
Java By Abstraction

Chapter 10

1 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-1

Chapter 10

The Collection
Framework

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-2

10.1 What is the Collection Framework?
 10.1.1 The Main Interfaces
 10.1.2 The Implementing Classes
 10.1.3 Revisiting Generics

10.2 Using the Framework
 10.2.1 API Highlights
 10.2.2 The Iterator
 10.2.3 Searching and Sorting
 10.2.4 Summary of Features

10.3 Applications
 10.3.1 Detecting Duplicates
 10.3.2 Word Frequencies
 10.3.3 Sorting a Map

Outline

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-3

10.1.1 The Interfaces

add(element)
remove(element)
iterator()
...

Set

add(key, value)
remove(key)
get(key)
keySet(): Set
...

Map

add(element)
remove(element)
get(index)
iterator()
...

List

Sequence Set Pairs

Duplicates are OK
and the positional
order is significant

A pair is
(key,value) where

key is unique

Duplicates are not
allowed and order
is insignificant

Java By Abstraction

Chapter 10

2 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-4

10.1.2 The Classes

add(element)
remove(element)
iterator()
...

Set

add(key, value)
remove(key)
get(key)
keySet(): Set
...

Map

add(element)
remove(element)
get(index)
iterator()
...

List

ArrayList
LinkedList

HashSet
TreeSet

HashMap
TreeMap

The two classes that implement each interface are
equivalent in the client’s view. The only visible diff
is performance (running time).

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-5

• Declare using the interface, not the class

• Use LinkedList only if your app tends to add or
remove elements at index 0

• Use TreeSet/Map only if you want to keep the
elements sorted

• Specify the type of the elements that you intend
to store in the collection

Example: A list of strings

ArrayList
LinkedList

HashSet
TreeSet

HashMap
TreeMap

The Classes, cont.

List<String> bag = new ArrayList<String>();

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-6

10.1.3 Revisiting Generics
All classes in the framework support generics.
By specifying the type (between < and >) the
client ensures:

 - No rogue element can be inserted
 - No casting is needed upon retrieval

Example:

List<Stock> bag = new ArrayList<Stock>();

// bag.add("Hello"); will not compile!

bag.add(new Stock(".ab"));

Stock s = bag.get(0); // no cast!

Java By Abstraction

Chapter 10

3 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-7

10.2.1 API Highlights
•  Use add to add elements to lists and sets:

List<Date> list = new ArrayList<Date>();
Set<String> set = new HashSet<String>();
list.add(new Date());
set.add("Hello");

Map<Integer, String> map;
map = new HashMap<Integer, String>();
map.put(55, "Clock Rate");

•  Use put to add an element to a map

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-8

API Highlights
•  Use remove to delete from lists and sets:

boolean done = set.remove("Adam");

String gone = map.remove(55);

•  To delete a map element given its key:

Note that remove returns false if the specified
element was not found and returns true otherwise.

Note that remove in maps returns the value of the
element that was removed or null if the specified
key was not found.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-9

API Highlights

•  To insert x at position 5:
list.add(5, x);

list.remove(5);

•  To delete the element at position 5:

The elements of lists are indexed (starting from 0).
Hence, but only for lists, we can also add and delete
based on the position index:

This will work only if the list has at least 5 elements, and it
will adjust the indices of all elements after position 5, if any.

This will work only if the list has at least 6 elements.

Java By Abstraction

Chapter 10

4 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-10

API Highlights

• The element at position 3 in a list:
Date d = list.get(3);

The elements of lists and maps (but not sets) can be
retrieved using get:

• The value of the element with key 55 in a map:
String s = map.get(55);

Note:
All interfaces come with size(), equals(), toString(),
and contains (containsKey in maps).

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-11

 ... e0 en-1 e1

•  Lists and Sets aggregate an iterator

• Use iterator() to get it

•  It starts positioned before the 1st element

• Use next() and hasNext() to control the cursor

10.2.2 The Iterator

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-12

The Iterator

Note that the iterator methods are not part of the
collection; they are in a separate class, Iterator.
Because of this, we can perform multiple traversals
by creating one instance of Iterator per traversal.

Iterator it = set.iterator();
for (; it.hasNext();)
{
 output.println(it.next());
}

Iterator it = set.iterator(); The statement:

returns an iterator positioned just before the very
first element. We use it as follows:

Java By Abstraction

Chapter 10

5 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-13

The Iterator and Generics

To benefit from this, let us rewrite the loop of the
previous slide so it prints the elements capitalized:

Iterator<String> it = set.iterator();
for (; it.hasNext();)
{
 String tmp = it.next();
 output.println(tmp.toUpperCase());
}

Iterator<String> it = set.iterator();

The Iterator class supports generics; i.e. we
can obtain a type-aware iterator as follows:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-14

The Iterator in Maps

Iterator<Integer> it = map.keySet().iterator();
for (; it.hasNext();)
{
 int key = it.next();
 String value = map.get(key);
 output.println(key + " --> " + value);
}

public Set<K> keySet()

The Map interface has no iterator() method but
we can obtain a set of the map’s keys:

And by iterating over the obtained set, we can,
in effect, iterate over the map’s elements:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-15

10.2.3 Searching and Sorting
Searching
One simple (albeit inflexible) way to search a collection
is to use the contains method (containsKey in maps). It
determines if an element in the collection is equal to a
given value and returns true or false accordingly.

output.print("Enter a word to look for: ");
String lookFor = input.nextLine();
output.println(set.contains(lookFor));

output.print("Enter a key to look for: ");
int findMe = input.nextInt();
output.println(map.containsKey(findMe));

Java By Abstraction

Chapter 10

6 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-16

Searching, cont.
For applications that require more than a simple yes/no,
we use traversal-based searches. For example, find out
if a given key is present in a map and output its value:

output.print("Enter a key to look for: ");
int find = input.nextInt();
Iterator<Integer> it = map.keySet().iterator();
boolean found = false;
Integer key = null;
for (; it.hasNext() && !found;)
{
 key = it.next();
 found = key.equals(find);
}
if (found) output.println(map.get(key));

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-17

Sorting
The Collections class has the method:

static void sort(List<T> list)

It rearranges the elements of the list in a
non-descending order. It works if, and only
if, the elements are comparable; i.e. one
can invoke the compareTo method on any of
them passing any element as a parameter.

Recall that compareTo (in String) returns an
int whose sign indicates < or > and whose 0
value signals equality.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-18

Sorting, cont.

Note:
Requiring that T implements Comparable<T> is too
strong. It is sufficient if T extends some class S
that implements Comparable<S>. The sort method
states this requirement in its API as follows:

To ensure that compareTo can be invoked,
we require that T (the element's class)
implements Comparable<T>, an interface
with only one method: compareTo(T).

<T extends Comparable<? super T>>

Java By Abstraction

Chapter 10

7 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-19

A Sorting Example:
Write a program that creates a list of a
few Fractions and then sort them.

List<Fraction> list;
list = new ArrayList<Fraction>();
list.add(new Fraction(1,2));
list.add(new Fraction(3,4));
list.add(new Fraction(1,3));

output.println(list);
Collections.sort(list);
output.println(list);

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-20

Sorting Sets and Maps
The sort method accepts only lists. What if
we needed to sort a set?

Set<Fraction> set;
set = new HashSet<Fraction>();
set.add(new Fraction(1,2));
set.add(new Fraction(3,4));
set.add(new Fraction(1,3));
output.println(set);

A minor modification to the above program
will make its output sorted …

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-21

Sorting Sets and Maps, cont.
Simply use TreeSet instead of HashSet.

The same technique applies to maps: use
TreeMap instead of HashMap to keep the
map's elements sorted on their keys.

Note:
Using a tree-implementing class for sets and maps is
conceptually different from using the sort methods
for lists. The former keeps the elements sorted at
all times. The latter sort will not persist after add-
ing or removing elements.

Java By Abstraction

Chapter 10

8 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-22

Sorting and Binary Search
The main advantage of sorting is speeding
up the search. When the elements are
sorted, you don't have to visit all of them
to determine if a given value is present in
the collection or not.

The method searches for value in list and returns
its index if found and a negative number otherwise

int binarySearch(List list, T value)

Note: Unlike exhaustive search (which is linear), binary search
has a complexity of O(lgN).

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-23

10.2.4 Summary of Features

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-24

List-Only Utilities in Collections
•  Sort / binarySearch

We covered these

•  shuffle
Rearranges the elements randomly

•  reverse
Rearranges the elements in reverse order

•  copy
Returns a deep copy of the collection

•  fill
Populates all the elements with a given value

Java By Abstraction

Chapter 10

9 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-25

10.3 Applications
Read the three applications in sections
10.3.1-3.

Here, we will outline five different
applications that utilize various features
of the Collection Framework:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-26

Example 1
•  Create a set of random dates.

•  Let all of them be in this year and set
their times to 0 (h, min, se,ms).

•  Make the set sorted

•  Serialize it as RanDateA.dat

•  Make a second in RanDateB.dat

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-27

Example 2

•  Write an app that de-serializes the two
files created in Example 1.

•  Print the two sets side by side (in two
columns)

Java By Abstraction

Chapter 10

10 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-28

Example 3
•  Write an app that determines the common

dates in the above two files.

•  The app should generate a sorted
intersection set.

 Hint: use contains

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-29

Example 4
•  Let the sizes of the above two sets be n

and m. Assuming that the contains method
has a linear complexity, what is the
complexity of your app?

•  Can you rewrite the app to make it linear
with complexity O(n+m)?

 Here is a problem of a similar nature:
Find the celebrity in a room of n persons. Everyone knows
the celebrity but s/he does know anyone. You are allowed to
ask n questions of the form: “do you know that person?”

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-30

Example 5
This application uses the Supplier and Item
classes of type.lib.
As a demonstration, the following fragment creates a
supplier named Loblaws with address Toronto, and an
item named Corn Flakes with item number df102 and
price $1.75:

Supplier s = new Supplier("Loblaws", "Toronto")
Item i = new Item("df102","Corn Flakes",1.75));

The following fragment creates a map and store the
above supplier/item pair in it:

Map map = new TreeMap();
map.put(supplier, item);

Java By Abstraction

Chapter 10

11 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-31

Example 5, cont.
•  Create a map<Supplier, Item> containing

the following supplier, item pairs:

SUPPLIER & ADDRESS ITEM# DESCRIPTION PRICE
------------------ ----------------------- ----
Loblaws Toronto df102 Corn Flakes 1.75
Dominion Toronto df453 Lindt Chocolate 5.75
Loblaws Toronto df102 Corn Flakes 1.75
IGA Markham ef777 Ice Cream 3.25
IGA Maple df102 Corn Flakes 1.75

•  Output the map using its default toString
method. How come it has 5 elements (even
when two of the suppliers are the same)?

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 10-32

Example 5, cont.
•  Output the map using an iterator over the

keys.

•  Create a “reversed” or map with all the
the distinct items as keys. For each, the
value is a list of suppliers who supply this
item.

•  Output the inverted map using an iterator
over its keys and an indexed iterator over
the supplier list of each item.

