
Java By Abstraction

Chapter 1

1 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-1

Chapter 1

Introduction
to Programming

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-2

1.1 Anatomy of a Program
 1.1.1 A Quick Tour
 1.1.2 Language Elements
 1.1.3 Program Execution

1.2 The Declaration Statement
 1.2.1 Variable Names
 1.2.2 The Integer Types
 1.2.3 Declaration and Memory
 1.2.4 Other Data Types
 1.2.5 Primitive and Non-Primitive Types

1.3 The Assignment Statement
 1.3.1 The int Arithmetic Operators
 1.3.2 Other Arithmetic Operators
 1.3.3 Mixed Types and Casting

Outline

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-3

Let us take a look at a Java program. It does
not matter now how the program was written;
just become familiar with the terminology for
describing program structures.

Note, in particular, the following four terms:

1.1.1 A Quick Tour

Imports, Class, Method, Style

Java By Abstraction

Chapter 1

2 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-4

import java.lang.System;

public class Area
{
 public static void main(String[] args)
 {
 int width;
 width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
}

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-5

import java.lang.System;

public class Area
{
 public static void main(String[] args)
 {
 int width;
 width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
}

Imports

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-6

import java.lang.System;

public class Area
{
 public static void main(String[] args)
 {
 int width;
 width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
} Imported Class

= Delegation

Java By Abstraction

Chapter 1

3 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-7

import java.lang.System;

Subpackage
Class Package

 java

lang

util ...

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-8

import java.lang.System;

import java.lang.*;
versus

The package naming convention
calls for lowercase letters.

- Note the difference:

- And as a matter of style:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-9

import java.lang.System;

public class Area
{
 public static void main(String[] args)
 {
 int width;
 width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
}

Class Header

Class Body,
a Block

Java By Abstraction

Chapter 1

4 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-10

import java.lang.*;

public class Area
{
 public static void main(String[] args)
 {
 int width;
 width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
}

Method Header

Method Body,
a Block

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-11

Class naming convention
Use title case unless an acronym, e.g. Math, UTL,
StringTokenizer.

Style

Block layout
Braces must align vertically and the all statements must be
left justified and indented by one tab position.

Method naming convention
Use lowercase letters but for multi-word names, capitalize
the first letter of each subsequent word, e.g. main,
equals, toString, isLeapYear

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-12

Still without worrying about semantics, let us
identify the elements of a program:

1.1.2 Language Elements

Keywords
Identifiers
Literals
Operators
Separators

Java By Abstraction

Chapter 1

5 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-13

Keywords

Identifiers

Literals

Operators

Separators

The reserved words are the keywords plus the literals:
true, false, null

Must not be a reserved word, must begin with a letter,
and its character set must be: {0-9, A-Z, a-z, , _}

Recognized by the presence of a number, 'character',
"characters", or one of: true, false, null

The separators are:

. , ; … () [] { }

The character set of operators:

= > < ! ~ ? : & | + - * / ^ %

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-14

abstract assert
boolean break byte
case catch char class const continue

default do double
else enum extends
final finally float for
goto
if implements import instanceof int interface
long
native new
package private protected public
return
short static strictfp super switch synchronized
this throw throws transient try
void volatile
while

Keywords

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-15

Identify the language elements in the
following program...

Keywords, Identifiers, Literals, Operators, Separators

Example

Java By Abstraction

Chapter 1

6 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-16

import java.lang.System;

public class Area
{
 public static void main(String[] args)
 {
 int width;
 width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
}

Keywords, Identifiers, Literals, Operators, Separators

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-17

import java.lang.System;

public class Area
{
 public static void main(String[] args)
 {
 int width;
 width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
}

Keywords, Identifiers, Literals, Operators, Separators

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-18

import java.lang.System;

public class Area
{
 public static void main(String[] args)
 {
 int width;
 width = 8;
 int height = 3;
 int area = width * height;
 System.out.println(area);
 }
}

Keywords, Identifiers, Literals, Operators, Separators

Java By Abstraction

Chapter 1

7 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-19

1.1.3 Program Execution

compile-time errors

COMPILE
read source file

Java to bytecode

Area.java Area.class
EDIT

save the file

create or edit

RUN
VM

read one instruction

bytecode to native

CPU

fetch

execute

Area.class

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-20

1.2 The Declaration Statement

type name;

The name of a primitive or non-
primitive type, e.g. int, double…

An identifier to be associated with a memory
block

A separator

The scope of the variable = the enclosing block of the
declaration. The variable is not known outside its scope.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-21

Rules and guidelines for the name:
•  Must be an identifier

•  Must not be in the scope of another variable
with the same name

•  A good name is indicative of the content that will
be stored in the variable

•  As a matter of style, use lowercase letters, but
for multi-word names, capitalize the first letter
of each subsequent word

1.2.1 Variable Names

Java By Abstraction

Chapter 1

8 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-22

A type is a range of values and a set of
operations on these values.

The range of the int type consists of all
whole numbers between -2 and +2 billions
(approx). int supports the four arithmetic
operations plus the remainder.

The long type is very similar to int except
its range is much bigger, +/-1019

An integer literal has an int type unless
suffixed by L (l), in which case it is long.

1.2.2 The Integer Types

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-23

•  Logical versus Physical
•  Address versus Content

•  Bytes, KB, MB, GB, TB, …

•  The Memory Block

0
1
.
24
25
26
27
28
29
30
31
.

•  1-byte block at address 24

•  1-byte block at address 25

•  2-byte block at address 26

•  4-byte block at address 28

1.2.3 Declaration
and Memory

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-24

0
1
.
23
24

25
26
27
28
29
30
.

What happens
when we write:

 int width;
width

Note that no initialization is involved; only
an association of a name with an address.

1.  A block big enough to hold an int is
allocated, e.g. a 4B block at 24

2.  Its address is associated with the
variable name, e.g. 24 with width

Java By Abstraction

Chapter 1

9 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-25

Real

Integer
Use for integer
data, e.g. count.

100% exact

Use for real data, e.g.
amount.

Inherently inaccurate

1.2.4 Other Data Types

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-26

Numeric Types

Real

Integer

float

double

4

8

±1038 SD=7

±10308 SD=15

int

long

4

8

±2G exact

±2E exact

Integer literals are int by default unless suffixed with L

Real literals are recognized thru a decimal point or an exponent.
They are double by default unless suffixed with F

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-27

•  Stores the result on a condition

•  Has only two possible values

•  true and false are reserved words

•  Boolean variables are not integers

Note: Boolean literals are the easiest to recognize!

The Type boolean

Java By Abstraction

Chapter 1

10 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-28

The Character Type
•  A letter, digit, or symbol

•  Digits versus Numbers

•  Store the code, not the typeface

•  The case of English: ASCII

•  char is thus an (unsigned) integer type

•  Unicode has 64K codes

char

Character literals are recognized by single quotes
surrounding one character, e.g. 'A'

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-29

Code Character
0
. . .

32 space
. . .

48-57 '0'-'9'
. . .

65-90 'A'-'Z'
. . .

97-122 'a'-'z'
. . .

65535

Escape Meaning

\uxxxx
The character whose code is

(hex) xxxx

\' Single quote

\" Double quote

\\ Backslash

\n New line

\r Carriage return

\f Form Feed

\t Tab

\b Backspace

More on Characters

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-30

Non-Primitive

Primitive

number

character

boolean

class

interface

array

1.2.5 Primitive & Non-Primitive

Java By Abstraction

Chapter 1

11 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-31

PRIMITIVE
TYPES Type Size

(bytes)
 Approximate Range

min max S.D.

byte 1 -128 +127 ?

short 2 -32,768 +32,767 ?

int 4 -2×109 +2×109 ?

S
I
G
N
E
D long 8 -9×1018 +9×1018 ?

I
N
T
E
G
E
R UNSIGNED char 2 0 65,535 ?

SINGLE float 4 +3.4×1038 +3.4×1038 7

N
U
M
B
E
R R

E
A
L DOUBLE double 8 -1.7×10308 +1.7×10308 15

BOOLEAN boolean 1 true/false N/A

Java’s Primitive Type

N/A

N/A

N/A

N/A

N/A

N/A

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-32

name = value;

- Pre-declared and in-scope
- Its type can hold RHS
- Its content will be overwritten

- a Literal
- a Name, or
- an Expression

A separator

An operator

1.3 The Assignment Statement

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-33

1.3.1 The int Arithmetic Operators

Precedence Operator Kind Syntax Operation

+ infix x + y add y to x
-5 è

- infix x - y subtract y from x

* infix x * y multiply x by y

/ infix x / y divide x by y -4 è

% infix x % y remainder of x / y

+ prefix +x identity

- prefix -x negate x

++ prefix ++x x = x + 1; result = x
-2 ç

-- prefix --x x = x - 1; result = x

++ postfix x++ result = x; x = x + 1
-1 è

-- postfix x-- result = x; x = x - 1

Java By Abstraction

Chapter 1

12 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-34

Examples
double price;

price = 17.25;

int quantity = 25;

boolean isValid = false;

double cost;

cost = price;

double extended;

extended = quantity * price;

RHS is a variable

Can combine declaration
with assignment.

RHS is an expression

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-35

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-36

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

Java By Abstraction

Chapter 1

13 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-37

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-38

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-39

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

Java By Abstraction

Chapter 1

14 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-40

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-41

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-42

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

= 5 + 0 - 2

Java By Abstraction

Chapter 1

15 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-43

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

= 5 + 0 - 2

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-44

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

= 5 + 0 - 2

= 5 - 2

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-45

Example
 5 + (4 - 3) / 5 - 2 * 3 % 4

= 5 + 1 / 5 - 2 * 3 % 4

= 5 + 0 - 2 * 3 % 4

= 5 + 0 - 6 % 4

= 5 + 0 - 2

= 5 - 2

= 3

Java By Abstraction

Chapter 1

16 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-46

•  The int operators satisfy closure thru circular wrapping

•  The / int operator always rounds toward 0 and leads to an
exception if the divisor is zero

•  The sign of % is the same as that of the dividend

•  The real operators satisfy closure by adding Infinity and
NaN. Hence, dividing by zero does not lead to exceptions

•  (a * b) / c is not the same as a * (b / c) for any type

•  (a + b) – c is not the same as a + (b – c) for real types

1.3.2 Other Arithmetic Operators
Each of long, float, and double come with 11
operators with the same symbols as int; i.e.
the symbols are overloaded. Note:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-47

•  Promotion (aka widening conversion) is
done automatically when needed

•  May lead to loss of precision but the
order of magnitude is preserved

•  Demotion is not done automatically.
Can be done manually thru a cast

•  Casting is risky…avoid it.

1.3.3 Mixed Types and Casting

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-48

D
em

otion

char

float

long

int

byte short

double

Prom
otion

Java By Abstraction

Chapter 1

17 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-49

Note:
•  The cast operator has a precedence that

is higher than * but less than ++

•  The = operator has the lowest precedence
of all operators

•  There are shorthand operators to combine
assignment with an operator:

 x op= y is shorthand for x = x op y

 Ex: x +=1 is like x = x + 1 or x++

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 1-50

Example

int iVar = 15;

long lVar = 2;

float fVar = 7.6f - iVar / lVar;

double dVar = 1L / lVar + fVar / lVar;

int result = 100 * dVar;

Fix, if need be, and output result
The answer may surprise you!

