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Lecture Notes

Week 10 — Recursion

Recommended Readings:

Van Breugel & Roumani Ch. 8 and Savitch Ch. 11 and Sec. 12.2

Recursive Methods

Consider the factorial function in maths:

0! = 1
1! = 1
2! = 2 × 1 = 2
3! = 3 × 2 × 1 = 6
4! = 4 × 3 × 2 × 1 = 24
. . .
n! = n × (n − 1) × . . . × 1 (*)

A simple Java method that uses a loop to compute the function is:

public static int factorial(int n)

{ int prod = 1;

for(int i = 1; i <= n; i++)

prod = prod * i;

return (prod);

}
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In mathematics, it is common to give a recursive definition to such

functions:

n! =

{

1 if n = 0
n × (n − 1)! otherwise

Notice that the function is mentioned on the right hand side of the

definition! Yet it is not circular; we can use it to find the value of the

function for any argument, e.g.:

4! = 4×3!

3! = 3×2!

2! = 2×1!

1! = 1×0!

0! = 1

1! = 1 × 1 = 1

2! = 2 × 1 = 2

3! = 3 × 2 = 6

4! = 4 × 6 = 24
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In contrast to (*), this definition precisely specifies n! for arbitrarily large

n’s. Recursive definitions are also called inductive definitions.

This kind of approach is often used in computer algorithms and pro-

grams. We can write a Java method that computes n! by recursion:

public static int factorial(int n)

{ if (n == 0) // base case

return (1);

else // n != 0 recursive case

return (n * factorial(n - 1));

}
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Here is a call trace of factorial(4):

factorial(4) calls factorial(3)
factorial(3) calls factorial(2)

factorial(2) calls factorial(1)
factorial(1) calls factorial(0)
factorial(0) returns 1

factorial(1) returns 1 * factorial(0) i.e. 1
factorial(2) returns 2 * factorial(1) i.e. 2

factorial(3) returns 3 * factorial(2) i.e. 6
factorial(4) returns 4 * factorial(3) i.e. 24
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This is implemented using an execution stack which keeps track of

what methods are called, what the values of their parameters/local

variables are, and where the methods will resume.

With recursive methods, the execution stack will contain several entries

for the same method, e.g. the recursive calls to factorial.

When recursion is not allowed (as in Fortran), there can never be more

than one call of a method that is active. So storage for the local vari-

ables of methods can be allocated at compile time (statically). But

when recursion is allowed as in all modern languages , a stack must

be used to accomodate an arbitrary number of calls.
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Recursion: Definitions

A procedure/method is recursive iff it calls itself from within its own

body either directly or indirectly (e.g. method m1 calls method m2 which

calls m1).

A recursive solution to a problem involves two components:

1. a direct solution to some simple instances of the problem; these

are called base cases;

2. a solution to the general case of the problem that involves solving

a simpler instance(s) of the problem and performing some opera-

tions on the result; this is called the recursive case.

The measure of problem size you are using is what you are doing

recursion over; e.g. for factorial, it is n; first thing you need for designing
a recursive solution.
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Proof of Correctness by Induction: E.g. factorial

Show base case is correct: factorial(0) returns 0 which is 0!;

correct.

For recursive case, assume the recursive calls are correct and prove

that the recursive case is correct given this assumption.

So assume factorial(n-1) correctly returns (n− 1)!.

Then factorial(n) returns n * factorial(n-1).

Since factorial(n-1) is correct by our assumption, n *

factorial(n-1) = n ∗ (n− 1)!, which is n!.

So the recursive case is correct and thus the method is correct.
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Proof of Termination: E.g. factorial

Define the size of each invocation of the method. Must be a natural

number.

Let size(factorial(n)) = n.

Show that each recursive invocation has a smaller size than the origi-

nal invocation.

factorial(n) only makes the recursive call factorial(n-1).

size(factorial(n-1)) = (n− 1) < size(factorial(n)) = n.

So the method terminates.
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A Combined Proof by Induction of Correctness and
Termination: E.g. factorial

We prove correctness and termination of the factorial method by in-

duction on the value of the argument n.

1) Base case n = 0: then factorial(0) returns 0 = 0!; correct.

2) For the recursive case: Assume that factorial(n) is correct and

terminates for all n ≤ k. This is the induction hypothesis.

We must prove that that the method is correct for n = k + 1.

Then factorial(n) returns (k + 1)∗factorial(k).

Since factorial(k) is correct by our assumption, (k+1)∗factorial(k)
= (k + 1) ∗ k! = (k + 1)!.

So for all natural numbers n factorial(n) is correct and terminates.
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E.g. Computing Terms of Fibonacci Sequence
Recursively

The Fibonacci sequence can given a recursive definition as follows:

fibo(n) =











0 if n = 0
1 if n = 1
fibo(n − 1) + fibo(n − 2) otherwise
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This can be translated directly into a recursive Java method:

public static int fibo(int n)

{ if (n == 0)

return 0;

else if (n == 1)

return 1;

else

return fibo(n - 1) + fibo(n - 2);

}
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Call tree for fibo(5):

[Draw on board]
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Call trace for fibo(5):

fibo(5) calls fibo(4)
fibo(4) calls fibo(3)

fibo(3) calls fibo(2)
fibo(2) calls fibo(1)
fibo(1) returns 1

fibo(2) calls fibo(0)
fibo(0) returns 0

fibo(2) returns fibo(1) + fibo(0) i.e. 1
fibo(3) calls fibo(1)
fibo(1) returns 1

fibo(3) returns fibo(2) + fibo(1) i.e. 2
fibo(4) calls fibo(2)

fibo(2) calls fibo(1)
fibo(1) returns 1

fibo(2) calls fibo(0)
fibo(0) returns 0

fibo(2) returns fibo(1) + fibo(0) i.e. 1
fibo(4) returns fibo(3) + fibo(2) i.e. 3
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fibo(5) calls fibo(3)
fibo(3) calls fibo(2)

fibo(2) calls fibo(1)
fibo(1) returns 1

fibo(2) calls fibo(0)
fibo(0) returns 0

fibo(2) returns fibo(1) + fibo(0) i.e. 1
fibo(3) calls fibo(1)

fibo(1) returns 1
fibo(3) returns fibo(2) + fibo(1) i.e. 2

fibo(5) returns fibo(4) + fibo(3) i.e. 5
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Sorting

Sorting an array or list is a very common operation. The array/list is

sorted if all its elements appear in the right order.

What “right order” means is application dependent. E.g. sort array

of Student objects so that they appear in increasing order of student

number. Could also sort by names using lexicographic order. Another

e.g.: could sort marks in a class in decreasing order.

It is much easier to find an item if the array/list is sorted than if it is not

(e.g. in a phone book).

There are many different algorithms for array sorting. Much work has

been done to analyse them and determine which are the best in terms

of running time.
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Merge Sort — A Recursive Array Sorting Algorithm

Steps:

1. divide the array into 2 halves;

2. sort each half recursively;

3. merge the sorted halves back into a single array.

public static void mergeSort(int[] a, int from, int to)
{ if(from == to) return;

int mid = (from + to) / 2;
// sort both halves recursively and merge back
mergeSort(a, from, mid);
mergeSort(a, mid + 1, to);
merge(a, from, mid, to);

}

public static void sort(int[] a)
{ mergeSort(a, 0, a.length - 1);
}
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public static void merge(int[] a, int from, int mid, int to)
{ // create temporary array

int both = to - from + 1;
int[] tempA = new int[both];
// merge until one array runs out
int i1 = from;
int i2 = mid + 1;
int j = 0;
while(i1 <= mid && i2 <= to)
{ if (a[i1] < a[i2])

{ tempA[j] = a[i1];
i1++;

}
else
{ tempA[j] = a[i2];

i2++;
}
j++;

}
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// copy rest of remaining half
while(i1 <= mid){

tempA[j] = a[i1];
i1++;
j++;

}
while(i2 <= to){

tempA[j] = a[i2];
i2++;
j++;

}
// copy tempA back into a
for (j = 0; j < both; j++)

a[from + j] = tempA[j];
}
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Tracing execution of Merge Sort on a = [ 18, 33, 4, 21, 17,

35, 20 ]

mergeSort(a,0, 6) calls mergeSort(a,0,3)
mergeSort(a,0,3) calls mergeSort(a,0,1)

mergeSort(a,0,1) calls mergeSort(a,0,0)
mergeSort(a,0,0) returns

mergeSort(a,0,1) calls mergeSort(a,1,1)
mergeSort(a,1,1) returns

mergeSort(a,0,1) calls merge(a,0,0,1)
merge(a,0,0,1) merges [18] and [33] returns with a unchanged

mergeSort(a,0,1) returns with a unchanged
mergeSort(a,0,3) calls mergeSort(a,2,3)

mergeSort(a,2,3) calls mergeSort(a,2,2)
mergeSort(a,2,2) returns

mergeSort(a,2,3) calls mergeSort(a,3,3)
mergeSort(a,3,3) returns

mergeSort(a,2,3) calls merge(a,2,2,3)
merge(a,2,2,3) merges [4] and [21] returns with a unchanged

mergeSort(a,2,3) returns with a unchanged
mergeSort(a,0,3) calls merge(a,0,1,3)

merge(a,0,1,3) merges [18, 33] and [4, 21]
returns with a = [4, 18, 21, 33, 17, 35, 20]

mergeSort(a,0,3) returns with a as above
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mergeSort(a,0,6) calls mergeSort(a,4,6)
mergeSort(a,4,6) calls mergeSort(a,4,5)
mergeSort(a,4,5) calls mergeSort(a,4,4)

mergeSort(a,4,4) returns
mergeSort(a,4,5) calls mergeSort(a,5,5)
mergeSort(a,5,5) returns

mergeSort(a,4,5) calls merge(a,4,4,5)
merge(a,4,4,5) merges [17] and [35] returns with a unchanged

mergeSort(a,4,5) returns with a unchanged
mergeSort(a,4,6) calls mergeSort(a,6,6)

mergeSort(a,6,6) returns
mergeSort(a,4,6) calls merge(a,4,5,6)

merge(a,4,5,5) merges [17, 35] and [20]
returns with a = [4, 18, 21, 33, 17, 20, 35]

mergeSort(a,4,6) returns with a as above
mergeSort(a,0,6) calls merge(a,0,3,6)
merge(a,0,3,6) merges [4, 18, 21, 33] and [17, 20, 35]

returns with a = [4, 17, 18, 20, 21, 33, 35]
mergeSort(a,0,6) returns with a as above
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Proof by Induction of Correctness and Termination for
Merge Sort

Let’s assume that merge(a,i,m,j) is correct and terminates, i.e.

merges sorted sub-arrays a[i..m] and a[m+1..j] into a single sorted

sub-array a[i..j]. This can be proven using loop invariants.

We prove correctness and termination of the mergeSort(a,i,j)

method by induction on the size n of the sub-array considered, i.e.

n = j− (i− 1).

1) Base case n = 1: then mergeSort(a,i,j) immediately returns,

and a subarray of size 1 is always sorted. So the method is correct.

2) For the recursive case: Assume that mergeSort(a,i,j) is correct

and terminates for all sizes n ≤ k (induction hypothesis).

22

We must prove that that the method is correct for size n = k + 1.

Then mergeSort(a,i,j) calls mergeSort(a,i,mid) and

mergeSort(a,mid+1,j). In both cases, the size of the sub-array

involved is≤ k, so by the induction hypothesis these two calls correctly

sort the sub-arrays a[i..mid] and a[mid+1..j].

After the recursive call, merge(a,i,mid,j) is called to merge the

two sorted sub-arrays. By our assumption that merge is correct, this

results in a[i,j] being sorted.

So mergeSort is correct for size n = k + 1.

Thus for all natural numbers n mergeSort(a,i,j) correctly sorts

the sub-array a[i..j] where n is the size of the sub-array and termi-

nates.
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Anything that can be done using a loop can be done by recursion. E.g.

finding student with smallest student number in an array:

public class Eg
{ public static final int MAX_STUDENTS = 150;

static Student min(Student[] aClass, int aClassSize)
{ return minBetween(aClass,0,aClassSize-1)
}

static Student minBetween(Student[] aClass, int from, int to)
{ if (from > to) return null;

else if (from == to) return aClass[from];
else
{ Student minRest =

minBetween(aClass,from+1,to);
assert(minRest != null);
if (aClass[from].getNumber() < minRest.getNumber())

return aClass[from];
else

return minRest;
}

}
// main as before

}
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Problem: Write a recursive version of a method

isPalindrome(String word) that returns true iff word is a palin-

drome, i.e. reads the same backwards and forwards; e.g. noon and

dad are palindromes.
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Pitfalls of Recursion

One pitfall of recursion is infinite regress, i.e. a chain of recursive

calls that never stops. E.g. if you forget the base case “n == 0” in

factorial. Make sure you have enough base cases.

Recursion can be less efficient than an iterative implementation. This

can happen because there is recalculation of intermediate results as

in fibo. Or there can be extra memory use because recursive calls

must be stored on the execution stack, e.g. factorial.
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But some algorithms can be coded much more simply using recursion

and there is no loss of efficiency. One e.g., Merge Sort; to code it

without using recursion, you must maintain your own stack of parts of

the array that are put aside to be sorted later. Another e.g., traversing

a tree and printing the labels on the nodes.

Also some types of recursion do not require the use of additional stack

memory and good compilers can take advantage of this. These tech-

niques are studied in “functional programming” .
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Analysis of Running Time of Merge Sort

Merging 2 arrays containing a total of n elements requires n − 1 com-

parisons in the worst case (when neither half runs out early). If you

want to count all operations, then the running time will be C1n + C2

where C1 and C2 are constants. If you drop the lower order term, you

get C1n.

The running time for the complete sorting of an array of size n can be

specified as a recurrence relation:

T(n) =

{

C2 if n ≤ 1
2T(n/2) + C1n otherwise
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There are general methods for solving recurrence relations, but let’s do

it from first principles. If n/2 > 1, we can apply the recurrence relation

to T(n/2) to get:

T(n) = 2(2T(n/4) + C1n/2) + C1n

= 4T(n/4) + 2C1n
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Suppose that n is a power of 2, i.e. n = 2m. Then we can keep

applying the relation until n reaches 20 = 1:

T(n) = 2mT(n/2m) + mC1n

= C22
m + C1mn since T(n/2m) = T(1) = C2

= C2n + C1n log2 n since m = log2 n

= O(n logn)

Thus, the running time of merge sort grows much more slowly than

that of many other sorting algorithms whose running time is O(n2),

e.g. selection sort, insertion sort, etc.:

n n loge n n2

10 23 100
100 460 10,000
103 6.9 103 106

106 13.8 106 1012
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