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The ConGolog Composition Problem

Given:
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The ConGolog Composition Problem

Given:
An action theory D;
n available programs 41, ...,6,;
a target program &;.

Task: find an orchestrator/delegator that coordinates the concurrent execution of
the available programs so as to mimic/realize the target program.

agent/plan coordination, virtual agents;
web-service composition; composition of business processes

Notable features:
e Programs may include non-deterministic points & may not terminate.
e Domain may be infinite.

e Programs may go over infinite states.
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Controller for a Music Jukebox

while True do {
if (—Playing A (3song)Pending(song)) then
(7 song, disk).{

(Pending(song) A InDisk(song, disk))?;
select(song);
load(disk);
play(song)

}

else wait
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e Domain tests relative to an action theory.
e Domain actions.

e Nondeterministic features.
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Semantics for High-Level Programs

In terms of two predicates:

Trans(6,s,0’,s"): program & can evolve one step from situation s to situation
s’ with remaining program §’.

Trans(61; 62,5,8",s') =
Trans(61,s,01,s") A& = 81,02 V Final(61,s) A Trans(d2,s,0",s").

Final(0,s): program & may terminate successfully in s.

Final(61; 62,5) = Final(d1,s) A Final(d2,s)
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Formalizing the Composition Problem: Simulation

Informally:

System S simulates system T if S can “match” all T's moves, forever.
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Formalizing the Composition Problem: Simulation

Informally:

System S simulates system T if S can “match” all T's moves, forever.

Formally [Milner IJCAI'71]:

Given two labelled TSs S = (257/457 —>5) and T = (ZT,AT, —>T),
the simulation is the largest relation Sim C ¥ x ¥ 1 such that:

if Sim(s, t) holds (state s simulates state t), then:
ift =51t then

there exists s —~»s s' and Sim(s', t').

6/18



The Composition Problem: Simulation

Sim(0¢,01,...,0,,5): available programs can simulate the target program in s.

35.(5((&, 01,00, 8) AVO:,01,...,0n,5.0[5](0,01,...,0n, s)),
where

©[S](6¢,61,...,0n,5) =
S(8¢,61,---,0n,8) —
(Final(6;,s) — Nizt...n Final(6;,s)) A
(V61,5 Trans(6¢, s, 0y, 8') —
\/,-=17__47n 36!. Trans(d;,s,07,8") A S(8;,01,...,00, ..., 0n, 5’)).

1

If the simulation holds then one can build an orchestrator generator based on it.
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The Technique

Relies on the following “tools” /notions:

Simulation approximates: [Tarski '55]

e Check simulation in a finite way.

Regression mechanism: [Reiter'91; Pirri & Reiter'99]

e Reason on formulas after action performance.

Characteristic graphs: [Classen&Lakemeyer KR'08]

e Abstract (infinite) program states into a finite graph.
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Simulation Approximates

Simi (8¢, 81, ... ,0n, S):
the available programs can “simulate” k steps of the target program in s.

Simo(0¢, 901, ..., 0n,5) = (Final(d:,8) — A,

Simi41(0¢,01,...,0n,5) =
Simk(ét, O1y--ny0n, S) A
(V6;,s'. Trans(6¢, s, 01, 5") —
,36]. Trans(6i,s,67,5") A Simi(8;,01,...,6],...,6n,5)).

, Final(8;, s)).

.....

=1,...,
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The Technique

Relies on the following “tools” /notions:

Regression mechanism: [Reiter'91; Pirri & Reiter'99]

e Reason on formulas after action performance.
e computes what has to be true in situation s so that ¢ is true after doing

action « in s.
o R[p(do(a,s))] = ¢'(s) action « has been eliminated!
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The Technique

Relies on the following “tools” /notions:

Characteristic graphs: [Classen&Lakemeyer KR'08]

e Abstract (infinite) program states into a finite graph.

12/18



Characteristic Graph for dpusic

(msong, disk : select(song),
Pending(song) A InDisk(song, disk) A —Playing)

> V1

(load(disk), True)
(wait,
Playing vV —=3song.Pending(song))

(play(song), True)

Omusic =
while True do {
if (—Playing A (3song)Pending(song)) then Vo = (Smusic, False)
mwsong, disk.{
(Pending(song) A InDisk(song, disk))?;
select(song);
load(disk);
play(song)

vi = (load(disk); play(song), False)

v> = (play(song), False)

else wait

}
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The Composition Problem: Simulation

Sim(0¢,01,...,0,,5): available programs can simulate the target program in s.

35.(5((&, 01,00, 8) AVO:,01,...,0n,5.0[5](0,01,...,0n, s)),
where

©[S](6¢,61,...,0n,5) =
S(8¢,61,---,0n,8) —
(Final(6;,s) — Nizt...n Final(6;,s)) A
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1

If the simulation holds then one can build an orchestrator generator based on it.
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Algorithm SymSim(89, 49, ..., 69)

Computes relation X containing tuples of the form (v, vy, ..., v,, ¢):
® Vi, Vi,...,V, are nodes in the characteristic graphs.
e FO formula ¢: “the target program in v; is simulated by the available

programs in (vi,...,v,)."
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NEXT[X] = {(ve, v1, ..., Vo, Goid A Drew) | (Ve Vi, - ., Vi, Gold) € X}

® (Pnen: we can safely mimic (any) single action from the target.
X represents the approximates of the simulation, refined at each iteration.

Stop when X = NEXT[X].
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NEXT[X]: One-step refinement of the simulation

NEXT[X] = {<Vt7 Vi,-+5 Vn, ¢o/d AN @new> | <Vt7 Viy«-5 Vn, ¢O/d> € X}a

10) =
¥ new /\ 7r_) EE:

(Vx.wt[s] A Poss(ai, s) —
\/I 1 \/ ﬂﬁ)/ /

viEEIN(V],v1,... SV, i) EX

bi

3. = i A; [s] A R[éi(do(a, s))]).

For every potential target evolution from v; to v/ via action «y, ...
if it can be done in the program (1 holds) and the action . is possible, ...
then some available prog. §; can evolve from v; to v/ via action «a; such that:
the action «; can be matched to ay;
the program can indeed do the step;
after doing the step, we are still in simulation.
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Technical Results

Theorem
If algorithm SyMSIM(02,69,...,6%) terminates returning the set X. Then,
Axioms |= Sim(6¢, 01, ... ,0p,5) = ¢[s],

where <(6f7’yt)? (617’71)7 CE) (6n7’yn)7 (b) e X.
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Theorem
If algorithm SyMSIM(02,69,...,6%) terminates returning the set X. Then,
Axioms |= Sim(6¢, 01, ... ,0p,5) = ¢[s],

where <(6f7’yt)? (617’71)7 CE) (6n7’yn)7 (b) e X.

Moreover, we can construct a delegator controller to realize the composition
on-the-fly using FO entailment only (on Dg,).

Idea:

after a request, jump to a configuration (v¢, vi, ..., vy, @) € X for which ¢ holds.
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Conclusions

Reasoning on unbounded data and processes is a challenge for CS since it leads
infinite state systems.

e Standard approach: abstract to finite systems (see literature on Verification).

e Here instead we are proposing an alternative approach rooted in KR and Al.
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Conclusions

Reasoning on unbounded data and processes is a challenge for CS since it leads

infinite state systems.

e Standard approach: abstract to finite systems (see literature on Verification).

e Here instead we are proposing an alternative approach rooted in KR and Al.

Specifically:

Based on transforming the second-order formula for checking the dynamic
property of simulation into a first-order one talking only about the static
properties of the initial situation/DB.

Main research direction for future work:
incomplete information about the initial situation.

e offline vs online interpreters (see literature on high-level programs in Al).

identify cases in which the technique becomes sound & complete.
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