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11.1 What Are Exceptions?

There are three sources that can lead
to exceptions:

The End User

Garbage-in, garbage-out

The Programmer
Misunderstanding requirements and/or contracts

The Environment
The VM, the O/S, the H/W, or the network
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11.1.1 Exception Handling

* An error source can lead to an incorrect operation

* An incorrect operations may be valid or invalid

* An invalid operation throws an exception

* An exception becomes a runtime error unlessicaught

Sources

Programmer,
End User, or Logic Handler
Environment Error

Incorrect
Operations
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Example

Given two integers, write a program to
compute and output their quotient.

output.println("Enter the first integer:");
int a = input.nextInt();
output.println("Enter the second:");

int b = input.nextInt();

int ¢ = a / b;
output.println("Their quotient is: " + c);

Example, cont.
Here is a sample run:

Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException: / by zero

at Quotient.main (Quotient.java:16)

In this case:
- The error source is the end user.
- The incorrect operation is invalid
- The exception was not caught
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Example, cont.
Anatomy of an error message:

Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException:

at Quotient.main(Quotient.java:16)

Stack trace Message

Ja

11.1.2 The Delegation Model

- We, the client, delegate to method A

* Method A delegates to method B

* An invalid operation is encountered in\B

+ If B handled it, no one would know

* Not even the API of B would document this

- If B didn't, it delegates the exception back to A
+ If A handled it, we wouldn't know

+ Otherwise, the exception is delegated to us

* We too can either handle or delegate (to VM)

+ If we don't handle, the VM causes a runtime error

e

The Delegation Model Policy:

Handle or Delegate Back

Note:
+ Applies to all (components and client)

+ The APT must document any back
delegation

- It does so under the heading: “"Throws”
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Example

Given a string containing two slash-delimited
substrings, write a program that extracts and
outputs the two substrings.

int slash = str.indexOf ("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

Example, cont.
Here is a sample run with str = “14-9”

int slash = str.indexOf ("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

java.lang.IndexOutOfBoundsException:

String index out of range: -1

at java.lang.String.substring(String.java:1480)
at Substring.main(Substring.java:14)

e trace follows the delegation from line 1480 w
substring to line 14 within the client.

Example, cont.

Here is the API of substring:
String substring(int beginIndex, int endIndex)
Returns a new string that..

Parameters:
beginIndex - the beginning index, inclusive.
endIndex - the ending index, exclusive.

Returns:
the specified substring.

Throws:
IndexOutOfBoundsException - if the beginlIndex
is negative, or endIndex is larger than the
length of this String object, or beginIndex is
larger than endIndex.
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11.2.1 The basic try-catch

try
{

code fragment

}
catch (SomeType e)
{

exception handler

}

program continues

Example

Redo the last example with exception handling

int slash = str.indexOf ("/");
String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);
}
catch (IndexOutOfBoundsException e)
{
output.println("No slash in input!");
}
output.println("Clean Exit."); // closing

11.2.2 Multiple Exceptions

try
{

}
catch (Type-1 e)
. ...

}

catch (Type-2 e)
{ c..

}

éééch (Type-n e)
{ ...
}

program continues
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Example

Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handlingsto handle all
possible input errors.

Example

Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handlingsto handle all
possible input errors.

Note that when exception handling is used, do
not code defensively; i.e. assume the world is
perfect and then worry about problems. This
separates the program logic from validation:

Example, cont.

int slash = str.indexOf ("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
int leftInt = Integer.parselnt(left);
int rightInt = Integer.parseInt(right);
int answer = leftInt / rightlInt;
output.println("Quotient = " + answer);

}
catch (?)
{

}
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Example, cont.

catch (IndexOutOfBoundsException e)
{

output.println("No slash in input!");

}

catch (NumberFormatException e)

{

output.println("Non-integer operands!") ;

}
catch (ArithmeticException e)

{

output.println("Cannot divide by zero!");

}
output.println("Clean Exit."); // closing

11.3.1 The Hierarchy

‘ Error ‘ ‘ Exception ‘

‘ VirtualMachineError RuntimeException ‘

AssertionError IOException l

‘ AWTError PrinterException l

l

11.3.2 OO Exception Handling

* They all inherit the features in Throwable

* Can create them like any other object:
Exception e = new Exception():

* And can invoke methods on them, e.g.
getMessage, printStackTrace, etc.

+ They all have a toString

+ Creating one does not simulate an exception. For
that, use the throw keyword:

Exception e = new Exception("test");
throw e;

Copyright © 2006 Pearson Education Canada Inc. 7



Java By Abstraction

Example

Write an app that reads a string containing
two slash-delimited integers the first of
which is positive, and outputs their quotient
using exception handling. Allow thetuser to
retry indefinitely if an input is foundtinvalid.

As before but:
* What if the first integer is not positive?

+ How do you allow retrying?

Example, cont.

for (boolean stay = true; stay;)
{
try
{
// as before
if (leftInt < 0) throw(??);

output.println("Quotient = " + answer);

stay = false;

}

// several catch blocks
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Example, cont.

E.g. Runtime-
Exception with
a message

for (boolean stay = tru
{
try
{
// as before
if (leftInt < 0) throw(??);

output.println("Quotient = " + answer);

stay = false;
}
// ©everal catch blocks

The order may
be important
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11.3.3 Checked Exceptions

+ App programmers can avoid any RuntimeException
through defensive validation

+ Hence, we cannot force them to handle such
exceptions

+ Other exceptions, however, are "un-validatable",
e.g. diskette not inserted: network not availableX

- These are “checked” exceptions

* App programmers must acknowledge their existence

- How do we enforce that?

+ The compiler ensures that the app either handles
checked exceptions or use “throws” in its main.

java By

11.4 Building Robust Applications

Key points to remember:

* Thanks to the compiler, checked exceptions are never
"unexpected"; they are trapped or acknowledged

+ Unchecked exceptions (often caused by thelend user)
must be avoided and/or trapped

- Defensive programming relies on validation to'detect
invalid inputs

+ Exception-based programming relies on exceptions

+ Both approaches can be employed in the same app

* Logic errors are minimized through early exposure,
e.g. strong typing, assertion, etc.

Pears Ja
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