
CSE 1030

Yves Lespérance

Lecture Notes

Week 11 — More on Algorithm Analysis and
Correctness

The Dutch National Flag Problem [Dijkstra]

Given an array of char containing the characters ’R’ (red), ’W’ (white),

and ’B’ (blue) in any order, e.g.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R B W W B B R W W R R W R B W

write a method to rearrange the array elements so that they appear

as in the Dutch national flag, i.e. all reds to the left, all whites in the

middle, and all blue to the right:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R R R R R W W W W W W B B B B

The method’s running time should be at most linear in the size of the

array.

2

Solution to Dutch National Flag Problem

public static void dnf(char[] a)
{ int r = 0;

int w = 0;
int b = a.length - 1;
while (w <= b)
{ if (a[w] == ’W’)

w++;
else if (a[w] == ’R’)
{ if (r != w)

swap(a, r, w);
r++;
w++;

}
else // if a[w] == ’B’
{ swap(a, w, b);

b--;
}

}
public static void swap(char[] a, int i, int j)
{ int temp = a[i];

a[i] = a[j];
a[j] = temp;

}

3

Running Time of dnf

The method’s running time is O(n) where n = a.length, because the

loop does n iterations and does a constant number of operations in

each iteration. To see this, note that b − w + 1 is equal to n initially,

and decreases by 1 at each iteration since either w is incremented or

b is decremented.

4

Proof of correctness of dnf

It is easy to make a mistake in such an algorithm, so we should prove

that it is correct. To do this, we must identify a loop invariant. As

discussed in week 4, this is a condition that is preserved by the loop

body, i.e., if it is true at the beginning of a loop iteration and the loop’s

test condition is true, then the invariant will also be true at the end of

the loop iteration.

For our example, a suitable invariant is

r ≤ w ∧ a[0..r− 1] = ′R′ ∧
a[r..w− 1] = ′W′ ∧ a[b+ 1..a.lenght− 1] = ′B′

where a[i..j] = c means that

∀k, i ≤ k ≤ j → a[k] = c.

5

To show that the method is correct, we show that the invariant is true

at the beginning of the loop (trivial given the way the variables are

initialized) and preserved by loop iterations. It follows that if the loop

terminates, then the invariant is true at the end and the loop’s test

condition is false. Together, these conditions imply that the array is

properly sorted.

To show that the invariant is preserved by the loop body, there are

3 cases to consider: (1) a[w] == ’W’, (2) a[w] == ’R’, and (3)

a[w] == ’B’.

Let us show it for case (3); the other cases are similar. We are given

that the invariant and the loop’s test condition w <= b hold before the

loop body is executed. We need to show that the invariant still holds

after the loop body.

6

Since r ≤ w holds beforehand and r and w are not changed by the

body, it must still hold afterwards.

Since a[0..r− 1] = ′R′ holds beforehand and r ≤ w ≤ b, then a[0..r− 1]

is not changed by the swap, and so a[0..r− 1] = ′R′ must hold after

the body.

a[r..w− 1] = ′W′ is also preserved by the same argument.

Finally, since a[b+ 1..a.lenght− 1] = ′B′ holds beforehand and a[w] =
′B′, then a[b..a.lenght− 1] = ′B′ holds after the swap, and thus

a[b+ 1..a.lenght− 1] = ′B′ must hold after the decrementation of b.

We should also prove that the method terminates, and that can be

done by an argument similar the one we gave to show the method

runs in O(n) time.

7

Searching

We have seen that a common operation on arrays and collections is

sorting them.

Another common operation is searching an array to locate a given

value: you are given a value, the target, and you must return the in-

dex where it appears in the array; if it doesn’t appear, you return some

value to indicate that it was not there, such as a value like -1 that is not

a valid index.

Like for sorting, there are many algorithms to perform searching. Will

look at some and do an analysis.

8

Linear Search

One algorithm for searching an array is simply to start at the begin-

ning and go through each element in sequence; for each element, you

compare it with the value you are looking for, the target; you are done

when you find the target or you reach the end of the array. This is

called linear search.

public static int linearSearch(int[] a,

int target)

{ for (int i = 0; i < a.length; i++)

if (target == array[i])

return i;

return -1;

}

9

If you perform linear search on an array of size n, in the worst case

you will have to compare the target with all of the array elements, i.e.,

do n comparisons; on average, you will compare the target with half of

the array elements, i.e., do n/2 comparisons.

Thus, we say that in the worst case, linear search takes O(n) opera-

tions.

10

Binary Search

When the array you are searching is already sorted, then there is a

much more efficient algorithm.

You start by comparing the target with the element at the middle of

the array. If target == a[mid], you just return mid and you are

done.

Otherwise, there are two cases:

• target < a[mid], in which case target can only be between

index 0 and mid - 1.

• target > a[mid], in which case target can only be between

index mid + 1 and

lenght - 1.

11

In either case, you’ve eliminated half of the array; you can continue by

applying the same method to the remaining part of the array.

This method is called binary search.

12

Here is an iterative implementation:

public static int binarySearch(int[] a,

int target)

{

int from = 0;

int to = a.length - 1;

while (from <= to)

{ int mid = (from + to) / 2;

if (a[mid] == target)

return mid;

else if (target < a[mid])

to = mid - 1;

else

from = mid + 1;

}

return -1;

}

See textbook for a recursive one.

13

Analysis

Suppose we have an array of size n. In the worst case, we have that:

of comparisons # of elements remaining

0 n
1 n/2
2 n/4
. . .

log2 n 1

So binary search requires in the order of logn operations.

This is a huge improvement over linear search.

n loge n

10 2.3
100 4.6

1000 6.9
1,000,000 13.8

1,000,000,000 20.7
14

Analysis of Recursive Fibonacci Method

The running time for computing fibo(n) can be specified as the recur-
rence relation:

T(n) =

{

C2 if n ≤ 1
T(n − 1) + T(n − 2) + C1 otherwise

It can be shown that T(n) is O((1+
√

5
2)n),

i.e. the running time of the method is exponential.

To get an intuition for this, note that the number of recursive calls for

fibo(n) is close to the number of nodes in a full binary tree of height
n, which is

1 + 2 + 22 + 23 + . . . + 2n−1 = 2n − 1

This is called a geometric progression. Since some operations must

be performed for each call, the running time must be exponential.

15

