Java By Abstraction

Tava

By Abstraction

% Chopter 11

Exception
Handling

Outline

11.1 What are Exceptions?
11.1.1 Exception Handling
11.1.2 The Delegation Model

11.2 Java's Exception Constructs
11.2.1 The Basic try-catch Construct
11.2.2 Handling Multiple Exceptions
11.2.3 Other Constructs

11.3 Exception Objects
11.3.1 The Throwable Hierarchy
11.3.2 Object-Oriented Exception Handling
11.3.3 Checked Exceptions

11.4 Building Robust Apps
11.4.1 Validation versus Exception
11.4.2 Logic Errors

ada Inc.

11.1 What Are Exceptions?

There are three sources that can lead
to exceptions:

The End User

Garbage-in, garbage-out

The Programmer
Misunderstanding requirements and/or contracts

The Environment
The VM, the O/S, the H/W, or the network

Copyright © 2006 Pearson Education Canada Inc.

Chapter 11

Java By Abstraction Chapter 11

11.1.1 Exception Handling

* An error source can lead to an incorrect operation

* An incorrect operations may be valid or invalid

* An invalid operation throws an exception

* An exception becomes a runtime error unlessicaught

Sources

Programmer,
End User, or Logic Handler
Environment Error

Incorrect
Operations

Copyright © 2006 Pearson Educa

Example

Given two integers, write a program to
compute and output their quotient.

output.println("Enter the first integer:");
int a = input.nextInt();
output.println("Enter the second:");

int b = input.nextInt();

int ¢ = a / b;
output.println("Their quotient is: " + c);

Example, cont.
Here is a sample run:

Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException: / by zero

at Quotient.main (Quotient.java:16)

In this case:
- The error source is the end user.
- The incorrect operation is invalid
- The exception was not caught

Java By

Copyright © 2006 Pearson Education Canada Inc. 2

Java By Abstraction

Example, cont.
Anatomy of an error message:

Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException:

at Quotient.main(Quotient.java:16)

Stack trace Message

Ja

11.1.2 The Delegation Model

- We, the client, delegate to method A

* Method A delegates to method B

* An invalid operation is encountered in\B

+ If B handled it, no one would know

* Not even the API of B would document this

- If B didn't, it delegates the exception back to A
+ If A handled it, we wouldn't know

+ Otherwise, the exception is delegated to us

* We too can either handle or delegate (to VM)

+ If we don't handle, the VM causes a runtime error

e

The Delegation Model Policy:

Handle or Delegate Back

Note:
+ Applies to all (components and client)

+ The APT must document any back
delegation

- It does so under the heading: “"Throws”

Copyright © 2006 Pearson Education Canada Inc.

Chapter 11

Java By Abstraction Chapter 11

Example

Given a string containing two slash-delimited
substrings, write a program that extracts and
outputs the two substrings.

int slash = str.indexOf ("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

Example, cont.
Here is a sample run with str = “14-9”

int slash = str.indexOf ("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

java.lang.IndexOutOfBoundsException:

String index out of range: -1

at java.lang.String.substring(String.java:1480)
at Substring.main(Substring.java:14)

e trace follows the delegation from line 1480 w
substring to line 14 within the client.

Example, cont.

Here is the API of substring:
String substring(int beginIndex, int endIndex)
Returns a new string that..

Parameters:
beginIndex - the beginning index, inclusive.
endIndex - the ending index, exclusive.

Returns:
the specified substring.

Throws:
IndexOutOfBoundsException - if the beginlIndex
is negative, or endIndex is larger than the
length of this String object, or beginIndex is
larger than endIndex.

06 Pearson Education Canada inc. Java By Abstracton

Copyright © 2006 Pearson Education Canada Inc.

Java By Abstraction

11.2.1 The basic try-catch

try
{

code fragment

}
catch (SomeType e)
{

exception handler

}

program continues

Example

Redo the last example with exception handling

int slash = str.indexOf ("/");
String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);
}
catch (IndexOutOfBoundsException e)
{
output.println("No slash in input!");
}
output.println("Clean Exit."); // closing

11.2.2 Multiple Exceptions

try
{

}
catch (Type-1 e)
. ...

}

catch (Type-2 e)
{ c..

}

éééch (Type-n e)
{ ...
}

program continues

Copyright © 2006 Pearson Education Canada Inc.

Chapter 11

Java By Abstraction Chapter 11

Example

Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handlingsto handle all
possible input errors.

Example

Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handlingsto handle all
possible input errors.

Note that when exception handling is used, do
not code defensively; i.e. assume the world is
perfect and then worry about problems. This
separates the program logic from validation:

Example, cont.

int slash = str.indexOf ("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
int leftInt = Integer.parselnt(left);
int rightInt = Integer.parseInt(right);
int answer = leftInt / rightlInt;
output.println("Quotient = " + answer);

}
catch (?)
{

}

Copyright © 2006 Pearson Education Canada Inc. 6

Java By Abstraction Chapter 11

Example, cont.

catch (IndexOutOfBoundsException e)
{

output.println("No slash in input!");

}

catch (NumberFormatException e)

{

output.println("Non-integer operands!") ;

}
catch (ArithmeticException e)

{

output.println("Cannot divide by zero!");

}
output.println("Clean Exit."); // closing

11.3.1 The Hierarchy

‘ Error ‘ ‘ Exception ‘

‘ VirtualMachineError RuntimeException ‘

AssertionError IOException l

‘ AWTError PrinterException l

l

11.3.2 OO Exception Handling

* They all inherit the features in Throwable

* Can create them like any other object:
Exception e = new Exception():

* And can invoke methods on them, e.g.
getMessage, printStackTrace, etc.

+ They all have a toString

+ Creating one does not simulate an exception. For
that, use the throw keyword:

Exception e = new Exception("test");
throw e;

Copyright © 2006 Pearson Education Canada Inc. 7

Java By Abstraction

Example

Write an app that reads a string containing
two slash-delimited integers the first of
which is positive, and outputs their quotient
using exception handling. Allow thetuser to
retry indefinitely if an input is foundtinvalid.

As before but:
* What if the first integer is not positive?

+ How do you allow retrying?

Example, cont.

for (boolean stay = true; stay;)
{
try
{
// as before
if (leftInt < 0) throw(??);

output.println("Quotient = " + answer);

stay = false;

}

// several catch blocks

Copyright ® 2006 Pearson Education Canada Inc

Example, cont.

E.g. Runtime-
Exception with
a message

for (boolean stay = tru
{
try
{
// as before
if (leftInt < 0) throw(??);

output.println("Quotient = " + answer);

stay = false;
}
// ©everal catch blocks

The order may
be important

Copyright © 2006 Pearson Education Canada Inc.

Chapter 11

Java By Abstraction Chapter 11

11.3.3 Checked Exceptions

+ App programmers can avoid any RuntimeException
through defensive validation

+ Hence, we cannot force them to handle such
exceptions

+ Other exceptions, however, are "un-validatable",
e.g. diskette not inserted: network not availableX

- These are “checked” exceptions

* App programmers must acknowledge their existence

- How do we enforce that?

+ The compiler ensures that the app either handles
checked exceptions or use “throws” in its main.

java By

11.4 Building Robust Applications

Key points to remember:

* Thanks to the compiler, checked exceptions are never
"unexpected"; they are trapped or acknowledged

+ Unchecked exceptions (often caused by thelend user)
must be avoided and/or trapped

- Defensive programming relies on validation to'detect
invalid inputs

+ Exception-based programming relies on exceptions

+ Both approaches can be employed in the same app

* Logic errors are minimized through early exposure,
e.g. strong typing, assertion, etc.

Pears Ja

Copyright © 2006 Pearson Education Canada Inc. 9

