
Chapter 2
Background

This chapter covers general background material for the thesis and provides a brief
overview of the related literature. We defer more specific technical details and
discussion of related work to the individual chapters that follow, where it can be
presented in the appropriate context.

Readers familiar with the situation calculus are encouraged to briefly review this
chapter. While it does not present any new results, it does introduce some novel
notation and definitions which will be needed later in the thesis. They are introduced
here to maintain consistency of the presentation. The introductory material on the
Mozart programming platform may also be helpful.

We begin by introducing the base language of the situation calculus in Sec-
tion 2.1, illustrated using examples from the “cooking agents” domain. Section 2.2
introduces the Golog family of programming languages, which are the standard for-
malism for representing complex tasks in the situation calculus. Reasoning about
the knowledge of an agent, or epistemic reasoning, is covered in Section 2.3. Related
formalisms for reasoning about action and change are briefly discussed in Section
2.4. Finally, Section 2.5 introduces the Mozart programming system, which will be
used to implement our multi-agent Golog variant. Basic familiarity with formal logic
is assumed throughout; readers requiring background on such material may find a
gentle introduction in [43] and a more detailed treatment in [31].

2.1 The Situation Calculus

The situation calculus is a powerful formalism for describing and reasoning about
dynamic worlds. It was first introduced by McCarthy and Hayes [70] and has since
been significantly expanded and formalised [85, 92]. We use the particular variant
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CHAPTER 2. BACKGROUND

due to Reiter et. al. at the University of Toronto, sometimes called the “Toronto
school” or “situations-as-histories” version. The formalisation below is based on
the standard definitions from [59, 85, 91], but has been slightly generalised to ac-
commodate several existing extensions to the situation calculus, as well as our own
forthcoming extensions, in a uniform manner.

Readers familiar with the situation calculus should therefore note some modified
notation: the unique names axioms Duna are incorporated into a general background
theory Dbg; the Poss fluent is subsumed by a general class of action description
predicates defined in Dad; we parameterise the “future situations” predicate s @ s′

to assert that all intermediate actions satisfy a given predicate using s <α s′; and we
use the single-step variant of the regression operator, with corresponding definitions
of regressable formulae.

2.1.1 Notation

The language Lsitcalc of the situation calculus is a many-sorted language of first-order
logic with equality, augmented with a second-order induction axiom, containing the
following disjoint sorts:

• Action terms are functions denoting individual instantaneous events that can
cause the state of the world to change;

• Situation terms are histories of the actions that have occurred in the world,
with the initial situation represented by S0 and successive situations built using
the function do : Action× Situation→ Situation;

• Object terms represent any other object in the domain.

Fluents are predicates or functions that represent properties of the world that may
change between situations, and so take a situation term as their final argument.
Predicates and functions that do not take a situation term are called rigid. We use
the term primitive fluent to describe fluents that are directly affected by actions,
rather than being defined in terms of other fluents. No functions other than S0 and
do produce values of sort Situation.

For concreteness, let us present some formulae from an example domain that will
be used throughout the thesis. In the “cooking agents” domain a group of robotic
chefs inhabit a kitchen containing various ingredients and utensils, and they must
cooperate to prepare a meal. Some example statements from this domain include
“Joe does not have the knife initially”, “Jim has the knife after he acquires it” and
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2.1. THE SITUATION CALCULUS

“It is only possible to acquire an object if nobody else has it”. Formally:

¬HasObject(Joe,Knife1, S0)

HasObject(Jim,Knife1, do(acquire(Jim,Knife1), S0))

Poss(acquire(agt, obj), s) ≡ ¬∃agt2 : HasObject(agt2, obj, s)

Here HasObject is a primitive fluent, while Poss is defined in terms of it.

Lsitcalc contains the standard alphabet of logical connectives, constants > and
⊥, countably infinitely many variables of each sort, countably infinitely many pred-
icates of each arity, etc; for a complete definition, consult the foundational paper
by Pirri and Reiter [85]. We follow standard naming conventions for the situation
calculus: upper-case roman names indicate constants; lower-case roman names in-
dicate variables; greek characters indicate meta-variables or formula templates. All
axioms universally close over their free variables at outermost scope. The notation
t̄ indicates a vector of terms of context-appropriate arity and type. The connectives
∧, ¬, ∃ are taken as primitive, with ∨, →, ≡, ∀ defined in the usual manner.

In multi-agent domains it is customary to introduce a distinct sort Agent to
explicitly represent the agents operating in the world, and we will do so here. As
seen in the example formulae above, the first argument of each action term gives the
performing agent, which can be accessed by the function actor(a).

Complex properties of the state of the world are represented using uniform for-
mulae. These are basically logical combinations of fluents referring to a common
situation term.

Definition 1 (Uniform Terms). Let σ be a fixed situation term, r an arbitrary
rigid function symbol, f an arbitrary fluent function symbol, and x a variable that
is not of sort Situation. Then the terms uniform in σ are the smallest set of
syntactically-valid terms satisfying:

τ ::= x | r(τ̄) | f(τ̄ , σ)

Definition 2 (Uniform Formulae). Let σ be a fixed situation term, R an arbitrary
rigid predicate, F an arbitrary primitive fluent predicate, τ an arbitrary term uni-
form in σ, and x an arbitrary variable that is not of sort Situation. Then the
formulae uniform in σ are the smallest set of syntactically-valid formulae satisfying:

φ ::= F (τ̄ , σ) |R(τ̄) | τ1 = τ2 |φ1 ∧ φ2 | ¬φ | ∃x : φ
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CHAPTER 2. BACKGROUND

We will call a formula uniform if it is uniform in some situation. The important
aspect of this definition is that the formula refers to no situation other than σ, which
appears as the final argument of all fluents in the formula. In particular, uniform
formulae cannot quantify over situations or compare situation terms, and cannot
contain non-primitive fluents.

The meta-variable φ is used throughout to refer to an arbitrary uniform formula.
Since they represent some aspect of the state of the world, it is frequently useful
to evaluate uniform formulae at several different situation terms. The notation
φ[s′] represents a uniform formula with the particular situation s′ inserted into all
its fluents. We may also completely suppress the situation term to simplify the
presentation, using φ−1 to represent a uniform formula with the situation argument
removed from all its fluents. For example, given:

φ = HasObject(Jim,Knife1, s) ∧HasObject(Joe,Bowl2, s)

Then we have:

φ[s′] = HasObject(Jim,Knife1, s′) ∧HasObject(Joe,Bowl2, s′)

φ−1 = HasObject(Jim,Knife1) ∧HasObject(Joe,Bowl2)

Note that these are strictly meta-level operations, corresponding to possibly quite
complex sentences from the underlying logic. They are not terms or operators from
the logic itself.

2.1.2 Axioms

The dynamics of a particular domain are captured by a set of sentences from Lsitcalc
called a basic action theory. Queries about the behaviour of the world are posed as
logical entailment queries relative to this theory.

Definition 3 (Basic Action Theory). A basic action theory, denoted D, is a set of
situation calculus sentences (of the specific syntactic form outlined below) describing
a particular dynamic world. It consists of the following disjoint sets: the founda-
tional axioms of the situation calculus (Σ); action description axioms defining pre-
conditions etc for each action (Dad); successor state axioms describing how primitive
fluents change between situations (Dssa); axioms describing the value of primitive
fluents in the initial situation (DS0); and axioms describing the static background
facts of the domain (Dbg):

D = Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg
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2.1. THE SITUATION CALCULUS

These axioms must satisfy some simple consistency criteria to constitute a valid
domain description; see [85] for the details. This definition is slightly broader than
the standard definitions found in the literature [59, 85, 91] and is designed to ac-
commodate a variety of extensions to the situation calculus in a uniform manner.

We assume an arbitrary, but fixed, basic action theory D.

Background Axioms

The set Dbg characterises the static aspects of the domain, and contains all axioms
defining rigid predicates or functions. In particular, it must contain a set of unique
names axioms asserting that action terms with different types or arguments are in
fact different, e.g.:

acquire(agt, obj) 6= release(agt, obj)

acquire(agt1, obj1) = acquire(agt2, obj2) → agt1 = agt2 ∧ obj1 = obj2

It also contains domain closure axioms for the sorts Action, Agent and Ob-

ject, and defines the function actor(a) to give the agent performing an action.
The background axioms are a generalisation of the set Duna commonly found in the
literature, which contains only the unique names axioms.

Successor State Axioms

The set Dssa contains one successor state axiom for each primitive fluent in the
domain. These axioms provide an elegant monotonic solution to the frame problem
for that fluent [92] which has been instrumental to the popularity and utility of the
situation calculus. They have the following general form:

F (x̄, do(a, s)) ≡ ΦF (x̄, a, s)

Here ΦF is uniform in s. While we will make no assumptions about the internal
structure of ΦF , it typically takes the form shown below, which may help elucidate
the purpose of these axioms:

F (x̄, do(a, s)) ≡ Φ+
F (x̄, a, s) ∨ F (x̄, s) ∧ ¬Φ−F (x̄, a, s)

Here Φ+
F and Φ−F are formulae uniform in s, representing the positive and negative

effect axioms for that fluent. This may be read as “F is true after performing a if a
made it true, or it was previously true and a did not make it false”. For example,

13



CHAPTER 2. BACKGROUND

the dynamics of the HasObject fluent may be specified using:

HasObject(agt, obj, do(a, s)) ≡ a = acquire(agt, obj)

∨ HasObject(agt, obj, s) ∧ a 6= release(agt, obj)

For functional fluents, Dssa contains a similar axiom to specify the value v of the
fluent after an action has occurred:

f(x̄, do(a, s)) = v ≡ Φf (v, x̄, a, s)

Action Description Predicates

The set Dad generalises the standard action precondition axioms [85] to define fluents
that describe various aspects of the performance of an action, which we call action
description predicates. These are the only non-primitive fluents permitted in a basic
action theory. The predicate Poss(a, s) is the canonical example, indicating whether
it is possible to perform an action in a given situation. The set Dad contains a single
axiom of the following form, defining the complete set of preconditions for the action
variable a, where ΠPoss is a formula uniform in s:

Poss(a, s) ≡ ΠPoss(a, s)

Note that this is a slight departure from the standard approach of [85], in which
the preconditions for each action type are enumerated individually. The more re-
strictive approach presented here embodies a domain-closure assumption on the
Action sort. If there are finitely many action types then ΠPoss is simply the com-
pletion of the precondition axioms for each action type. The single-axiom form is
necessary when quantifying over “all possible actions” and has been widely used in
the literature [96, 124].

In principle, any number of predicates and functions can be defined in this way;
a common example is the sensing-result function SR(a, s) which we will describe in
Chapter 4. The general notion of an action description predicate allows us to treat
all of them in a uniform manner. We will use the meta-variable α to represent an
arbitrary action description predicate, and allow the action and situation arguments
to be suppressed in a similar way to situation-suppressed uniform formulae.

In preparation for the coming material on extensions to the situation calculus in
Section 2.1.4, let us introduce an action description predicate Legal that identifies
actions that can be legally executed in the real world. In the basic situation calculus,
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2.1. THE SITUATION CALCULUS

it is simply equivalent to Poss:

Legal(a, s) ≡ Poss(a, s)

As shown by the above, it is often useful to define new action description predi-
cates in terms of simpler existing ones, rather than directly in terms of the primitive
fluents of the domain. As long as these definitions are well-founded they can be
expanded down to primitive fluents when constructing the basic action theory.

Foundational Axioms

The foundational axioms Σ ensure that situations form a branching-time account
of the world state. There is a distinguished situation S0 called the initial situation.
Situations in general form a tree structure with the initial situation at the root and
do(a, s) constructing the successor situation resulting when the action a is performed
in situation s. All situations thus produced are distinct:

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2

We abbreviate the performance of several successive actions by writing:

do([a1, . . . , an], s) def= do(an, do(. . . , do(a1, s)))

There is also a second-order induction axiom asserting that all situations must
be constructed in this way, which is needed to prove statements that universally
quantify over situations [89]:

∀P : [P (S0) ∧ ∀s, a : (P (s)→ P (do(a, s)))] → ∀s : P (s)

The relation s @ s′ indicates that s′ is in the future of s and is defined as follows:

¬(s @ S0)

s @ do(a, s′) ≡ s v s′

Here s v s′ is the standard abbreviation for s @ s′ ∨ s = s′. This notion of “in
the future of” can be extended to consider only those futures in which all actions
satisfy a particular action description predicate. We define as a macro the relation
<α for an arbitrary action description predicate α, with the following definition:

s <α s
′ def= s @ s′ ∧ ∀a, s′′ :

(
s @ do(a, s′′) v s′ → α[a, s′′]

)
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It is straightforward to demonstrate that this macro satisfies the following prop-
erties, which are analogous to the definition of @:

¬ (s <α S0)

s <α do(a, s′) ≡ s ≤α s′ ∧ α[a, s′]

The legal situations are those in which every action was legal to perform in the
preceding situation. These are of fundamental importance, as they are the only
situations that could be reached in the real world:

Legal(s) def= S0 ≤Legal s

Initial State Axioms

The set DS0 describes the actual state of the world before any actions are performed.
It is a collection of sentences uniform in S0 stating what holds in the initial situation.
In many domains the initial state can be completely specified, so DS0 is often in a
closed form suitable for efficient automated reasoning.

Note that, unlike [59, 85, 91], we include static facts about the domain in Dbg
rather than DS0 . This is entirely a cosmetic change to allow us to talk about these
static facts separately from the initial database.

2.1.3 Reasoning

An important feature of the situation calculus is the existence of effective reasoning
procedures for certain types of query. These are generally based on syntactic ma-
nipulation of a query into a form that is more amenable to reasoning, for example
because it can be proven without using some of the axioms from D.

Types of Reasoning

In the general case, answering a query about a basic action theory D is a theorem-
proving task in second-order logic (denoted SOL) due to the induction axiom in-
cluded in the foundational axioms:

D |=SOL ψ

This is clearly problematic for effective automated reasoning, but fortunately there
exist particular syntactic forms for which some of the axioms in D are not required.
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2.1. THE SITUATION CALCULUS

If a query only performs existential quantification over situation terms, it can be
answered without the induction axiom (denoted I) and thus using only first-order
logic (FOL) [85]:

D |=SOL ∃s : ψ(s) iff D − {I} |=FOL ∃s : ψ(s)

While this is a substantial improvement over requiring a second-order theorem
prover, it is still far from an effective technique. Effective reasoning requires that
the set of axioms be reduced as much as possible.

In their work on state constraints, Lin and Reiter [66] show how to reduce the task
of verifying a state constraint to a reasoning task we call static domain reasoning,
where only the background axioms need to be considered:

Dbg |=FOL ∀s : φ[s]

Since the axioms in Dbg do not mention situation terms, the leading quantifica-
tion in such queries has no effect – φ will be entailed for all s if and only if it is
entailed for some s. This is a major improvement because universal quantification
over situation terms usually requires the second-order induction axiom. Their work
has shown that this requirement can be circumvented in some cases.

Simpler still are queries uniform in the initial situation, which can be answered
using only first-order logic and a limited set of axioms:

D |=SOL φ[S0] iff DS0 ∪ Dbg |=FOL φ[S0]

We call such reasoning initial situation reasoning. Since the axioms DS0 ∪ Dbg
often satisfy the closed-world assumption, provers such as Prolog can be employed
to handle this type of query quite effectively.

Regression

The principle tool for effective reasoning in the situation calculus is the regression
meta-operator RD, a syntactic manipulation that encodes the preconditions and
effects of actions into the query itself, meaning fewer axioms are needed for the final
reasoning task [85]. The idea is to reduce a query about some future situation to a
query about the initial situation only.

There are two styles of regression operator commonly defined in the literature:
the single-pass operator as defined in [85] which reduces to S0 in a single application,
the the single-step operator as defined in [98] which operates one action at a time.
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We use the single-step variant because it is the more expressive of the two – while
it is straightforward to define the single-pass operator in terms of the single-step
operator, the reverse is not the case.

Regression is only defined for a certain class of formulae, the regressable formulae.

Definition 4 (Regressable Terms). Let σ be an arbitrary situation term, x an arbi-
trary variable not of sort situation, r an arbitrary rigid function and f an arbitrary
fluent function. Then the regressable terms are the smallest set of syntactically-valid
terms satisfying:

ν ::= σ |x | f(ν̄, σ) | r(ν̄)

Definition 5 (Regressable Formulae). Let σ be an arbitrary situation term, x an
arbitrary variable not of sort situation, ν an arbitrary regressable term, R an arbi-
trary rigid predicate, F an arbitrary primitive fluent predicate, and α an arbitrary
action description predicate. Then the regressable formulae are the smallest set of
syntactically-valid formulae satisfying:

ϕ ::= F (ν̄, σ) |α(ν̄, a, σ) |R(ν̄) | ν1 = ν2 | ¬ϕ |ϕ1 ∧ ϕ2 | ∃x : ϕ

Regressable formulae are more general than uniform formulae. In particular,
they can contain action description predicates and may mention different situation
terms. They cannot, however, quantify over situation terms or compare situations
using the @ predicate.

The regression operator is then defined using a series of regression rules such as
those shown below, which mirror the structural definition of regressable formulae.

Definition 6 (Regression Operator). Let R be a rigid predicate, α be an action
description predicate with axiom α(ν̄, a, s) ≡ Πα(a, s) in Dad, and F be a primitive
fluent with axiom F (x̄, s) ≡ ΦF (x̄, s) in Dssa. Then the regression of φ, denoted
RD(φ), is defined according to the following structural rules:

RD(ϕ1 ∧ ϕ2) def= RD(ϕ1) ∧RD(ϕ2)

RD(∃x : ϕ) def= ∃x : RD(ϕ)

RD(¬ϕ) def= ¬RD(ϕ)

RD(α(ν̄, a, σ)) def= RD(Πα(ν̄, a, σ))

RD(F (ν̄, do(a, σ))) def= ΦF (ν̄, a, σ)

RD(F (ν̄, s)) def= F (ν̄, s)

RD(F (ν̄, S0)) def= F (ν̄, S0)
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We have omitted some technical details here, such as the handling of functional
fluents; consult [85] for the details. The key point is that each application of the
regression operator replaces action description predicates with their definitions from
Dad and primitive fluents with their successor state axioms from Dssa, “unwinding”
a single action from each do(a, σ) situation term in the query. If the situation term
is not constructed using do, it is left unchanged.

Since D is fixed, we will henceforth drop the subscript and simply write R for
the regression operator. When dealing with situation-suppressed uniform formulae,
we will use a two-argument operator R(φ, a) to indicate the regression of φ over the
action a. It should be read as a shorthand for R(φ[do(a, s)])−1 using the situation-
suppression operator from Section 2.1.1.

Let us briefly state some important properties of the regression operator. First,
and most importantly, it preserves equivalence of formulae:

Proposition 1. Let ϕ be a regressable formula, then D |= ϕ ≡ R(ϕ)

Any formula uniform in do(a, s) is regressable, and the result is uniform in s:

Proposition 2. Let φ be uniform in do(a, s), then R(φ) is uniform in s

Let R∗ denote repeated applications of R until the formula remains unchanged.
Such applications can transform a query about some future situation into a query
about the initial situation only:

Proposition 3. Let φ be uniform in do([a1 . . . an], S0), then R∗(φ) is uniform in S0

This last property is key to effective reasoning in the situation calculus, as it
allows one to answer the projection problem. To determine whether φ holds in a
given future situation, it suffices to determine whether R∗(φ) holds in the initial
situation. As discussed above, queries uniform in S0 are much easier to answer. The
axioms Dad and Dssa are essentially “compiled into the query” by the R∗ operator.
While an efficiency gain is not guaranteed, regression has proven a very effective
technique in practice [62, 85].

Decidability

Even given the use of regression to reduce the number of axioms required, reasoning
still requires first-order logic and is thus only semi-decidable in general. Practical
systems implemented on top of the situation calculus typically enforce additional
restrictions on the domain in order to gain decidability.

A common restriction is to assume that the Action and Object domains are
finite. This allows quantification over these variables to be replaced with finite
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conjunctions or disjunctions, essentially “propositionalising” the domain [13, 20, 91].
Both static domain and initial situation reasoning can then be performed using
propositional logic, which is decidable. This may also be combined with special-
purpose decision procedures for particular objects in the domain, such as deciding
linear constraints over the integers or reals [91, 93].

A similar, but slightly less onerous restriction, is to ensure that the construction
of function terms is well-founded [13]. This prevents building the arbitrarily-nested
terms from the Herbrand universe that cause non-termination in first-order theorem
provers, again gaining decidability.

Recent work by Gu and Soutchanski [38] has shown how to model some situation
calculus domains using to the two-variable fragment of first-order logic. Since this
fragment is decidable in general, both static domain and initial situation reasoning
are decidable in such domains.

Inductive Reasoning

One class of query that cannot be answered effectively using regression are formulae
that universally quantify over situations. Examples of such queries include verifying
state constraints (“for all situations, the constraint is satisfied”) and determining the
impossibility of a goal (“for all situations, the goal is not satisfied”). The difficulty
here comes from the induction axiom.

Reiter [89] has shown why the induction axiom is necessary to prove statements
that universally quantify over situation terms. This work demonstrates the use of
the axiom in manual proofs, but offers no procedure for answering such queries au-
tomatically. Other work considering inductive reasoning has focused exclusively on
verifying state constraints [11, 66]. While it is possible to automate this verification
in some cases, there are currently no general-purpose tools for effectively handling
queries that universally quantify over situation terms.

It is this limitation, more than any other, that has restricted the situation cal-
culus to synchronous domains. In asynchronous domains agents must account for
potentially arbitrarily-long sequences of hidden actions, which requires universal
quantification over situation terms. In Chapter 6 we develop a new reasoning tech-
nique to help overcome this limitation.

Progression

While regression has proven quite an effective technique in practice, it has an obvious
shortcoming in domains with long histories – the computation required to reason
about the current state of the world increases with each action performed.

20



2.1. THE SITUATION CALCULUS

An alternative approach is progression, in which the initial state of the world
DS0 is updated with each action performed, to give a new set of axioms describing
the state of the current situation. Although this increases the upfront complexity
when an action is performed, this work is amortised over many queries about the
updated state. Thielscher [114] makes a compelling case that progression gives better
runtime performance in domains with many actions. Why, then, do we focus only
on regression in this thesis?

The theoretical foundations of progression in the situation calculus were laid out
by Lin and Reiter [67] and come with an important caveat: the progression of a
first-order database is not always first-order definable. This conjecture was recently
proven by Vassos and Levesque [124], who show that while it is possible to define
first-order progressions of a database that are valid for restricted classes of query,
a first-order progressed database cannot be complete in general. As such, work on
progression in the situation calculus has focused on restricted queries or restricted
databases for which first-order progressions exist [68, 123, 125]. By contrast, the
regression operator is sound and complete for answering a broad range of queries.

In this thesis, we develop formalisms and reasoning techniques for problems
which have not been approached before in the situation calculus. Our first priority
must be a sound and complete reasoning tool, for which regression is a good match.
Advanced techniques such a progression are considered future work at this stage.

2.1.4 Extensions

The base language of the situation calculus may seem simplistic, lacking many fea-
tures that would be desirable for modelling rich multi-agent domains. However, it is
possible to significantly enrich the domain features that can be modelled while main-
taining the elegance and simplicity of the base situation calculus. We now discuss
several such extensions that are important in multi-agent domains.

Concurrent Actions

In the basic situation calculus only a single action can occur at any instant. While
suitable for most single-agent domains, this limitation is emphatically not suitable
for multi-agent systems – several actions can easily occur simultaneously if performed
by different agents. Modelling this true concurrency is necessary to avoid problems
with conflicting or incompatible actions. There is also the potential to utilise con-
currency to execute tasks more efficiently. Clearly a solid account of concurrency is
required for reasoning about multi-agent teams.

The work of [65, 83, 93] adds true concurrency to the situation calculus by
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Chapter 6
Property Persistence

This chapter develops a new inductive reasoning technique for the situation calculus
that can handle certain types of universally-quantified query. As discussed in Chap-
ter 4, for an agent in an asynchronous domain to reason about the world based on
its local information, it needs to pose queries that universally quantify over situation
terms. Unfortunately such queries cannot be handled using the regression operator,
and have thus far been beyond the reach of automated reasoning systems for the
situation calculus.

We study a restricted subset of universally-quantified queries that we refer to as
property persistence queries, introducing an approach to reasoning about them that
is similar in spirit to the standard regression operator: transform the query into a
form more amenable to automated reasoning. A new meta-operator PD is defined
such that φ persists in s if and only if PD(φ) holds in s. We term the formula
generated by this operator the persistence condition of φ.

The persistence condition is shown to be a fixpoint of applications of the regres-
sion operator, which can be calculated using an iterative approximation algorithm.
The resulting formula can then be used in combination with standard regression-
based reasoning techniques, allowing the inductive component of the reasoning to
be “factored out” and approached using a special-purpose reasoning algorithm. The
technique is always sound, and is complete in several interesting cases.

Chapter 4 identified a universally-quantified query with which an agent can rea-
son about its own world based on its local view. This query is not in a form that
that can be handled directly using the persistence condition. However, Chapter 7
will demonstrate how to combine the techniques developed in this chapter with a
new formalism for epistemic reasoning, allowing an agent to reason effectively about
its own knowledge using a combination of regression and property persistence.
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The chapter proceeds as follows: after some more detailed background material
on inductive reasoning in the situation calculus in Section 6.1, we formally define the
class of property persistence queries in Section 6.2, along with several examples of
practical queries that are of this form. Section 6.3 defines the persistence condition
operator and demonstrates that it is equivalent to the result of a meta-level fixpoint
calculation. Section 6.4 presents a simple iterative algorithm for calculating the
persistence condition, and discusses its correctness, completeness, and effectiveness.
We conclude with some general discussion in Section 6.5.

6.1 Background

While there is a rich and diverse literature base for the situation calculus, there
appears to have been little work on reasoning about universally quantified queries.
The work of Reiter [89] shows how to handle such queries manually using an appro-
priate instantiation of the second-order induction axiom, but makes no mention of
automating this reasoning.

Other work considering queries that universally quantify over situations focuses
exclusively on verifying state constraints. These are uniform formulae that must hold
in every possible situation, a highly specialised form of the more general persistence
queries we define in this chapter. The work of Lin and Reiter [66] shows that the
induction axiom can be “compiled away” when verifying a state constraint, by means
of the following equivalence:

D |= φ[S0]→ (∀s : S0 ≤ s→ φ[s])

iff

Duna |= ∀s, a : φ[s] ∧RD(Poss(a, s)) → RD(φ[do(a, s)])

The set Duna here performs the same role as our background axioms Dbg but contains
only the unique names axioms for actions. Verification of a state constraint can thus
be reduced to reasoning about a universally quantified uniform formula using only
the static background theory, a comparatively straightforward reasoning task which
we call static domain reasoning. Verification of state constraints was also approached
by Bertossi et al. [11], who develop an automatic constraint verification system using
an induction theorem prover.

However, there are many issues that are not addressed by work specific to state
constraints. What if we are interested in the future of some arbitrary situation
σ, rather than only S0? What if want to restrict future actions according to an
arbitrary action description predicate? Can we integrate a method for handling
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universally-quantified queries with existing regression techniques? Our treatment
of property persistence can provide a concrete basis for these considerations, and is
hence significantly more general than this existing work.

Another field that deals with induction over situations is the verification of Con-
Golog programs. De Giacomo et al. [18] show how to formulate various safety,
liveness, and starvation properties of a ConGolog program as fixpoint queries in
second-order logic. A preliminary model-checker capable of verifying these proper-
ties is described in [42]. Claßen and Lakemeyer [14] develop a logic of ConGolog
programs in ES, a variant of the situation calculus based on modal logic. They
demonstrate that properties of a program can be verified using an iterative fixpoint
computation similar to the one we propose in this chapter.

As we shall see, property persistence queries are equivalent to a particular kind
of safety property of a ConGolog program, so our work is in some ways less general
than that described above. This means, however, that we can be more specific in
our algorithm and approach. These ConGolog verifiers are designed to operate in
isolation, while we seek a method of handling universally-quantified queries that
can integrate directly with the existing meta-theoretical reasoning machinery of the
situation calculus, in particular with the regression operator.

Finally, let us introduce an important property of situations first formally iden-
tified by Savelli [96]: that universal quantification over situation terms is equivalent
to an infinite conjunction over the levels of the tree of situations:

D |= ∀s : ψ(s)

iff

D |=
∧
n∈N
∀a1, . . . , an : ψ(do([a1, . . . , an], S0))

This is a direct consequence of the induction axiom for situations, which restricts
situations to be constructed by performing some countable number of actions in the
initial situation. While we do not use this result directly in this chapter, it captures
an important intuition about situation terms that is fundamental to the operation
of our approach.

6.2 Property Persistence Queries

Let us now formally define the kinds of query that will be approached in this chapter.
Given some property φ and situation σ, a property persistence query asks whether
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φ will hold in all situations in the future of σ:

D |= ∀s : σ v s → φ[s]

More generally, one may wish to limit the futures under consideration to those
brought about by actions satisfying a certain action description predicate α, which
is easily accomplished using the ≤α macro. We thus have the following definition of
a persistence query:

Definition 18 (Property Persistence Query). Let φ be a uniform formula, α an
action description predicate, and σ a situation term. Then a property persistence
query is a query of the form:

D |= ∀s : σ ≤α s→ φ[s]

In words, a persistence query states that “φ holds in σ, and assuming all subse-
quent actions satisfy α, φ will continue to hold”. For succinctness we will henceforth
describe this as “φ persists under α”. Queries of this form are involved in many use-
ful reasoning tasks, of which the following are a small selection:

Goal Impossibility: Given a goal G, establish that there is no legal situation
in which that goal is achieved:

D |= ∀s : S0 ≤Legal s→ ¬G(s)

Goal Futility: Given a goal G and situation σ, establish that the goal cannot
be achieved in any legal future of σ:

D |= ∀s : σ ≤Legal s→ ¬G(s)

Note how this differs from goal impossibility: while the agent may have initially
been able to achieve its goal, the actions that have subsequently been performed
have rendered the goal unachievable. Agents would be well advised to avoid such
situations.

Checking State Constraints: Given a state constraint SC, show that the
constraint holds in every legal situation:

D |= ∀s : S0 ≤Legal s→ SC(s)
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This can be seen as a variant of goal impossibility, by showing that the constraint
can never be violated.

Need for Cooperation: Given an agent agt, goal G and situation σ, establish
that no sequence of actions performed by that agent can achieve the goal. Suppose
we define MyAction to identify the agent’s own actions:

MyAction(a, s) def= actor(a) = agt

Then the appropriate query is:

D |= ∀s : σ ≤MyAction s→ ¬G(s)

If this is the case, the agent will need to seek cooperation from another agent in
order to achieve its goal.

Knowledge with Hidden Actions: An agent reasoning about its own knowl-
edge in asynchronous domains must account for arbitrarily-long sequences of hidden
actions. To establish that it knows φ, it must establish that φ cannot become false
through a sequence of hidden actions:

D |= ∀s : σ ≤Hidden s→ φ[s]

This last case is our main motivation for the developments in this chapter, and
we will explore the use of property persistence in this context in detail in Chapter 7.
The other examples are designed to show that persistence queries are quite a general
form of query, and the techniques developed in this chapter thus have application
beyond our specific use of them in the remainder of this thesis.

Unfortunately, persistence queries do not meet the criteria for regressable for-
mulae found in Definition 5, since they quantify over situation terms. Such queries
therefore cannot be handled using the standard regression operator. Indeed, since
universal quantification over situation terms requires the use of a second order induc-
tion axiom, current systems needing to answer such queries must resort to second-
order theorem proving. This is hardly an attractive prospect for effective automated
reasoning.
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6.3 The Persistence Condition

To implement practical systems that can perform persistence queries, we clearly
need to transform the query into a form suitable for effective automated reasoning.
Our approach is to transform a property persistence query at σ into the evaluation
of a uniform formula at σ. This transformed query can then be handled effectively
using the standard regression operator.

To achieve this we need some transformation of a property φ and action de-
scription predicate α into a uniform formula PD(φ, α) that is true at precisely the
situations in which φ persists under α. We call such a formula the persistence con-
dition of φ under α.

Definition 19 (Persistence Condition). The persistence condition of φ under α,
denoted PD(φ, α), is a uniform formula that is equivalent to the persistence of φ
under α with respect to a basic action theory D without the initial situation axioms.
Formally:

D −DS0 |= ∀s :
(
PD(φ, α)[s] ≡ ∀s′ : s ≤α s′ → φ[s′]

)
Defining PD to be independent of the initial world state allows an agent to

calculate it regardless of what (if anything) is known about the actual state of the
world – after all, an agent may not know all the details of DS0 , and we still want it
to be able to use this technique.

This definition alone clearly does not make the task of answering a persistence
query any easier, since it gives no indication of how the persistence condition might
be calculated in practice. Indeed, we have not yet even shown whether such a
formula actually exists. In order to establish these results, we first need to define
the weaker notion of a formula persisting to depth n in a situation.

Since we wish to establish our technique as a general reasoning mechanism for
the situation calculus, we drop the assumption that concurrent actions are in use
for the duration of this chapter. Note that nothing in our definitions precludes the
use of various situation calculus extensions as described in Section 2.1.4.

Definition 20 (Persistence to Depth 1). A uniform formula φ persists to depth 1
under α in situation s when the formula P1

D(φ, α)[s] holds, as defined by:

P1
D(φ, α) def= φ−1 ∧ ∀a : RD(α[a, s])−1 → RD(φ[do(a, s)])−1

Note that P1
D is a literal encoding of the requirement “φ holds in s and in all

its direct successors”, using the standard regression operator RD and the situation-
suppression operator φ−1 to produce a situation-suppressed uniform formula. With-
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out the use of regression, the definition would appear as follows:

P1
D(φ, α)[s] ≡ φ[s] ∧ ∀a : α[a, s] → φ[do(a, s)]

Since α is an action description predicate and φ is a uniform formula, the expres-
sions RD(α[a, s])−1 and R(φ[do(a, s)])−1 are always defined and always produce uni-
form formulae. Successive applications of P1

D can then assert persistence to greater
depths:

Definition 21 (Persistence to Depth N). For any n ≥ 0, a uniform formula φ

persists to depth n under α in situation s when the formula PnD(φ, α)[s] holds, as
defined by:

P0
D(φ, α) def= φ

PnD(φ, α) def= P1
D(Pn−1

D (φ, α), α)

The following theorem confirms that PnD operates according to this intuition –
that for any sequence of actions of length i = 0 to i = n, if each action satisfies α in
the situation it is executed in, then φ will hold after executing those actions.

Theorem 5. For any n ∈ N, PnD(φ, α) holds in σ iff φ holds in σ and in all
successors of σ reached by performing at most n actions satisfying α:

D |= PnD(φ, α)[σ] ≡

∧
i≤n
∀a1, . . . , ai :

∧
j≤i

α[aj , do([a1, . . . , aj−1], σ)] → φ[do([a1, . . . , ai], σ)]


Proof Sketch. By induction on the natural numbers. For n = 0 we have φ[σ] ≡ φ[σ]
by definition. For the inductive case, we expand the definition of PnD(φ, α)[σ] to get
the following for the LHS:

Pn−1
D (φ, α)[σ] ∧ ∀a : RD(α[a, σ])→ RD(Pn−1

D (φ, α)[do(a, σ)])

Substituting for Pn−1
D using the inductive hypothesis gives us a conjunction rang-

ing over i ≤ n − 1, with universally quantified variables a1, . . . , ai, and we must
establish the i = n case. Pushing this conjunction inside the scope of the ∀a quan-
tifier, we find we can rename a ⇒ a1, a1 ⇒ a2 etc to get the required expression.
For a detailed proof see Appendix A.

The PnD operator thus allows us to express the persistence of a formula to any
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given depth using a simple syntactic translation based on regression. Intuitively,
one would expect PD(φ, α) to be some sort of fixpoint of P1

D(φ, α), since PD(φ, α)
must imply persistence up to any depth. Such a fixpoint could then be calculated
using standard iterative approximation techniques. The remainder of this section is
devoted to verifying this intuition.

We begin by adapting two existing results involving induction from the situation
calculus literature, so that they operate with our generalised ≤α notation and can
be based at situations other than S0.

Proposition 4. For any action description predicate α, the foundational axioms of
the situation calculus entail the following induction principle:

∀W, s : W (s) ∧
[
∀a, s′ : α[a, s′] ∧ s ≤α s′ ∧W (s′)→W (do(a, s′))

]
→ ∀s′ : s ≤α s′ →W (s′)

Proof. A trivial adaptation of Theorem 1 in [89].

Proposition 5. For any basic action theory D, uniform formula φ and action de-
scription predicate α:

D −DS0 |= ∀s : φ[s]→
(
∀s′ : s ≤α s′ → φ[s′]

)
iff

Dbg |= ∀s, a : φ[s] ∧RD(α[a, s])→ RD(φ[do(a, s)])

Proof. A straightforward generalisation of the model-construction proof of Lemma
5 in [66], utilising Proposition 4.

Proposition 5 will be key in our algorithm for calculating the persistence condi-
tion. It allows one to establish the result “if φ holds in s, then φ persists in s” by
using static domain reasoning, a comparatively straightforward reasoning task.

We next formalise some basic relationships between PD and PnD.

Lemma 2. Given a basic action theory D, uniform formula φ and action description
predicate α, then for any n:

D −DS0 |= ∀s :
(
∀s′ : s ≤α s′ → φ[s′]

)
≡
(
∀s′ : s ≤α s′ → PnD(φ, α)[s′]

)
That is, φ persists under α iff PnD[φ, α] persists under α.

Proof. Since PnD[φ, α] implies φ by definition, the if direction is trivial. For the
only-if direction we proceed by induction on n.
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For the base case, assume that φ persists but P1
D(φ, α) does not, then we must

have some s′ with s ≤α s′ and ¬P1
D(φ, α)[s′]. By the definition of P1

D, this means
that:

¬
(
φ[s′] ∧ ∀a : α[a, s′]→ φ[do(a, s′)]

)
Since φ persists it must hold at s′, so there must be some a such that α[a, s′] and

¬φ[do(a, s′)]. But s ≤α do(a, s′) and so φ[do(a, s′)] must hold by our assumption
that φ persists, and we have a contradiction.

For the inductive case, assume that Pn−1
D (φ, α) persists but PnD(φ, α) does not.

By definition we have PnD(φ, α) = P1
D(Pn−1

D (φ, α), φ), and we repeat the base case
proof using φ′ = Pn−1

D (φ, α) in place of φ to obtain a contradiction.

Lemma 3. Given a basic action theory D, uniform formula φ and action description
predicate α, then for any n:

D −DS0 |= ∀s : (PD(φ, α)[s]→ PnD(φ, α)[s])

Proof. PD(φ, α) implies the persistence of φ by definition. If φ persists at s, then by
Lemma 2 we have that PnD(φ, α) persists at s . Since the persistence of PnD(φ, α) at
s implies that PnD(φ, α) holds at s by definition, we have the lemma as desired.

We are now equipped to prove the major theorem of this chapter: that if PnD(φ, α)
implies Pn+1

D (φ, α), then PnD(φ, α) is the persistence condition for φ under α.

Theorem 6. Given a basic action theory D, uniform formula φ and action descrip-
tion predicate α, then for any n:

Dbg |= ∀s : PnD(φ, α)[s]→ Pn+1
D (φ, α)[s] (6.1)

iff

D −Ds0 |= ∀s : PnD(φ, α)[s] ≡ PD(φ, α)[s] (6.2)

Proof. For the if direction, we begin by expanding equation (6.1) using the definition
of P1

D to get the equivalent form:

Dbg |= ∀s : PnD(φ, α)[s]→ P1
D(PnD(φ, α), α)[s]

Dbg |= ∀s : PnD(φ, α)[s]→ (PnD(φ, α)[s] ∧ ∀a : RD(α[a, s])→ RD(φ[do(a, s)]))

Dbg |= ∀s, a : PnD(φ, α)[s] ∧ ∀a : RD(α[a, s])→ RD(φ[do(a, s)])

By Proposition 5, equation (6.1) thus lets us conclude that PnD(φ, α) persists under
α. By Lemma 2 this is equivalent to the persistence of φ under α, which is equivalent
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to PD(φ, α) by definition, giving:

D −Ds0 |= ∀s : PnD(φ, α)[s]→ PD(φ, α)[s]

By Lemma 3 this implication is an equivalence, yielding equation (6.2) as required.

The only if direction is a straightforward reversal of this reasoning: PD(φ, α)
implies the persistence of φ, which implies the persistence of PnD(φ, α), which yields
equation (6.1) by Proposition 5.

Since Dbg |= Pn+1
D (φ, α) → PnD(φ, α) by definition, equation (6.1) identifies

PnD(φ, α) as a fixpoint of the P1
D operator, as our initial intuition suggested. In

fact, we can use the constructive proof of Tarski’s fixpoint theorem [15] to establish
that the persistence condition always exists for a given φ and α.

Theorem 7. Given a uniform formula φ and action description predicate α, the
persistence condition PD(φ, α) always exists, and is unique up to equivalence under
the static background theory Dbg.

Proof. Let L be the subset of the Lindenbaum algebra of the static background
theory Dbg containing only sentences uniform in s. L is thus a boolean lattice in
which each element is a set of sentences uniform in s that are equivalent under Dbg.
L is a complete lattice with minimal element the equivalence class of ⊥ and maximal
element the equivalence class of >. Fixing α, P1

D is a function whose domain and
range are the elements of L.

By definition, we have that P1
D(φ, α) → φ, and P1

D is thus a monotone decreasing
function over L. By the constructive proof of Tarski’s fixpoint theorem, P1

D must
have a unique greatest fixpoint less than the equivalence class of φ, which can be
determined by transfinite iteration of the application of P1

D. By Theorem 6, this
fixpoint is the equivalence class of PD(φ, α) under Dbg.

This theorem legitimates the use of the persistence condition for reasoning about
property persistence queries – for any persistence query at situation σ, there is a
unique (up to equivalence) corresponding query that is uniform in σ and is thus
amenable to standard effective reasoning techniques of the situation calculus.

Of course, it remains to actually calculate the persistence condition for a given
φ and α. The definition of PD(φ, α) as a fixpoint suggests that it can be calculated
by iterative approximation, which we discuss in the next section.
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Algorithm 6 Calculate PD(φ, α)
pn⇐ φ
pn1⇐ P1

D(pn, α)
while Dbg 6|= ∀s : pn[s]→ pn1[s] do
pn⇐ pn1
pn1⇐ P1

D[pn, α]
end while
return pn

6.4 Calculating PD

Since we can easily calculate PnD(φ, α) for any n, we have a straightforward algorithm
for determining PD(φ, α): search for an n such that

Dbg |= ∀s :
(
PnD(φ, α)[s]→ Pn+1

D (φ, α)[s]
)

Since we expect PnD(φ, α) to be simpler than Pn+1
D (φ, α), we should look for the

smallest such n. Algorithm 6 presents an iterative procedure for doing just that.

Note that the calculation of P1
D(φ, α) is a straightforward syntactic transforma-

tion, so we do not present an algorithm for it.

6.4.1 Correctness

If Algorithm 6 terminates, it terminates returning a value of pn for which equation
(6.1) holds. By Theorem 6 this value of pn is equivalent to the persistence condition
for φ under α. The algorithm therefore correctly calculates the persistence condition.

In particular, note that equation (6.1) holds when PnD(φ, α) is unsatisfiable for
any situation, as it appears in the antecedent of an implication. The algorithm
thus correctly returns an unsatisfiable condition (equivalent to ⊥) when φ can never
persist under α.

6.4.2 Completeness

Since Theorem 6 is an equivalence, the persistence condition is always the fixpoint of
P1
D. From Theorem 7 this fixpoint always exists and can be calculated by transfinite

iteration. Therefore, the only source of incompleteness in our algorithm will be
failure to terminate. Algorithm 6 may fail to terminate for two reasons: the loop
condition may never be satisfied, or the first-order logical inference in the loop
condition may be undecidable and fail to terminate.

The later case indicates that the background theory Dbg is undecidable. While
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this is a concern, it affects more than just our algorithm – any system implemented
around such an action theory will be incomplete. With respect to this source of in-
completeness, our algorithm is no more incomplete than any larger reasoning system
it would form a part of.

The former case is of more direct consequence to our work. Unfortunately, there
is no guarantee in general that the fixpoint can be reached via finite iteration, which
is required for termination of Algorithm 6.

Indeed, it is straightforward to construct a fluent for which the algorithm never
terminates: consider a fluent F (x, s) that is affected by a single action that makes
it false whenever F (suc(x), s) is false. Letting α be vacuously true, the sequence of
iterations produced by our algorithm would be:

P1
D(F (x, s)) ≡ F (x, s) ∧ F (suc(x), s)

P2
D(F (x, s)) ≡ F (x, s) ∧ F (suc(x), s) ∧ F (suc(suc(x)), s)

...

PnD(F (x, s)) ≡
i=n∧
i=0

F (suci(x), s)

The persistence condition in this case is clearly:

PD(F (x, s)) ≡ ∀y : x ≤ y → F (y, s)

While this is equivalent to the infinite conjunction produced as the limit of iteration
in our algorithm, it will not be found after any finite number of steps.

As discussed in the proof of Theorem 7, P1
D operates over the boolean lattice of

equivalence classes of formulae uniform in s, and the theory of fixpoints requires that
this lattice be well-founded to guarantee termination of an iterative approximation
algorithm such as Algorithm 6. We must therefore identify restricted kinds of basic
action theory for which this well-foundedness can be guaranteed.

The most obvious case is theories in which the action and object sorts are finite.
In such theories the lattice of equivalence classes of formulae uniform in s is finite,
and any finite lattice is well-founded. These theories also have the advantage that the
static domain reasoning performed by Algorithm 6 can be done using propositional
logic, meaning it is decidable and so providing a strong termination guarantee.

Alternately, suppose all successor state axioms and action description predicates
have the following restricted form, where the terms in ȳ are a subset of the terms in
x̄ and ΦF , ΠADP mention no terms other than x̄, a and s:
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F (x̄, do(a, s)) ≡
n∧
i=1

a = ai(ȳi) ∧ ΦF (x̄, a, s)

ADP (x̄, a, s) ≡
n∧
i=1

a = ai(ȳ) ∧ΠADP (x̄, a, s)

Under such theories, applications of P1
D will introduce no new terms into the

query, apart from finitely many action terms ai. The range of P1
D applied to φ is

then a finite subset of the lattice of equivalence classes of formulae uniform in s,
again guaranteed well-foundedness and terminating calculation of PD.

Of course this is a very strong restriction on the structure of the theory, as
the successor state axioms are not able to contain any quantifiers. It does demon-
strate, however, that certain syntactical restrictions on D are able to guarantee
terminating calculation of PD. It seems there should be a more general “syntactic
well-foundedness” restriction that can be applied to these axioms, but we have not
successfully formulated one at this stage.

In a similar vein, suppose that the theory of action is context free [67]. In such
theories successor state axioms have the following form:

F (x̄, do(a, s)) ≡ Φ+
F (x̄, a) ∨

(
F (x̄, s) ∧ ¬Φ−F (x̄, a)

)
The effects of an action are thus independent of the situation it is performed

in. Lin and Levesque [64] demonstrate that such theories have a finite state space,
again ensuring our algorithm operates over a finite lattice and hence guaranteeing
termination. Context free domains are surprisingly expressive; for example, domains
described in the style of STRIPS operators are context free.

From a slightly different perspective, suppose that φ can never persist under α,
so that PD(φ, α) ≡ ⊥. Further suppose that D has the compactness property as in
standard first-order logic. Then the “quantum levels” of Savelli [96] guarantee that
there is a fixed, finite number of actions within which ¬φ can always be achieved. In
this case Algorithm 6 will determine PD(φ, α) ≡ ⊥ within finitely many iterations.

It would also be interesting to determine whether known decidable variants of
the situation calculus (such as [38]) are able to guarantee termination of the fixpoint
construction, or whether more sophisticated fixpoint algorithms can be applied in-
stead of simple iterative approximation. Investigating such algorithms would be a
promising avenue for future research.

The important point here is not that we can guarantee completeness in general,
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but that we have precisely characterised the inductive reasoning necessary to an-
swer property persistence queries, and shown that it can always be replaced by the
evaluation of a uniform formula at the situation in question.

6.4.3 Effectiveness

Our algorithm replaces a single reasoning task based on the full action theory D
with a series of reasoning tasks based on the static background theory Dbg. Is this
a worthwhile trade-off in practice? The following points weigh strongly in favour of
our approach.

First and foremost, we avoid the need for the second-order induction axiom. All
the reasoning tasks can be performed using standard first-order reasoning, for which
there are high-quality automated provers. Second, the calculation of PD performs
only static doing reasoning, which as discussed in Chapter 2 is a comparatively
straightforward task which can be made decidable under certain conditions. Third,
PD(φ, α)[s] is in a form amenable to regression, a standard tool for effective reasoning
in the situation calculus. Fourth, the persistence condition for a given φ and α can
be cached and re-used for a series of related queries about different situations, a
significant gain in amortised efficiency. Finally, in realistic domains we expect many
properties to fail to persist beyond a few situations into the future, meaning that
our algorithm will require few iterations in a large number of cases.

Of course, we also inherit the potential disadvantage of the regression operator:
the length of PD(φ, α) may be exponential in the length of φ. As with regression,
our experience has been that this is rarely a problem in practice, and is more than
compensated for by the reduced complexity of the resulting reasoning task.

6.4.4 Applications

The persistence condition is readily applicable to the example persistence query
problems given in Section 6.2. All of the transformed queries can then be answered
using standard regression.

Goal Impossibility: Given a goal G, establish that there is no legal situation
in which that goal is satisfied:

D |= PD(¬G,Legal)[S0]

The persistence condition of ¬G with respect to action legality allows goal impossi-
bility to be checked easily.
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Goal Futility: Given a goal G and situation σ, establish that the goal cannot
be satisfied in any legal future situation from σ:

D |= PD(¬G,Legal)[σ]

Precisely the same formula is required for checking goal impossibility and goal futil-
ity. This highlights the advantage of re-using the persistence condition at multiple
situations. Our approach makes it feasible for an agent to check for goal futility
each time it considers performing an action, and avoid situations that would make
its goals unachievable.

Checking State Constraints: Given a state constraint SC, show that the
constraint holds in every legal situation:

D |= PD(SC,Legal)[S0]

However, since we want a state constraint to always persist, it must satisfy the
following equivalence:

Dbg |= φ ≡ PD(φ,Legal)

If this equivalence does not hold then PD(φ,Legal) indicates the additional con-
ditions that are necessary to ensure that φ persists, which may be used to adjust
the action theory to enforce the constraint. This particular application has strong
parallels to the approach to state constraints developed by Lin and Reiter [66].

Need for Cooperation: Given an agent agt, goal G and situation σ, establish
that no sequence of actions performed by that agent can achieve the goal:

D |= PD(¬G,MyAction)[σ]

Knowledge with Hidden Actions: In Chapter 7 we will develop a regression
rule for knowledge that uses the persistence condition to account for arbitrarily-long
sequences of hidden actions. While we defer the details to that chapter, the general
form of the rule is:

RD(Knows(φ, do(a, s))) def= Knows(RD(PD(φ,Hidden), a), s)
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6.5 Discussion

In this chapter we have developed an algorithm that transforms property persistence
queries, a very general and useful class of situation calculus query, to a form that
is amenable to standard techniques for effective reasoning in the situation calculus.
The algorithm replaces a second-order induction axiom with a meta-level fixpoint
calculation based on iterative application of the standard regression operator. It is
shown to be correct, and also complete in some interesting cases.

Our approach generalises previous work on universally-quantified queries in sev-
eral important ways. It can consider sequences of actions satisfying a range of
conditions, not just the standard ordering over action possibility, enabling us to
treat problems such as need for cooperation and knowledge with hidden actions. It
can establish that properties persist in the future of an arbitrary situation, not nec-
essarily the initial situation, enabling us to answer the question of goal futility. The
results of calculating the persistence condition can be cached, allowing for example
the goal futility question to be efficiently posed on a large number of situations once
the persistence condition has been calculated.

Most importantly for the remainder of this thesis, we have factored out the
inductive reasoning required to answer these queries. Work on increasing the effec-
tiveness of this inductive reasoning, and on guaranteeing a terminating calculation
in stronger classes of action theory, can now proceed independently from the devel-
opment of formalisms that utilise persistence queries. We will henceforth use PD as
a kind of “black box” operator to formulate regression rules within our framework,
dropping the explicit D subscript as we do for the regression operator.

As noted in Section 6.1, our use of fixpoints in this chapter has much in common
with the study of properties of ConGolog programs by [14, 18]. Indeed, a property
persistence query is equivalent to a safety query stating that the property φ never
becomes false during execution of the following program:

δPα
def= (π(a, α[a]? ; a))∗

Formally:

D |= ∀s : σ ≤α s → φ[s]

iff

D ∪Dgolog |= ∀s, δ : Trans∗(δPα, σ, δ, s) → φ[s]
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Since we intend to use persistence queries as part of a larger reasoning appa-
ratus, rather than as a stand-alone query, we cannot directly leverage the existing
work on verifying ConGolog programs. However, given the similarity between the
approaches, we are confident that advances in reasoning effectively about ConGolog
programs will also advance our ability to effectively answer persistence queries.

This chapter has thus significantly increased the scope of queries that can be
posed when building systems upon the situation calculus. In the coming chapters,
the persistence condition operator will allow us to factor out certain inductive as-
pects of reasoning, treating them as separate, well-defined components of the overall
reasoning machinery.
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