
Java By Abstraction

Chapter 9

1 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-1

Chapter 9

Inheritance

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-2

9.1 What is Inheritance?
 9.1.1 Definition and Terminology
 9.1.2 The Subclass API
 9.1.3 Case Study: Credit Cards

9.2 Working with Inheritance Hierarchies
 9.2.1 The Substitutability Principle
 9.2.2 Early and Late Binding
 9.2.3 Polymorphism
 9.2.4 Abstract Classes and Interfaces
 9.2.5 Case Study: Revisiting Streams

9.3 Obligatory Inheritance
 9.3.1 The Object Class
 9.3.2 Case Study: Object Serialization
 9.3.3 Generics

Outline

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-3

For each pair, determine the relationship if any

§  Camera, Film

§  Vehicle, Car

§  Library, Book

§  Animal, Dog

§  Car, Tree

9.1 What is Inheritance?

When can you say that the
2nd is a subclass of the 1st

Java By Abstraction

Chapter 9

2 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-4

• The API of a class C may indicate that it
extends some other class P

• Every feature of P is in C
• C inherits from P.

• Child-Parent, Subclass-Superclass

• Inheritance = is-a = Specialization

• Inheritance chain, hierarchy (root,
descendents, ascendant)

9.1.1 Definition and Terminology

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-5

UML

C

P

C

P

G

L

A

R

B

K N M

(c) (b) (a)

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-6

No Multiple Inheritance

A B

M

Java By Abstraction

Chapter 9

3 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-7

+ k(double): void

+ l(): long

+ n(long): int

C

+ a: double

+ c: char

+ k(int): void
+ l(): long
+ m(double): void

P

+ a: int
+ b: double

Upper API Table
Lower API Table

a: double

c: char

b: double

k(double): void

l(): long

n(long): int

k(int): void

m(double): void

The API o f C

9.1.2 The Subclass API

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-8

•  Inherited from parent
Lower table

•  Added as new by child
Upper table

•  Overriding by child (same signature)
Upper table

•  Shadowing by child (same name)
Upper table

Feature Classification

Note: a child cannot override with a diff return!

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-9

•  x = #of methods in parent’s UML

•  y = #of methods in child’s UML

•  The child’s API shows x + y
methods
(upper plus lower)

Feature Count
Is this correct?

Repeat for fields.

Java By Abstraction

Chapter 9

4 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-10

Examine the API of CreditCard

•  Issue a card #9 to Adam

•  Charge $500 on it

•  Pay back $300

•  How many dollars does Adam owe?

9.1.3 Case Study: CC-RW

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-11

•  Issue a reward card #9 to Adam

•  Charge $500 on it

•  Pay back $300

•  How many does Adam owe?

•  How many reward points does he
have?

RewardCard

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-12

Examine the API of RewardCard

•  Is the constructor inherited?

•  How many fields does it have?

•  How many methods does it have?

•  Provide a rationale as to why certain
methods were overridden, or added.

Case Study, cont.

Java By Abstraction

Chapter 9

5 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-13

9.2 Working with Hierarchies
•  Inheritance is no problem as long as

client deals with one class at a time

•  Just watch out for multiple tables in
the API of that class

•  What if the client uses several sub-
classes on a chain?

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-14

Write a program that prompts the user
for a card type and then instantiate the
desired card and charge $250 on it.

Example

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-15

output.println("Ordinary or Reward [O/R]?");
char type = input.nextChar();
if (type == 'O')
{
 CreditCard card;
 card = new CreditCard(9, "Adam");
} else
{
 RewardCard card;
 card = new RewardCard(9, "Adam");
}
// charge the card

Example

Java By Abstraction

Chapter 9

6 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-16

output.println("Ordinary or Reward [O/R]?");
char type = input.nextChar();
if (type == 'O')
{
 CreditCard card;
 card = new CreditCard(9, "Adam");
} else
{
 RewardCard card;
 card = new RewardCard(9, "Adam");
}
// charge the card But it is out of scope here!

Example

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-17

output.println("Ordinary or Reward [O/R]?");
char type = input.nextChar();
if (type == 'O')
{
 CreditCard card;
 card = new CreditCard(9, "Adam");
} else
{
 RewardCard card;
 card = new RewardCard(9, "Adam");
}
// charge the card

Example

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-18

When a parent is expected, a child is accepted

9.2.1 The Substitutability Principle

•  Similar to substituting “man” or “woman” in
The fare is $5 per person

•  Similar to automatic promotion of primitive’s.

•  Compiler uses it in:
- LHR / RHS of an assignment
- Parameter passing

Java By Abstraction

Chapter 9

7 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-19

CreditCard card = new RewardCard(…);

Substitutability Examples
Assigning RHS to LHS:

CreditCard cc = new CreditCard(…);
RewardCard rc = new RewardCard(…);
if (cc.isSimilar(rc))
{ …

Passing parameters:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-20

9.2.2 Early & Late Binding

How do you bind: r.m(…) ?

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-21

9.2.2 Early & Late Binding

How do you bind: r.m(…) ?

1. Search for m(…) in the declared class of r

2. If more than one, pick S, the most specific

3. If above failed, issue compile-time error

Java By Abstraction

Chapter 9

8 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-22

9.2.2 Early & Late Binding

How do you bind: r.m(…) ?

1. Search for m(…) in the declared class of r

2. If more than one, pick S, the most specific

3. If above failed, issue compile-time error

This is early binding. It is done at compile time
and culminates in an error or a signature S.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-23

9.2.2 Early & Late Binding

How do you bind: r.m(…) ?

1. If r is null, issue runtime error (NullPointer)

2. Search for S in actual class of r (the object)

3. You will find it … guaranteed!

This is late binding. It is done at runtime and
culminates in an error or a binding.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-24

9.2.2 Early & Late Binding

How do you bind: r.m(…) ?

1. Search for m(…) in the declared class of r

2. If more than one, pick S, the most specific

3. If above failed, issue compile-time error

1. If r is null, issue runtime error (NullPointer)

2. Search for S in actual class of r (the object)

3. You will find it!

Java By Abstraction

Chapter 9

9 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-25

Example
Bind all invocations:

CreditCard c1 = new RewardCard(9, "Jim");
CreditCard c2 = new RewardCard(9, "Eve");

c1.charge(500);
c1.pay(500);

output.println(c1.isSimilar(c2));

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-26

9.2.3 Polymorphism

•  An invocation of an overridden method, e.g.
r.charge(500), is polymorphic

•  The meaning changes (during late binding)
based on the actual object type

•  Polymorphism leads to elegant programs. No
if statements and no redundancies.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-27

9.2.3 Polymorphism

•  For methods that are only present in the
child, polymorphism cannot be used.

•  Must have a cast (down the chain)

•  In such cases, use instanceof before casting

Java By Abstraction

Chapter 9

10 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-28

Example 1
Given that card is declared as CreditCard,
find its point balance if applicable.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-29

Example 1
Given that card is declared as CreditCard,
find its point balance if applicable.

First attempt:

if (card instanceof RewsrdCard)
{

 output.println(card.getPointBalance());

}

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-30

Example 1
Given that card is declared as CreditCard,
find its point balance if applicable.

Correct solution:

if (card instanceof RewsrdCard)
{

 RewardCard rc = (RewardCard) card;
 output.println(rc.getPointBalance());

}

Java By Abstraction

Chapter 9

11 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-31

Example 2

CreditCard c1 = new RewardCard(9, "Adam");
CreditCard c2 = new RewardCard(9, "Adam");
c1.charge(100);
c1.pay(100);
print(c1.isSimilar(c2));
print(c1.isSimilar((RewardCard) c2));
print(((RewardCard) c1).isSimilar(c2));
print(((RewardCard) c1).isSimilar((RewardCard) c2));

Predict the output:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-32

 Vehicle
{Abstract}

Bus Car

9.2.4 Abstract Classes & Interfaces

 «interface»
HasArea

+ getArea() double

Circle Cylinder Rectangle

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-33

Abstract Classes & Interfaces, cont.

•  How to recognize an abstract class or an interface
given its API or UML diagram.

•  Both can be used as types for declarations.
•  An abstract class cannot be instantiated. Instead,

look for a concrete class C that extends it (or for
a factory method that returns an instance of C).

•  An interface class cannot be instantiated. Instead,
look for a class C that implements it.

Key points to remember:

Example: create an instance of Calendar.

Java By Abstraction

Chapter 9

12 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-34

9.2.5
Revisiting
Streams

File File Input Stream

File File Input Stream

Keyboard System.in

URL OpenStream()

Input Stream

File Reader

File

File File Input Stream

Keyboard System.in

URL OpenStream()

Input Stream

(a)

(b)

(c)

(d)

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-35

9.3 Obligatory Inheritance

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-36

9.3 Obligatory Inheritance

Object

Option #1

Option #2

Java uses
this one.

Java By Abstraction

Chapter 9

13 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-37

9.3.1 The Object Class
Conclusion:

All classes have the features present in Object
(unless they overrode them). They include:

 - toString()

 - equals()

 - getClass()

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-38

9.3.2 Case Study: Object Serialization

1. Create an output stream connected to a file:
FileOutputStream fos;
fos = new FileOutputStream(filename);

2. Create an object output stream that feeds
the file output stream:
ObjectOutputStream oos;
oos = new ObjectOutputStream(fos);

3. Serialize an object x: oos.writeObject(x);

4. Close the stream: oos.close();

Serialize = Write the state of an object to a stream

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-39

Object Serialization, cont.

FileInputStream fis;
fis = new FileInputStream(filename);

ObjectInputStream ois;
ois = new ObjectInputStream(fis);

x = (cast*) ois.readObject();

ois.close();

De-serialize = Reconstruct a serialized object

*The cast is needed because readObject returns an Object

Java By Abstraction

Chapter 9

14 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 9-40

9.3.3 Generics
§  Components that take Object parameters are

very flexible because they handle any type.

§  But this flexibility thwarts all the benefits of
strong typing (casts=potential runtime errors)

§  The solution is a component that can take one
specific type but that type is client-defined

§  Such generic components provides flexibility
and strong typing.

