
Java By Abstraction

Chapter 8

1 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-1

Chapter 8

Aggregation

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-2

8.1 What is Aggregation?
 8.1.1 Definition and Terminology
 8.1.2 The Aggregate’s Constructor
 8.1.3 Accessors and Mutators
 8.1.4 The Client’s Perspective
 8.1.5 Case Study: I/O Streams
 8.1.6 Case Study: Graphics

8.2 Working with Collections
 8.2.1 Creating the Collection
 8.2.2 Adding/Removing Elements
 8.2.3 Indexed Traversals
 8.2.4 Iterator-Based Traversals
 8.2.5 Searching
 8.2.6 Search Complexity

Outline

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-3

8.1 What is Aggregation?

If one of the attributes of a class C is an
object reference of type T*, then C is an
aggregate and T is the aggregated part.

Every instance of C must have an instance
of T (or else the attribute would be null).

Aggregation = has-a

* T != String

Java By Abstraction

Chapter 8

2 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-4

Examples

(a)

(b) Bill Wallet *

Wheel

Radio

4

Car
1

CD CDPlayer 1

(c)

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-5

8.1.1 Definition and Terminology
•  Multiplicity

•  Variable Multiplicity

•  Collections (part=element)

•  Composition (shared lifetime)

The Camera – Film Relation

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-6

Examples

Date CreditCard 2

Calendar

Date
1

Java By Abstraction

Chapter 8

3 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-7

Examples

(a)

(b) Investment Portfolio *

Stock Investment 1

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-8

8.1.2 The Aggregate’s Constructor

•  When a client instantiates C, who
instantiates T?

•  Create an Investment

•  Create a CreditCard
•  What signature (for the Investment

constructor) makes Investment a
composition?

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-9

8.1.3 Accessors and Mutators

•  Aggregates must provide an accessor
thru which the part can be accessed

•  In a composition, the accessor
returns a clone of the part

•  An aggregate may provide a mutator
so the client can mutate the part

•  In a non-composition, such a mutator
is not needed (why?)

Java By Abstraction

Chapter 8

4 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-10

8.1.4 The Client’s Perspective

•  Aggregation = Layered Abstraction

•  Sounds like an implementer’s concern

•  Why don't implementers hide it?
If they did:

q  Investment would have to handle
symbol, name, and price

q  CreditCard would have to accept
day, month, and year.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-11

Example-1: Copying an Aggregate
Given a reference x to an aggregate, make a
copy of it and call it y.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-12

Example-1: Copying an Aggregate

Three different copies:

•  An Alias

•  A Shallow Copy

•  A Deep Copy

Given a reference x to an aggregate, make a
copy of it and call it y.

Java By Abstraction

Chapter 8

5 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-13

8.1.5 Case Study: I/O Streams

Reader

Buffered Reader

Input Stream

InputStream

read(): int
reads one byte

BufferedReader

readLine(): String
reads one line

1

InputStreamReader

read(): int
reads one character

1

BufferedReader buffer =
 new BufferedReader(
 new InputStreamReader(System.in));

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-14

File Input:

BufferedReader filer =
 new BufferedReader(
 new InputStreamReader(
 new FileInputStream(filename));

BufferedReader

readLine(): String
reads one line

1

InputStreamReader

read(): int
reads one character

InputStream

read(): int
reads one byte

FileInputStream

read(): int
reads one byte

1

1

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-15

8.1.6 Case Study: Graphics

X

Graphics2D

UniPanel

Container

JFrame

Java By Abstraction

Chapter 8

6 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-16

 JFrame

getContentPane(): Container
setContentPane(Container)

Container

add(Component)

1

Graphics

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-17

 Container

add(Component)

type:lib::UniPanel

getGraphics2D()
getWidth(): int
getHeight(): int
repaint()

*

Graphics

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-18

 type:lib::UniPanel

getGraphics2D()
getWidth(): int
getHeight(): int
repaint()

Graphics2D

getColor(): Color
getFont(): Font
getStroke(): Stroke
setColor(Color)
setFont(Font)
setStroke(Stroke)

1

Graphics

Java By Abstraction

Chapter 8

7 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-19

 Graphics2D

getColor(): Color
getFont(): Font
getStroke(): Stroke
setColor(Color)
setFont(Font)
setStroke(Stroke)

1

Stroke Font

1

Color

1

Graphics

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-20

8.2 Working with Collections

Collection

Statically
Allocated

Dynamically
Allocated

List Set List Set

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-21

8.2.1 Creating the Collection

Constructor Summary - Portfolio
Portfolio(java.lang.String title, int capacity)
 Construct an empty portfolio having the passed name and
capable of holding the specified number of investments.

Constructor Summary - GlobalCredit
GlobalCredit()
 Construct a GC processing centre having the name "NoName".

•  Cannot specify elements as parameters

•  Create an empty one then populate

Java By Abstraction

Chapter 8

8 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-22

8.2.2 Adding / Removing Elements

Method Summary - Portfolio

 boolean add(Investment inv)
Attempt to add the passed investment to this portfolio.

Method Summary - GlobalCredit
 boolean add(CreditCard card)

Attempt to add the passed credit card to this GCC.

•  All collections provide a void or a boolean
add to enable clients to populate.

•  These methods are boolean for diff reasons:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-23

8.2.3 Indexed Traversals

•  Traversal in lieu of accessors

•  Traverse = Visit each element once.
Don’t miss and don’t over-visit.

•  Indexed = Pretend the elements are
numbered (0 offset).

•  Two methods: get(int) and size()

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-24

Example of an indexed traversal

Inv. Market Book Net
 001 3450.00 2870.00 580.00
 002 450.00 500.00 -50.00

Total

Given a reference x to a Portfolio, list all its
investments in a tabular fashion:

Java By Abstraction

Chapter 8

9 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-25

8.2.4 Iterator-Based Traversals

•  More abstract than indexed

•  Relies on the enhanced for loop

•  Works if the collection implements Iterable

for (E e : bag)
{
 // visit element e
}

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-26

Example of a chained traversal

Card No Balance Exp 36m?
907321-5 76.85
671282-1 81.64
464184-0 134.49 <
755917-2 232.43
 . . .
 . . .

Given a reference x to a GlobalCredit, list all
its credit cards in a tabular fashion:

The last column indicates if the card will expire within 36 months

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-27

8.2.5 Searching

Searching can be done via a traversal:
•  Set up a traversal loop

•  In each iteration, compare the element we
are searching for with an element of the
collection. Set a boolean flag accordingly

•  The result (found or not found) must be
somehow remembered after the loop is
exited.

Java By Abstraction

Chapter 8

10 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-28

A search example:

Given a reference gc to a random GlobalCredit,
determine whether a given card c is in it.

Attempt #1 (incorrect):

boolean found = false;
for (CreditCard card : gc)
{
 found = card.equals(c);
}

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-29

A search example, cont.

Correct it by adding the loop invariant:

The value of found is the same as the sentence:
c is equal to one of the elements seen so far

boolean found = false;
for (CreditCard card : gc)
{
 found = found || card.equals(c);
}

Attempt #2 (correct):

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-30

•  Traversal-based search is Exhaustive

•  N comparisons in the worst case. It is
thus a linear search

A bag contains N numbered balls and you can
pick one ball one at a time. Can you determine
if ball number 55 is in the bag by picking less
than N times? In the worst case?

8.2.6 Search Complexity

Java By Abstraction

Chapter 8

11 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 8-31

Search Complexity

•  Traversal-Based search: O(N).

•  Complexity of an algorithm can be:
O(1), O(lgN), O(N), O(N2) … O(2N), O(N!)

•  Can break the O(N) barrier by pre-
arranging the elements in some manner

•  Sorting, Hashing, Tree structures can
lead to sub-linear search complexity.

•  GlobalCredit offers a non-exhaustive
search. It is sub-linear

