
CSE 1030

Yves Lespérance

Lecture Notes

Week 3 — Implementing Non-Static Features

Recommended Readings:

Savitch Ch. 4 and Van Breugel & Roumani Ch. 2

javadoc: A Documentation Utility

Important to have good documentation of classes. API/external doc for

clients/users and internal doc for implementers.

Can use javadoc utility to help produce external doc.

You put special comments in the class’s file and then run javadoc on

it to produce an HTML API documentation file.

javadoc comments start with /**. Put one immediately before each

method, non-private field, and before the class itself.

2

Special tags (must start line):

@param parameter-name description

@pre. precondition

@return description

@throws exception if condition

etc.

3

Can include other HTML tags e.g. <code>, <it>, etc.

See lab handbook and Horstmann for examples.

javadoc automatically adds links to existing classes.

When designing a class, document API using javadoc before writing

code.

Use normal comments to document class implementation.

4

Why Define a Class?

There are two cases where defining a class is useful.

1. Your program needs to work with some kind of data, e.g. Persons.

You want to group together the data and the operations that manipu-

late it.

You also want to hide the details of how the data is represented and

how the operations are implemented from users of the class. The class

will make some operations public, i.e. available to the users, and pro-

vide information on how to use them. This is the class’s interface. The

rest of the class’s definition is private and hidden from users.

When such a class allows many different possible implementations,

one says that the class defines an abstract data type; e.g. stack, list,

binary tree, etc.

5

2. You want to group together a set of related operations in a module,

e.g. the Math class. In this case, class users won’t create instances

of the class. The methods are associated with the class itself. In Java,

they are labeled static. We say that such a class is a utility.

Here too, the class supplies some public operations to users and pro-

vides information on how to use them in its interface. The rest of its

definition is private.

In both cases, we say that the class encapsulates, i.e. hides, the de-

tails of its definition.

6

Elements of a Class Definition

A class definition may include the following:

public class ClassName
{

// attribute declarations
...

// constructor definitions
...

// method definitions
...

}// end class ClassName

7

Attribute Declarations and Initialization

For each piece of information that needs to be maintained about the

instances of a class, you need to define an instance attribute/field in

the class, e.g.

public class Person
{

// attributes

private String name;
private int age;

// constructors
...

// methods
...

}// end class Person

If an attribute is public, clients can access and change its value di-

rectly. But if the attribute is private, clients can only access it indi-

rectly by calling methods. E.g.

8

public class Car
{

...

private String model;
public int mileage;

}

...

Car aCar = new Car();
aCar.mileage = 23000; // allowed
System.out.println(aCar.mileage); // allowed
aCar.model = "VW Beetle"; // error
System.out.println(aCar.model); // error

These access restrictions only apply to code outside the class. The

methods of the class always have access to the class’s attributes,

e.g. setAge can change the value of the age attribute in a Person

even though it is private.

A key guideline is to keep non-final attributes private. In this way,

the class designer retains the right to change the way the data in the

attributes is represented.

9

These are non-static/instance attributes; will see later about adding

static/class attributes.

Initialization of non-static attributes is done in constructors.

Constant attributes are labeled final.

10

Defining Methods

When you define a method, you take the steps required to solve a

subproblem and give them a name. Afterwards, the method can be

called without knowing how it is implemented. This is called procedural

abstraction.

A method definition has the form:

access [static] return-type signature body

11

It specifies:

• whether the method is accessible to clients, i.e. public or private,

• the type of result it returns, void if none,

• whether it is an instance or class (static) method,

• the method’s signature, i.e. its name and the types (and names)

of parameters it takes,

• the steps required to execute it — the body of the method.

12

Returning Results from Methods

A method’s header specifies whether or not it returns a result, and

if it does, what the result’s type is. When no result is returned, the

method’s result type is declared to be void.

After a method has been called and its body has finished executing, the

execution of the program continues from the point where the method

was called. If a method is to return a value to the place where it was

called, it must terminate by executing the statement “return expres-

sion;”, e.g. return this.age;.

Then, the expression is evaluated and its value is passed back to the

point of the call as the method terminates.

Methods that return a value are often called functions and methods

that do not are often called procedures.

13

Parameters

When we call a method, we often want to pass some data to it; the

method can then use the data, save it in an attribute, or examine it to

decide what actions to take. We do this by having the method take

parameters. E.g. we need to pass the person’s age to the setAge

method; the age can be any value we want; the method uses the pa-

rameter n for this.

Parameters are declared in the header of the method definition. Both

the parameter name and type are given, e.g.

public void setAge(int age)

{

this.age = age;

}

public void setNameAndAge(String name, int age)

{...}

14

When you call a method, you supply an argument or actual parameter

for each formal parameter in the method definition header. Arguments

are associated to parameters by the order in which they appear. The

number and type of arguments must match that of the parameters.

E.g.

Person p1 = new Person();

int uAge = 44;

p1.setAge(uAge);

p1.setNameAndAge("Yves",49);

When a method is called, first the parameters are passed, using pass

by value), and then the body of the method is executed.

15

Constructors

Constructors have the same name as their class. Their job is to ade-

quately initialize the new object’s attributes.

They use headers like methods, but without a return type, as it is al-

ways the constructor’s class.

A class can have several constructor methods. This is an example of

“overloading”, i.e. having several methods with the same name in one

class. The overloaded methods must have a different number or types

of arguments.

16

For e.g., the class Person has 3 constructors:

1. a 2 arguments constructor that initializes the name and age of the

new object to the values supplied, e.g.

Person p1 = new Person("Yves", 44);

2. a 0 arguments constructor that initializes the attributes to default

values, e.g.

Person p1 = new Person();

3. a 1 argument copy constructor that initializes the attributes to that

of an existing Person object, e.g.

Person p1 = new Person("Yves", 44);

Person p2 = new Person(p1);

17

If you don’t define any constructors, a 0 arguments constructor is au-

tomatically provided; it initializes the numeric attributes to 0, booleans

to false, and objects to null.

18

About this

Within a class definition, thiswithout parentheses always refers to the

current instance of the class. It can be used to refer to the instance’s

attributes in a method that has a variable or parameter with the same

name, e.g.
public class Person
{

private String name;
private int age;
...

public void setName(String name)
{

this.name = name;
}
...

}// end class Person

Here the parameter name defined in the method hides the attribute

name defined in the class; but you can refer to the latter using this.name.

Note that this(...) is a call to the class’s constructor.

19

To clearly distinguish them from local variables, we always refer to non-

static attributes as this.attributeName, and to static attibutes as

ClassName.attributeName.

When you call a method on an instance of a class this refers to that

instance of the class; it is an implicit parameter of the method.

20

Obligatory Methods

All classes inherit certain methods from the class Object. These in-

clude:

toString(), which returns a string representing the object,

equals(Object otherObject), which returns a boolean accord-

ing to whether the argument object is equal to this object,

hashCode(), which returns an integer that can serve as a hash code

for the object — it should be the same for objects that are equals.

It is generally better to override these with versions that are appropri-

ate to the class being defined, e.g. toString() returning a person’s

name, and equals comparing persons based on their names or social

insurance numbers.

21

Implementing Interfaces

A class may be declared to implement certain interfaces, e.g.

public class Rectangle implements Comparable<Rectangle>

Then, it has to define the methods declared in the interface, e.g.

int compareTo(Rectangle rectangle).

22

E.g. Implementing a CreditCard Class

// file CreditCard.java

public class CreditCard
{

// instance variables/attributes/fields

private String number;
private String name;
private double limit;
private double balance;

// class/static constants

public static final double DEFAULT_LIMIT = 1000.0;
public static final int MIN_NAME_LENGTH = 3;
public static final int MOD = 9;
public static final int SEQUENCE_NUMBER_LENGTH = 6;

23

// constructors

public CreditCard(int no, String aName, double aLimit)
{ assert 0 < no && no <= 999999 && aLimit > 0; // precondition

this.number = String.format("%06d", no) + "-";
int digitSum = 0;
while(no > 0)
{ digitSum = digitSum + no % 10;

no = no / 10;
}
this.number = this.number + (MOD - digitSum % MOD);
this.name = aName;
this.limit = aLimit;
this.balance = 0;

}

public CreditCard(int no, String aName)
{ this(no, aName, DEFAULT_LIMIT);
}

24

// instance methods - accessors

public double getBalance()
{ return this.balance;
}

public double getLimit()
{ return this.limit;
}

public String getName()
{ return this.name;
}

public String getNumber()
{ return this.number;
}

25

// mutators

public boolean setLimit(double newLimit)
{ if(newLimit >= 0 && newLimit >= this.balance)

{ this.limit = newLimit;
return true;

}
else
{ return false;
}

}

// specialized methods

public boolean charge(double amount)
{ assert amount >= 0; // precondition

if(this.balance+amount > this.limit)
{ return false;
}
else
{ this.balance = this.balance + amount;

return true;
}

}

public void credit(double amount)
{ assert amount >= 0; // precondition

this.balance = this.balance - amount;

26

}

public void pay(double amount)
{ assert amount >= 0; // precondition

this.balance = this.balance - amount;
}

// standard methods

public boolean equals(Object anObject)
{ return (anObject instanceof CreditCard &&

this.number.equals(((CreditCard)anObject).number));
}

public String toString()
{ String res = "CARD [";

res = res + "NO=" + this.number;
res = res + ", BALANCE=";
res = res + String.format("%.2f", this.balance) + "]";
return res;

}
}// end class CreditCard

27

Scope of Variables

The scope of a variable is the part of the program where it is visible,

where it can be accessed. The variables declared inside a method,

as well as its parameters, are said to be local to the method. One can

only refer to them in the method or code block where they are declared.

E.g.

28

public class Eg
{ public int meth1(int v2)

{ int v3 = 3;
System.out.println(v3); // ok
System.out.println(v2); // ok
System.out.println(v1); // ok
meth2(v3);

}
private void meth2(int v4)
{ int v5 = 5;

System.out.println(v5); // ok
System.out.println(v4); // ok
System.out.println(v1); // ok
System.out.println(v3); // error
System.out.println(v2); // error
while(...)
{ int v6 = 6;

System.out.println(v6); // ok
...

}
System.out.println(v6); // error

}
private int v1 = 1;

}

29

Access Control Revisited

For attributes and methods, one specifies where they are visible using

access control modifiers such as public and private.

public means that the attribute or method is accessible everywhere.

Normally we use this only for methods and class constants that are

made available to users of the class.

private means that the attribute or method is only accessible inside

the class where it is declared. Normally we use this for all attributes

and for methods that are defined by the implementor for his own use

and are not provided to users of the class.

Besides these, there are other access control modifiers such as protected

(accessible in subclasses and other classes in the same package) and

the default/no modifier (accessible other classes in the same package),

which we will discuss later.

30

Steps to Class Implementation

Study API. Should be documented using javadoc.

Write 1st version of class with fields and methods required by API,

leaving out implementation for now.

Write test harness that tests every feature of the class.

Identify private attributes and declare them.

Implement constructors, accessors, mutators, standard methods, spe-

cialized methods. Avoid redundancy by delegating and defining private

methods.

Add new test cases as you implement methods. Test methods as early

as possible. Fix bugs and run all tests again (bug fix may introduce

new bugs).

31

