The problem

Ray tracing

: Want to generate
(yet another:example:ofrecursion) synthetic pictures with

reflection; refraction; and
shadows.

Basic approach Trace the ray...

= Trace ‘light rays’ from the eye through a screen and

= Sometimes the ray
follow: them

misses all objects




Trace the ray... Trace the ray...

: = [ it hits an object, we
Sl T want to know if the
misses hits an object : - S

Trace the ray... Trace the ray...

: = And if its in shadow,

: Iftt)be tShtidOW Yy hlt.s i ignore the effect of that
ok o light in colouring that
shadow.

spot.




Trace the ray... Trace the ray...

When the ray hits an
object, generate a
reflected ray to
determine what might be
reflected in the surface

= This gets us reflections:in
reflective surfaces

Trace the ray... Trace the ray...

= [f the object is ] = [f the object is

transparent, then trace
the ray through the
object.

transparent, then trace
the ray through the
object.




Trace the ray...

= SO now we have
simulated refraction

Trace the ray...

= But what happens when
we have multiple mirrors
(reflections within
reflections).

Trace the ray...

= But what happens when
we have multiple mirrors
(reflections within
reflections).

Trace the ray...

= But what happens when
we have multiple mirrors
(and reflections within
reflections within
reflections).




The math...

function Raytrace(E, D) returns Colour {
nearest_t = infinity
nearest_object = NULL
for each object {
find t, the smallest, non-negative real solution of the ray/object
intersection equation
if texists {
if t < nearest t {
nearest_t=1t
R st_object = current object

colour = black
if nearest_object exists {
find normal vector, N, at intersection point
if object is reflective {
reflected_colour=Raytrace(inter:
colour += reflection_coeff * reflected_colour ;

ion point, reflection vector)

if object is refractive {
refracted_colour=Raytrace(intersection point, refracted vector)

colour += refraction_co acted_colour ;

ray(intersection point, light position) returns No_Shadow {
calulate light's colour contribution by doing the illumination calculations
using D, N, the current light, and the object properties
colour += light's colour contribution

return colour

tion shadow_ray(pointl, point2) returns Shadow or No_Shadow {

ray defined with E=point], D=poin2-point1
nearest_t = infinity
nearest_object = NULI
for each object

find t, the smallest, non-negative real solution of the ray/object

intersection equation
ifte
ift<n t{

nearest_t=t

if t<I return Shadow
else return No_Shadow

Ray tracing...

rface properties

ase case?

Ray hits nothing...

= Total amount of energy for this ray falls below some

threshold

= Qut of system resources




Recursive case

= Ray hits a surface
= Reflected ray

» Refracted ray




