
CSE 1030

Yves Lespérance

Lecture Notes

Week 1 — Implementing Static Features

Recommended Readings:

Savitch Ch. 5 and Van Breugel & Roumani Ch. 1

Object-Oriented Programming

Object-Oriented Programming (OOP) was developed to make it easier

to develop and maintain large software systems.

A key concern there is ensuring that the software is decomposed into

modules that different developers can work on independently.

OOP supports this by grouping data and related operations into classes

and encapsulating the implementation of the classes.

2

Why Define a Class?

There are two cases where defining a class is useful.

1. Your program needs to work with some kind of data, e.g. persons,

courses, etc. You want to group together the data and the operations
that manipulate it.

You also want to hide the details of how the data is represented and
how the operations are implemented from users/clients of the class.

The class will make some operations public, i.e. available to the users,
and provide information on how to use them. This is the class’s inter-
face or API. The rest of the class’s definition is private and hidden from
users. The API is like a contract between the clients and the imple-

menter.

When such a class allows many different possible implementations,

one says that the class defines an abstract data type; e.g. stack, list,
binary tree, etc.

3

2. You want to group together a set of related operations in a module
or utility, e.g. the Math class. In this case, class users won’t create in-
stances of the class. The methods are associated with the class itself.

In Java, they are labeled static.

Here too, the class supplies some public operations to users and pro-
vides information on how to use them in its interface. The rest of its
definition is private.

In both cases, we say that the class encapsulates, i.e. hides, the de-
tails of its definition.

4

Elements of a Utility Class Definition

A utility class (i.e. one with only static features) definition may include

the following:

// any needed package statement

// any needed import statements

public class ClassName

{

// static attribute declarations

...

// constructor definition - disallow use by clients

private ClassName(){};

// static method definitions

...

}// end class ClassName

5

Example: The Math Class

A typical example of a utility class is the Math class of the standard

Java library, which collects various commonly used mathematical meth-

ods (e.g. absolute value, rounding, etc.) and constants (e.g. π).

A simplified Math class is discussed in the lecture notes. Have a look.

6

Declaring and Initializing Attributes

Data associated with a utility class is stored in its attributes.

A static/class attribute declaration has the form:

access static [final] type name [= value];

E.g.

public static final double PI = 3.141592653589793;

7

It specifies:

• whether the attribute is accessible to clients, i.e. public or private,

• that it is a static class attribute,

• whether it is final, i.e. a constant,

• the type of the attribute,

• the name of the attribute,

• and optionally, the initial value of the attribute.

A key guideline is to keep non-final attributes private. In this way,

the class designer retains the right to change the way the data in the

attributes is represented.

8

Constructors

Constructors have the same name as their class. Their job is to ade-

quately initialize newly created instances of a class.

A utility class with only static features should not have instances.

But Java automatically creates a 0-arguments constructor if we don’t

define one.

To prevent clients from ever creating instances of a utility class, we can

provide a constructor that we make private, e.g.

private Math(){};

9

Defining Methods

When you define a method, you take the steps required to solve a

subproblem and give them a name. Afterwards, the method can be
called without knowing how it is implemented. This is called procedural
abstraction.

A method definition specifies:

• the name of the method,

• the name and types of parameters it takes,

• the type of result it returns (void if none),

• its access/visibility, i.e. public, private, etc.

• whether it is an instance or class (static) method,

• the steps required to execute it — the body of the method.

10

Returning Results from Methods

A method’s header specifies whether or not it returns a result, and
if it does, what the result’s type is. When no result is returned, the

method’s result type is declared to be void.

After a method has been called and its body has finished executing, the

execution of the program continues from the point where the method

was called. If a method is to return a value to the place where it was

called, it must terminate by executing the statement “return expres-
sion;”, e.g. return min;.

Then, the expression is evaluated and its value is passed back to the

point of the call as the method terminates.

Methods that return a value are often called functions and methods
that do not are often called procedures.

11

Parameters

When we call a method, we often want to pass some data to it; the

method can then use the data, save it in an attribute, or examine it to

decide what actions to take. We do this by having the method take

parameters. E.g. we need to pass the numbers to compare to the
Math.min method; the method uses the parameters a and b for this.

Parameters are declared in the header of the method definition. Both

the parameter name and type are given, e.g.

12

public static int min(int a, int b)

{

int min;

if (a <= b)

{

min = a;

}

else

{

min = b;

}

return min;

}

13

When you call a method, you supply an argument or actual parameter
for each (formal) parameter in the method definition header. Argu-
ments are associated to parameters by the order in which they appear.

The number and type of arguments must match that of the parameters.

E.g.

int paulsAge = 23;

int marysAge = 17;

int minAge;

minAge = Math.min(paulsAge,marysAge);

int roundedAge;

roundedAge = Math.round(23.6);

When a method is called, first the parameters are passed, and then
the body of the method is executed.

14

Parameter Passing — The Details

As we saw earlier, parameter passing proceeds as follows:

1. the arguments are evaluated,

2. parameter variables are created,

3. the values of the arguments are copied into the parameter vari-

ables.

E.g. in the method call Math.min(paulsAge,marysAge), the value

of the argument paulsAge, say 23 is first obtained, then a new formal

parameter variable a is created, and then the value of the paulsAge

argument, 23, is copied into this parameter variable. Similarly for

marysAge, its value is copied into the new parameter variable b. After

this has been done, the body of the Math.min method is executed.

Same when the argument is an expression, e.g.

paulsAge + 5

15

Since the method is working with a copy of the argument, any changes

made to the parameter variable don’t affect the argument. So you

cannot use parameters of primitive types to return values in Java. E.g.

public class ParamPassPrimApp

{

public static void main(String[] args)

{

int n = 41;

int m = 23;

System.out.println("in main n = " + n);

System.out.println("in main m = " + m);

m = MyUtility.utilMethod(n);

System.out.println("in main n = " + n);

System.out.println("in main m = " + m);

}

}

16

public class MyUtility

{

private MyUtility(){}

public static int utilMethod(int n)

{

System.out.println("in utilMethod n = " + n);

n++;

System.out.println("in utilMethod n = " + n);

return(n);

}

}

17

The mode of parameter passing used by Java is named call by value
because it is the value of the argument which is passed to the formal

parameter.

When the type of a parameter is an object type, only the reference

in the argument gets copied in the parameter, and both the argument

and parameter refer to the same object. So the method is working on

the original object, and any change to its attributes persists when the

method returns. E.g.

18

import java.awt.geom.Point2D.Double;

import java.awt.geom.Point2D;

public class ParamPassingObjApp

{

public static void main(String[] args)

{

Point2D.Double p1 = new Point2D.Double(1.5,3.0);

System.out.println("in main p1 = " + p1);

MyUtility.utilMethod(p1);

System.out.println("in main p1 = " + p1);

}

}

import java.awt.geom.Point2D;

import java.awt.geom.Point2D.Double;

public class MyUtility

{

private MyUtility(){}

public static void utilMethod(Point2D.Double p)

{

System.out.println("in utilMethod p = " + p);

p.setLocation(1.6,3.1);

System.out.println("in utilMethod p = " + p);

}

}

19

So, object parameters can be used by a method to send results back

to the caller just as well as to receive data from the caller.

In languages like C++ and Pascal, there is a parameter passing mode

named call by reference where the parameter receives a reference

to the argument. The fact that object-type variables always contain

references in Java makes object parameters behave somewhat as if

they had been passed using call by reference.

20

But unlike true call by reference, changing which object the parameter

is referring to does not change which object the argument is referring

to. E.g.

import java.awt.geom.Point2D;

import java.awt.geom.Point2D.Double;

public class MyUtility

{

private MyUtility(){}

public static void utilMethod(Point2D.Double p)

{

System.out.println("in utilMethod p = " + p);

p.setLocation(1.6,3.1);

p = new Point2D.Double(1.6,3.1);

System.out.println("in utilMethod p = " + p);

}

}

21

Control Flow and the Execution Stack

public class MethodCallingApp

{

public static void main(String[] args)

{

int n = 41;

int m = 23;

System.out.println("in main n = " + n);

System.out.println("in main m = " + m);

System.out.println("in main MyUtility.getCount() = " +

MyUtility.getCount());

m = MyUtility.utilMethod1(n);

System.out.println("in main n = " + n);

System.out.println("in main m = " + m);

System.out.println("in main MyUtility.getCount() = " +

MyUtility.getCount());

}

}

22

public class MyUtility
{

private static int count = 0;

private MyUtility(){}

public static int getCount()
{

return count;
}

public static void setCount(int count)
{

MyUtility.count = count;
}

public static void incrementCount()
{

MyUtility.count++;
}

public static int utilMethod1(int n)
{

incrementCount();
System.out.println("in utilMethod1 n = " + n);
n++;
n = utilMethod2(n);
System.out.println("in utilMethod1 n = " + n);
return(n);

}

23

private static int utilMethod2(int n)

{

incrementCount();

System.out.println("in utilMethod2 n = " + n);

n+= 10;

n = utilMethod3(n);

System.out.println("in utilMethod2 n = " + n);

return(n);

}

private static int utilMethod3(int n)

{

incrementCount();

System.out.println("in utilMethod3 n = " + n);

n+= 100;

System.out.println("in utilMethod3 n = " + n);

//uncomment to print stack trace

//Throwable t = new Throwable();

//t.printStackTrace(System.out);

return(n);

}

}

24

When a method, say main, calls a method utilMethod1 (on MyUtility),

the execution of main is suspended and utilMethod1 starts ex-

ecuting. Only when the execution of utilMethod1 terminates will

the execution of main resume. If utilMethod1 calls a third method

utilMethod2, utilMethod1 is also suspended until utilMethod2

terminates. The chain of method calls can get arbitrarily long.

Since the first method to be called is always the last to resume, the

Java interpreter uses a stack to keep track of control flow in a program

— the execution stack. We will see that this is important when en-
counter methods that call themselves, i.e. recursion. The stack is also

used to store a method’s local variables.

25

javadoc: A Documentation Utility

Important to have good documentation of classes. API/external doc for

clients/users and internal doc for implementers.

Can use javadoc utility to help produce external doc.

You put special comments in the class’s file and then run javadoc on

it to produce an HTML API documentation file.

javadoc comments start with /**. Put one immediately before each

method, non-private field, and before the class itself.

26

Special tags (must start line):

@param parameter-name description

@pre. precondition

@return description

@throws exception if condition

etc.

27

Can include other HTML tags e.g. <code>, <it>, etc.

See lecture notes and textbook for examples.

javadoc automatically adds links to existing classes.

When designing a class, document API using javadoc before writing

code.

Use normal comments to document class implementation.

28

