Composition of ConGolog Programs

Sebastian Sardina¹ Giuseppe De Giacomo²

¹Department of Computer Science and Information Technology RMIT University, Melbourne, AUSTRALIA

RMIT University

²Dipartimento di Informatica e Sistemistica "Antonio Ruberti" Sapienza Universita' di Roma, Rome, ITALY

Environment

(description of actions; prec. & effects)

Available Behaviors

(description of the behavior of available agents/devices)

Environment

(description of actions; prec. & effects)

Target Behavior (desired behavior)

Available Behaviors

(description of the behavior of available agents/devices)

Given:

- **1** An action theory \mathcal{D} ;
- **2** *n* available programs $\delta_1, \ldots, \delta_n$;
- \blacksquare a target program δ_t .

Given:

- **1** An action theory \mathcal{D} ;
- **2** *n* available programs $\delta_1, \ldots, \delta_n$;
- 3 a target program δ_t .

Task: find an orchestrator/delegator that coordinates the concurrent execution of the available programs so as to mimic/realize the target program.

Given:

- **1** An action theory \mathcal{D} ;
- **2** *n* available programs $\delta_1, \ldots, \delta_n$;
- 3 a target program δ_t .

Task: find an orchestrator/delegator that coordinates the concurrent execution of the available programs so as to mimic/realize the target program.

agent/plan coordination, virtual agents; web-service composition; composition of business processes

Given:

- **I** An action theory \mathcal{D} ;
- **2** *n* available programs $\delta_1, \ldots, \delta_n$;
- $\mathbf{3}$ a target program δ_t .

Task: find an orchestrator/delegator that coordinates the concurrent execution of the available programs so as to mimic/realize the target program.

agent/plan coordination, virtual agents; web-service composition; composition of business processes

Notable features:

- Programs may include non-deterministic points & may not terminate.
- Domain may be infinite.
- Programs may go over infinite states.

```
while True do {
    if (\neg Playing \land (\exists song)Pending(song)) then (\pi \ song, disk).\{
        (Pending(song) \land InDisk(song, disk))?;
        select(song);
        load(disk);
        play(song)
    }
    else wait
```

```
while True do {
   if (¬Playing ∧ (∃song)Pending(song)) then
     (π song, disk).{
        (Pending(song) ∧ InDisk(song, disk))?;
        select(song);
        load(disk);
        play(song)
   }
   else wait
}
```

Domain tests relative to an action theory.

```
while True do {
    if (\neg Playing \land (\exists song) Pending(song)) then (\pi \ song, disk).\{
        (Pending(song) \land InDisk(song, disk))?;
        select(song);
        load(disk);
        play(song)
    }
    else wait
```

- Domain tests relative to an action theory.
- Domain actions.

```
while True do {
   if (¬Playing ∧ (∃song)Pending(song)) then
      (π song, disk).{
        (Pending(song) ∧ InDisk(song, disk))?;
        select(song);
        load(disk);
        play(song)
   }
   else wait
}
```

- Domain tests relative to an action theory.
- Domain actions.
- Nondeterministic features.

Semantics for High-Level Programs

In terms of two predicates:

Trans (δ, s, δ', s') : program δ can *evolve one step* from situation s to situation s' with remaining program δ' .

$$\mathit{Trans}(\delta_1; \delta_2, s, \delta', s') \equiv$$

 $\mathit{Trans}(\delta_1, s, \delta'_1, s') \wedge \delta' = \delta'_1; \delta_2 \vee \mathit{Final}(\delta_1, s) \wedge \mathit{Trans}(\delta_2, s, \delta', s').$

2 Final(δ , s): program δ may terminate successfully in s.

$$Final(\delta_1; \delta_2, s) \equiv Final(\delta_1, s) \wedge Final(\delta_2, s)$$

Formalizing the Composition Problem: Simulation

Informally:

System S simulates system T if S can "match" all T's moves, forever.

Formalizing the Composition Problem: Simulation

Informally:

System S simulates system T if S can "match" all T's moves, forever.

Formally [Milner IJCAI'71]:

Given two labelled TSs $S = (\Sigma_S, A_S, \longrightarrow_S)$ and $T = (\Sigma_T, A_T, \longrightarrow_T)$, the simulation is the largest relation $Sim \subseteq \Sigma_S \times \Sigma_T$ such that:

if Sim(s, t) holds (state s simulates state t), then:

if
$$t \xrightarrow{\alpha}_T t'$$
, then there exists $s \xrightarrow{\alpha}_S s'$ and $Sim(s', t')$.

The Composition Problem: Simulation

 $Sim(\delta_t, \delta_1, \dots, \delta_n, s)$: available programs can *simulate* the target program in s.

$$Sim(\delta_t, \delta_1, \dots, \delta_n, s) \equiv \\ \exists S. (S(\delta_t, \delta_1, \dots, \delta_n, s) \land \forall \delta_t, \delta_1, \dots, \delta_n, s. \Theta[S](\delta_t, \delta_1, \dots, \delta_n, s)),$$

where

$$\begin{split} \Theta[S](\delta_t, \delta_1, \dots, \delta_n, s) &\stackrel{\text{def}}{=} \\ S(\delta_t, \delta_1, \dots, \delta_n, s) &\rightarrow \\ & \left(\textit{Final}(\delta_t, s) \rightarrow \bigwedge_{i=1, \dots, n} \textit{Final}(\delta_i, s) \right) \ \land \\ & \left(\forall \delta_t', s' \textit{Trans}(\delta_t, s, \delta_t', s') \rightarrow \\ & \bigvee_{i=1, \dots, n} \exists \delta_i'. \textit{Trans}(\delta_i, s, \delta_i', s') \land S(\delta_t', \delta_1, \dots, \delta_i', \dots, \delta_n, s') \right). \end{split}$$

If the simulation holds then one can build an orchestrator generator based on it.

The Composition Problem: Simulation

 $Sim(\delta_t, \delta_1, \dots, \delta_n, s)$: available programs can *simulate* the target program in s.

$$Sim(\delta_t, \delta_1, \dots, \delta_n, s) \equiv \exists S. (S(\delta_t, \delta_1, \dots, \delta_n, s) \land \forall \delta_t, \delta_1, \dots, \delta_n, s. \Theta[S](\delta_t, \delta_1, \dots, \delta_n, s)),$$

where

$$\begin{aligned} \Theta[S](\delta_t, \delta_1, \dots, \delta_n, s) &\stackrel{\text{def}}{=} \\ S(\delta_t, \delta_1, \dots, \delta_n, s) &\rightarrow \\ & (\textit{Final}(\delta_t, s) \rightarrow \bigwedge_{i=1, \dots, n} \textit{Final}(\delta_i, s)) \ \land \\ & (\forall \delta_t', s' \textit{Trans}(\delta_t, s, \delta_t', s') \rightarrow \\ & \bigvee_{i=1, \dots, n} \exists \delta_i'. \textit{Trans}(\delta_i, s, \delta_i', s') \land S(\delta_t', \delta_1, \dots, \delta_i', \dots, \delta_n, s')). \end{aligned}$$

If the simulation holds then one can build an orchestrator generator based on it.

The Technique

Relies on the following "tools" / notions:

Simulation approximates:

[Tarski '55]

- Check simulation in a finite way.
- 2 Regression mechanism:

[Reiter'91; Pirri & Reiter'99]

- Reason on formulas after action performance.
- 3 Characteristic graphs:

[Classen&Lakemeyer KR'08]

• Abstract (infinite) program states into a finite graph.

The Technique

Relies on the following "tools" /notions:

Simulation approximates:

[Tarski '55]

- Check simulation in a finite way.
- 2 Regression mechanism:

Reiter'91; Pirri & Reiter'99]

- Reason on formulas after action performance.
- 3 Characteristic graphs:

[Classen&Lakemeyer KR'08]

• Abstract (infinite) program states into a finite graph.

Simulation Approximates

 $Sim_{\mathbf{k}}(\delta_t, \delta_1, \dots, \delta_n, s)$:

the available programs can "simulate" k steps of the target program in s.

$$\begin{aligned} &Sim_{0}(\delta_{t},\delta_{1},\ldots,\delta_{n},s)\equiv (Final(\delta_{t},s)\rightarrow\bigwedge_{i=1,\ldots,n}Final(\delta_{i},s)).\\ &Sim_{k+1}(\delta_{t},\delta_{1},\ldots,\delta_{n},s)\equiv\\ &Sim_{k}(\delta_{t},\delta_{1},\ldots,\delta_{n},s)\land\\ &(\forall\delta'_{t},s'.Trans(\delta_{t},s,\delta'_{t},s')\rightarrow\\ &\bigvee_{i=1,\ldots,n}\exists\delta'_{i}.Trans(\delta_{i},s,\delta'_{i},s')\land Sim_{k}(\delta'_{t},\delta_{1},\ldots,\delta'_{i},\ldots,\delta_{n},s')). \end{aligned}$$

Simulation Approximates

$$Sim_{\mathbf{k}}(\delta_t, \delta_1, \dots, \delta_n, s)$$
:

the available programs can "simulate" k steps of the target program in s.

$$\begin{split} &Sim_{0}(\delta_{t},\delta_{1},\ldots,\delta_{n},s)\equiv (Final(\delta_{t},s)\rightarrow \bigwedge_{i=1,\ldots,n}Final(\delta_{i},s)).\\ &Sim_{k+1}(\delta_{t},\delta_{1},\ldots,\delta_{n},s)\equiv\\ &Sim_{k}(\delta_{t},\delta_{1},\ldots,\delta_{n},s)\wedge\\ &(\forall \delta'_{t},s'.Trans(\delta_{t},s,\delta'_{t},s')\rightarrow\\ &\bigvee_{i=1,\ldots,n}\exists \delta'_{i}.Trans(\delta_{i},s,\delta'_{i},s')\wedge Sim_{k}(\delta'_{t},\delta_{1},\ldots,\delta'_{i},\ldots,\delta_{n},s')). \end{split}$$

Proposition

For every k > 0, if

$$Sim_{\mathbf{k}}(\delta_t, \delta_1, \dots, \delta_n, s) \equiv Sim_{\mathbf{k}+1}(\delta_t, \delta_1, \dots, \delta_n, s),$$

then

$$Sim_{\mathbf{k}}(\delta_t, \delta_1, \dots, \delta_n, s) \equiv Sim(\delta_t, \delta_1, \dots, \delta_n, s).$$

The Technique

Relies on the following "tools" /notions:

Simulation approximates:

Tarski '55

- Check simulation in a finite way.
- 2 Regression mechanism:

[Reiter'91; Pirri & Reiter'99]

- Reason on formulas after action performance.
- computes what has to be true in situation s so that ϕ is true after doing action α in s
- $\mathcal{R}[\phi(do(\alpha,s))] = \phi'(s)$

action α has been eliminated!

Characteristic graphs

[Classen&Lakemeyer KR'08]

Abstract (infinite) program states into a finite graph.

The Technique

Relies on the following "tools" /notions:

Simulation approximates

[Tarski '55]

- Check simulation in a finite way.
- 2 Regression mechanism:

Reiter'91; Pirri & Reiter'99]

- Reason on formulas after action performance.
- 3 Characteristic graphs:

[Classen&Lakemeyer KR'08]

• Abstract (infinite) program states into a finite graph.

Characteristic Graph for δ_{music}

```
\langle \pi song, disk : select(song), \\ Pending(song) \wedge InDisk(song, disk) \wedge \neg Playing \rangle \\ \downarrow v_1 \\ \langle wait, \\ Playing \vee \neg \exists song. Pending(song) \rangle \\ \langle play(song), True \rangle \\ v_2 \\ \rangle
```

The Composition Problem: Simulation

 $Sim(\delta_t, \delta_1, \dots, \delta_n, s)$: available programs can *simulate* the target program in s.

$$Sim(\delta_t, \delta_1, \dots, \delta_n, s) \equiv \\ \exists S. (S(\delta_t, \delta_1, \dots, \delta_n, s) \land \forall \delta_t, \delta_1, \dots, \delta_n, s. \Theta[S](\delta_t, \delta_1, \dots, \delta_n, s)),$$

where

$$\begin{split} \Theta[S](\delta_t, \delta_1, \dots, \delta_n, s) &\stackrel{\text{def}}{=} \\ S(\delta_t, \delta_1, \dots, \delta_n, s) &\rightarrow \\ & \left(\textit{Final}(\delta_t, s) \rightarrow \bigwedge_{i=1, \dots, n} \textit{Final}(\delta_i, s) \right) \ \land \\ & \left(\forall \delta_t', s' \textit{Trans}(\delta_t, s, \delta_t', s') \rightarrow \\ & \bigvee_{i=1, \dots, n} \exists \delta_i'. \textit{Trans}(\delta_i, s, \delta_i', s') \land S(\delta_t', \delta_1, \dots, \delta_i', \dots, \delta_n, s') \right). \end{split}$$

If the simulation holds then one can build an orchestrator generator based on it.

Computes relation X containing tuples of the form $\langle v_t, v_1, \dots, v_n, \phi \rangle$:

- v_t, v_1, \ldots, v_n are nodes in the characteristic graphs.
- FO formula ϕ : "the target program in v_t is simulated by the available programs in $\langle v_1, \ldots, v_n \rangle$."

Computes relation X containing tuples of the form $\langle v_t, v_1, \dots, v_n, \phi \rangle$:

- v_t, v_1, \ldots, v_n are nodes in the characteristic graphs.
- FO formula ϕ : "the target program in v_t is simulated by the available programs in $\langle v_1, \ldots, v_n \rangle$."
- - 0-step simulation: check for termination "mimicking."

Computes relation X containing tuples of the form $\langle v_t, v_1, \dots, v_n, \phi \rangle$:

- v_t, v_1, \ldots, v_n are nodes in the characteristic graphs.
- FO formula ϕ : "the target program in v_t is simulated by the available programs in $\langle v_1, \ldots, v_n \rangle$."
- - 0-step simulation: check for termination "mimicking."
- 2 At every step, compute NEXT[X]: "one step refinement" of the simulation:

$$\operatorname{NEXT}[X] = \{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \frac{\phi_{new}}{\rangle} \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \}.$$

• ϕ_{new} : we can safely mimic (any) single action from the target.

Computes relation X containing tuples of the form $\langle v_t, v_1, \dots, v_n, \phi \rangle$:

- v_t, v_1, \ldots, v_n are nodes in the characteristic graphs.
- FO formula ϕ : "the target program in v_t is simulated by the available programs in $\langle v_1, \ldots, v_n \rangle$."
- $\blacksquare X_0 := \{ \langle (\delta_t, \gamma_t), (\delta_1, \gamma_1), \dots, (\delta_n, \gamma_n), \gamma_t \to \bigwedge_{i=1}^n \gamma_i \rangle \mid (\delta_j, \gamma_j) \text{ in } \mathcal{G}_{\delta_j^0} \}$
 - 0-step simulation: check for termination "mimicking."
- **2** At every step, compute NEXT[X]: "one step refinement" of the simulation:

$$NEXT[X] = \{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \}.$$

- ϕ_{new} : we can safely mimic (any) single action from the target.
- 3 X represents the approximates of the simulation, refined at each iteration.

Computes relation X containing tuples of the form $\langle v_t, v_1, \dots, v_n, \phi \rangle$:

- v_t, v_1, \ldots, v_n are nodes in the characteristic graphs.
- FO formula ϕ : "the target program in v_t is simulated by the available programs in $\langle v_1, \ldots, v_n \rangle$."
- $\blacksquare X_0 := \{ \langle (\delta_t, \gamma_t), (\delta_1, \gamma_1), \dots, (\delta_n, \gamma_n), \gamma_t \to \bigwedge_{i=1}^n \gamma_i \rangle \mid (\delta_j, \gamma_j) \text{ in } \mathcal{G}_{\delta_i^0} \}$
 - 0-step simulation: check for termination "mimicking."
- **2** At every step, compute NEXT[X]: "one step refinement" of the simulation:

$$Next[X] = \{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \}.$$

- ϕ_{new} : we can safely mimic (any) single action from the target.
- ${f 3}$ X represents the approximates of the simulation, refined at each iteration.
- 4 Stop when X = NEXT[X].

$$\begin{split} \text{NEXT}[X] &= \{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \}, \\ \phi_{new} &= \bigwedge_{v_t \xrightarrow{\pi \vec{x}} \alpha_t} v_t' \in E_t \\ &\qquad \left(\forall \vec{x}. \psi_t[s] \wedge Poss(\alpha_t, s) \rightarrow \\ &\qquad \bigvee_{i=1}^n \bigvee_{v_i \xrightarrow{\pi \vec{y}. \alpha_i}} v_i' \in E_i \wedge \langle v_t', v_1, \dots, v_i', \dots, v_n, \phi_i \rangle \in X \\ &\qquad \exists \vec{y}. \alpha_t = \alpha_i \wedge \psi_i[s] \wedge \mathcal{R}[\phi_i(do(\alpha_i, s))] \right). \end{split}$$

For every potential target evolution from v_t to v'_t via action α_t , ...

- 11 the action α_i can be matched to α_t ;
- 2 the program can indeed do the step;
- 3 after doing the step, we are still in simulation.

$$\begin{split} \text{NEXT}[X] &= \big\{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \big\}, \\ \phi_{new} &= \bigwedge_{\substack{v_t \stackrel{\pi \vec{x}}{\longrightarrow} \alpha_t \\ \psi_t}} v_t' \in E_t} \\ & \left(\forall \vec{x}. \psi_t[s] \wedge Poss(\alpha_t, s) \rightarrow \\ & \bigvee_{i=1}^n \bigvee_{v_i \stackrel{\pi \vec{y}. \alpha_i}{\psi_i}} v_i' \in E_i \wedge \langle v_t', v_1, \dots, v_i', \dots, v_n, \phi_i \rangle \in X \\ & \exists \vec{y}. \alpha_t = \alpha_i \wedge \psi_i[s] \wedge \mathcal{R}[\phi_i(do(\alpha_i, s))] \right). \end{split}$$

For every potential target evolution from v_t to v'_t via action α_t , ...

- 11 the action α_i can be matched to α_t ;
- 2 the program can indeed do the step;
- 3 after doing the step, we are still in simulation.

$$\begin{split} \text{NEXT}[X] &= \big\{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \big\}, \\ \phi_{new} &= \bigwedge_{v_t \xrightarrow{\pi \overrightarrow{x}} \alpha_t} v_t' \in E_t \\ & \left(\forall \overrightarrow{x}. \psi_t[s] \wedge Poss(\alpha_t, s) \rightarrow \\ & \bigvee_{i=1}^n \bigvee_{v_i \xrightarrow{\pi \overrightarrow{y}. \alpha_i} v_i' \in E_i \wedge \langle v_t', v_1, \dots, v_i', \dots, v_n, \phi_i \rangle \in X} \\ & \exists \overrightarrow{y}. \alpha_t = \alpha_i \wedge \psi_i[s] \wedge \mathcal{R}[\phi_i(do(\alpha_i, s))] \right). \end{split}$$

For every potential target evolution from v_t to v'_t via action α_t , ...

- if it can be done in the program (ψ_t holds) and the action α_t is possible, ... then some available prog. δ_i can evolve from v_i to v_i' via action α_i such that:
- **1** the action α_i can be matched to α_t ;
- 2 the program can indeed do the step;
- 3 after doing the step, we are still in simulation.

$$\begin{split} \text{NEXT}[X] &= \{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \}, \\ \phi_{new} &= \bigwedge_{v_t \xrightarrow{\pi \overrightarrow{x}} \alpha_t} v_t' \in E_t \\ \left(\forall \overrightarrow{x}. \psi_t[s] \wedge Poss(\alpha_t, s) \rightarrow \\ \bigvee_{i=1}^n \bigvee_{v_i \xrightarrow{\pi \overrightarrow{y}. \alpha_i} v_i' \in E_i \wedge \langle v_t', v_1, \dots, v_i', \dots, v_n, \phi_i \rangle \in X} \\ &= \exists \overrightarrow{y}. \alpha_t = \alpha_i \wedge \psi_i[s] \wedge \mathcal{R}[\phi_i(do(\alpha_i, s))] \right). \end{split}$$

For every potential target evolution from v_t to v'_t via action α_t , ...

- 1 the action α_i can be matched to α_t ;
- 2 the program can indeed do the step;
- 3 after doing the step, we are still in simulation.

$$\begin{split} \text{NEXT}[X] &= \{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \}, \\ \phi_{new} &= \bigwedge_{v_t \xrightarrow{\pi \overrightarrow{x}} \alpha_t} v_t' \in E_t \\ & \left(\forall \overrightarrow{x}. \psi_t[s] \wedge Poss(\alpha_t, s) \rightarrow \\ & \bigvee_{i=1}^n \bigvee_{v_i \xrightarrow{\pi \overrightarrow{y}. \alpha_i} v_i' \in E_i \wedge \langle v_t', v_1, \dots, v_i', \dots, v_n, \phi_i \rangle \in X} \\ & \exists \overrightarrow{y}. \alpha_t = \alpha_i \wedge \psi_i[s] \wedge \mathcal{R}[\phi_i(do(\alpha_i, s))] \right). \end{split}$$

For every potential target evolution from v_t to v'_t via action α_t , ...

- 1 the action α_i can be matched to α_t ;
- 2 the program can indeed do the step;
- 3 after doing the step, we are still in simulation.

$$\begin{split} \text{NEXT}[X] &= \{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \}, \\ \phi_{new} &= \bigwedge_{v_t \xrightarrow{\pi \overrightarrow{x}} \alpha_t} v_t' \in E_t \\ & \left(\forall \overrightarrow{x}. \psi_t[s] \wedge Poss(\alpha_t, s) \rightarrow \\ & \bigvee_{i=1}^n \bigvee_{v_i \xrightarrow{\pi \overrightarrow{y}. \alpha_i}} v_i' \in E_i \wedge \langle v_t', v_1, \dots, v_i', \dots, v_n, \phi_i \rangle \in X \\ & \exists \overrightarrow{y}. \alpha_t = \alpha_i \wedge \psi_i[s] \wedge \mathcal{R}[\phi_i(do(\alpha_i, s))] \right). \end{split}$$

For every potential target evolution from v_t to v'_t via action α_t , ...

- 11 the action α_i can be matched to α_t ;
- 2 the program can indeed do the step;
- 3 after doing the step, we are still in simulation.

$$\begin{split} \text{NEXT}[X] &= \{ \langle v_t, v_1, \dots, v_n, \phi_{old} \wedge \phi_{new} \rangle \mid \langle v_t, v_1, \dots, v_n, \phi_{old} \rangle \in X \}, \\ \phi_{new} &= \bigwedge_{v_t \xrightarrow{\pi \overrightarrow{x}} \alpha_t} v_t' \in E_t \\ & \left(\forall \overrightarrow{x}. \psi_t[s] \wedge Poss(\alpha_t, s) \rightarrow \\ & \bigvee_{i=1}^n \bigvee_{v_i \xrightarrow{\pi \overrightarrow{y}. \alpha_i}} v_i' \in E_i \wedge \langle v_t', v_1, \dots, v_i', \dots, v_n, \phi_i \rangle \in X \\ & \exists \overrightarrow{y}. \alpha_t = \alpha_i \wedge \psi_i[s] \wedge \mathcal{R}[\phi_i(do(\alpha_i, s))] \right). \end{split}$$

For every potential target evolution from v_t to v'_t via action α_t , ...

- 11 the action α_i can be matched to α_t ;
- 2 the program can indeed do the step;
- 3 after doing the step, we are still in simulation.

Technical Results

Theorem

If algorithm $\operatorname{SymSim}(\delta^0_t, \delta^0_1, \dots, \delta^0_n)$ terminates returning the set X. Then,

$$Axioms \models Sim(\delta_t, \delta_1, \dots, \delta_n, s) \equiv \phi[s],$$

where
$$\langle (\delta_t, \gamma_t), (\delta_1, \gamma_1), \dots, (\delta_n, \gamma_n), \phi \rangle \in X$$
.

Technical Results

Theorem

If algorithm $SymSim(\delta_t^0, \delta_1^0, \dots, \delta_n^0)$ terminates returning the set X. Then,

$$Axioms \models Sim(\delta_t, \delta_1, \dots, \delta_n, s) \equiv \phi[s],$$

where $\langle (\delta_t, \gamma_t), (\delta_1, \gamma_1), \dots, (\delta_n, \gamma_n), \phi \rangle \in X$.

Moreover, we can construct a delegator controller to realize the composition on-the-fly using FO entailment only (on \mathcal{D}_{S_0}).

Idea:

after a request, jump to a configuration $\langle v_t, v_1, \dots, v_n, \phi \rangle \in X$ for which ϕ holds.

Conclusions

Reasoning on unbounded data and processes is a challenge for CS since it leads *infinite* state systems.

- Standard approach: abstract to finite systems (see literature on Verification).
- Here instead we are proposing an alternative approach rooted in KR and Al.

Conclusions

Reasoning on unbounded data and processes is a challenge for CS since it leads *infinite* state systems.

- Standard approach: abstract to finite systems (see literature on Verification).
- Here instead we are proposing an alternative approach rooted in KR and AI.

Specifically:

Based on transforming the second-order formula for checking the dynamic property of simulation into a first-order one talking only about the static properties of the initial situation/DB.

Conclusions

Reasoning on unbounded data and processes is a challenge for CS since it leads *infinite* state systems.

- Standard approach: abstract to finite systems (see literature on Verification).
- Here instead we are proposing an alternative approach rooted in KR and Al.

Specifically:

Based on transforming the second-order formula for checking the dynamic property of simulation into a first-order one talking only about the static properties of the initial situation/DB.

Main research direction for future work:

- 1 incomplete information about the initial situation.
 - offline vs online interpreters (see literature on high-level programs in AI).
- 2 identify cases in which the technique becomes sound & complete.