] and [17, 20, 35]

returns with a = [4, 17, 18, 20, 21, 33, 35]
mergeSort(a,0,6) returns with a as above

11

Proof by Induction of Correctness and Termination for
Merge Sort

Let’s assume that merge(a,i,m,j) is correct and terminates, i.e.
merges sorted sub-arrays a[i..m] and a[m+1..j] into a single sorted
sub-array a[i..j]. This can be proven using loop invariants.

We prove correctness and termination of the mergeSort(a,i,j)

method by induction on the size n of the sub-array considered, i.e.
n = j− (i− 1).

1) Base case n = 1: then mergeSort(a,i,j) immediately returns,
and a subarray of size 1 is always sorted. So the method is correct.

2) For the recursive case: Assume that mergeSort(a,i,j) is correct
and terminates for all sizes n ≤ k (induction hypothesis).

12

We must prove that that the method is correct for size n = k +1.

Then mergeSort(a,i,j) calls mergeSort(a,i,mid) and
mergeSort(a,mid+1,j). In both cases, the size of the sub-array
involved is≤ k, so by the induction hypothesis these two calls correctly
sort the sub-arrays a[i..mid] and a[mid+1..j].

After the recursive call, merge(a,i,mid,j) is called to merge the
two sorted sub-arrays. By our assumption that merge is correct, this
results in a[i,j] being sorted.

So mergeSort is correct for size n = k +1.

Thus for all natural numbers n mergeSort(a,i,j) correctly sorts
the sub-array a[i..j] where n is the size of the sub-array and termi-
nates.

13

Analysis of Running Time of Merge Sort

Merging 2 arrays containing a total of n elements requires n− 1 com-
parisons in the worst case (when neither half runs out early). If you
want to count all operations, then the running time will be C1n + C2

where C1 and C2 are constants. If you drop the lower order term, you
get C1n.

The running time for the complete sorting of an array of size n can be
specified as a recurrence relation:

T(n) =

{

C2 if n ≤ 1
2T(n/2) + C1n otherwise

14

There are general methods for solving recurrence relations, but let’s do
it from first principles. If n/2 > 1, we can apply the recurrence relation
to T(n/2) to get:

T(n) = 2(2T(n/4) + C1n/2) + C1n

= 4T(n/4) + 2C1n

15

Suppose that n is a power of 2, i.e. n = 2m. Then we can keep
applying the relation until n reaches 20 = 1:

T(n) = 2mT(n/2m) +mC1n

= C22
m + C1mn since T(n/2m) = T(1) = C2

= C2n+ C1n log2 n since m = log2 n

= O(n logn)

Thus, the running time of merge sort grows much more slowly than
that of many other sorting algorithms whose running time is O(n2),
e.g. selection sort, insertion sort, etc.:

n n loge n n2

10 23 100
100 460 10,000
103 6.9 103 106

106 13.8 106 1012

16

Searching

We have seen that a common operation on arrays and collections is
sorting them.

Another common operation is searching an array to locate a given
value: you are given a value, the target, and you must return the in-
dex where it appears in the array; if it doesn’t appear, you return some
value to indicate that it was not there, such as a value like -1 that is not
a valid index.

Like for sorting, there are many algorithms to perform searching. Will
look at some and do an analysis.

17

Linear Search

One algorithm for searching an array is simply to start at the begin-
ning and go through each element in sequence; for each element, you
compare it with the value you are looking for, the target; you are done
when you find the target or you reach the end of the array. This is
called linear search.

public static int linearSearch(int[] a,

int target)

{ for (int i = 0; i < a.length; i++)

if (target == array[i])

return i;

return -1;

}

18

If you perform linear search on an array of size n, in the worst case
you will have to compare the target with all of the array elements, i.e.,
do n comparisons; on average, you will compare the target with half of
the array elements, i.e., do n/2 comparisons.

Thus, we say that in the worst case, linear search takes O(n) opera-
tions.

19

Binary Search

When the array you are searching is already sorted, then there is a
much more efficient algorithm.

You start by comparing the target with the element at the middle of
the array. If target == a[mid], you just return mid and you are
done.

Otherwise, there are two cases:

• target < a[mid], in which case target can only be between
index 0 and mid - 1.

• target > a[mid], in which case target can only be between
index mid + 1 and
lenght - 1.

20

In either case, you’ve eliminated half of the array; you can continue by
applying the same method to the remaining part of the array.

This method is called binary search.

21

Here is an iterative implementation:
public static int binarySearch(int[] a,

int target)
{

int from = 0;
int to = a.length - 1;
while (from <= to)
{ int mid = (from + to) / 2;

if (a[mid] == target)
return mid;

else if (target < a[mid])
to = mid - 1;

else
from = mid + 1;

}
return -1;

}

See textbook for a recursive one.

22

Analysis
Suppose we have an array of size n. In the worst case, we have that:

of comparisons # of elements remaining
0 n
1 n/2
2 n/4
. . .

log2 n 1

So binary search requires in the order of logn operations.

This is a huge improvement over linear search.
n loge n

10 2.3
100 4.6

1000 6.9
1,000,000 13.8

1,000,000,000 20.7
23

Analysis of Recursive Fibonacci Method

The running time for computing fibo(n) can be specified as the recur-
rence relation:

T(n) =

{

C2 if n ≤ 1
T(n− 1) + T(n− 2) + C1 otherwise

It can be shown that T(n) is O((1+
√
5

2)n),
i.e. the running time of the method is exponential.

To get an intuition for this, note that the number of recursive calls for
fibo(n) is close to the number of nodes in a full binary tree of height
n, which is

1+ 2+ 22 + 23 + . . .+2n−1 = 2n − 1

This is called a geometric progression. Since some operations must
be performed for each call, the running time must be exponential.

24

The Dutch National Flag Problem [Dijkstra]

Given an array of char containing the characters ’R’ (red), ’W’ (white),
and ’B’ (blue) in any order, e.g.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
R B W W B B R W W R R W R B W

write a method to rearrange the array elements so that they appear
as in the Dutch national flag, i.e. all reds to the left, all whites in the
middle, and all blue to the right:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
R R R R R W W W W W W B B B B

The method’s running time should be at most linear in the size of the
array.

25

Solution to Dutch National Flag Problem
public static void dnf(char[] a)
{ int r = 0;

int w = 0;
int b = a.length - 1;
while (w <= b)
{ if (a[w] == ’W’)

w++;
else if (a[w] == ’R’)
{ if (r != w)

swap(a, r, w);
r++;
w++;

}
else // if a[w] == ’B’
{ swap(a, w, b);

b--;
}

}
public static void swap(char[] a, int i, int j)
{ int temp = a[i];

a[i] = a[j];
a[j] = temp;

}

26

Running Time of dnf

The method’s running time is O(n) where n = a.length, because the
loop does n iterations and does a constant number of operations in
each iteration. To see this, note that b − w + 1 is equal to n initially,
and decreases by 1 at each iteration since either w is incremented or
b is decremented.

27

Proof of correctness of dnf

It is easy to make a mistake in such an algorithm, so we should prove
that it is correct. To do this, we must identify a loop invariant. As
discussed in week 4, this is a condition that is preserved by the loop
body, i.e., if it is true at the beginning of a loop iteration and the loop’s
test condition is true, then the invariant will also be true at the end of
the loop iteration.

For our example, a suitable invariant is

r ≤ w ∧ a[0..r− 1] = ′R′ ∧
a[r..w− 1] = ′W′ ∧ a[b+ 1..a.lenght− 1] = ′B′

where a[i..j] = c means that

∀k, i ≤ k ≤ j → a[k] = c.

28

To show that the method is correct, we show that the invariant is true
at the beginning of the loop (trivial given the way the variables are
initialized) and preserved by loop iterations. It follows that if the loop
terminates, then the invariant is true at the end and the loop’s test
condition is false. Together, these conditions imply that the array is
properly sorted.

To show that the invariant is preserved by the loop body, there are
3 cases to consider: (1) a[w] == ’W’, (2) a[w] == ’R’, and (3)
a[w] == ’B’.

Let us show it for case (3); the other cases are similar. We are given
that the invariant and the loop’s test condition w <= b hold before the
loop body is executed. We need to show that the invariant still holds
after the loop body.

29

Since r ≤ w holds beforehand and r and w are not changed by the
body, it must still hold afterwards.

Since a[0..r− 1] = ′R′ holds beforehand and r ≤ w ≤ b, then a[0..r− 1]

is not changed by the swap, and so a[0..r− 1] = ′R′ must hold after
the body.

a[r..w− 1] = ′W′ is also preserved by the same argument.

Finally, since a[b+ 1..a.lenght− 1] = ′B′ holds beforehand and a[w] =
′B′, then a[b..a.lenght− 1] = ′B′ holds after the swap, and thus
a[b+ 1..a.lenght− 1] = ′B′ must hold after the decrementation of b.

We should also prove that the method terminates, and that can be
done by an argument similar the one we gave to show the method
runs in O(n) time.

30

