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Introduction

• The promise of Service Computing is to use services fundamental 
elements for realizing distributed applications/solutions. 

• Services are processes that export their abstract specification

• When no available service satisfies a desired specification, one might 
check whether (parts of) available services can be composed and 
orchestrated in order to realize the specification.  

• Working at an abstract level enable us to exploit results from automatic 
verification and synthesis to verify and compose services.

• The problem of automatic composition becomes especially interesting in 
the presence of stateful (conversational) services. 

• Among the various frameworks proposed in the literature, here we 
concentrate on the so called ``Roman Model’’ (name by Rick Hull).
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Service integration/composition:

Target service
spec. of the desired service behavior

expressed in terms of virtual actions

Available services
spec. of the behavior of available service processes

 expressed in terms of the environment

Action ontology
spec. of atomic processes and data

Actual available processes

…

Key points

No available process for 
the target service

Must realize target 
service by delegating 
actual actions to 
available services

Available services are 
stateful, hence must 
realize the  target  
using fragments of their 
computations
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The Roman Model: basics

Target service
Expressed as a Transition System

spec. of the desired service behavior

Available services
Each expressed as a Transition System

 spec. of the behavior of available service processes

Action ontology
Shared Actions 

Environment  expr. as a Transition Systems
spec. of atomic processes and data

Actual available processes

…

Key points

No available process for 
the target service

Must realize target 
service by delegating 
actual actions to 
available services

Available services are 
stateful, hence must 
realize the  target  
using fragments of their 
computations
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Roman Model’s main ingredients

• The Roman Model exemplifies what can be achieved by composing 
conversational services and uncovers relationships with automated 
synthesis of reactive processes in Verification and AI Planning.

• Roman Model’s main ingredients

– Each available service is formally specified as a transition 
system that captures its possible conversations with a generic 
client. 

– Desired specification is a target service, described itself as a 
transition system.

– the aim is to automatically synthesize orchestrators that 
realize the target service by delegating its actions to the available 
services, exploiting fragments of their execution.  
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• We represent services as transition systems:

• A TS is a tuple < A, S, s0, δ> where:

–  A is the set shared of actions

–  S is the set of states 

–  s0 2 S is the set of initial states

–  δ µ S £ A £ S is the transition relation

Transition systems
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Problem of composition existence

• Given:

- available services B1,…,Bn

- target service T

over the same environment (same set of atomic actions)

• Check whether T can be realized by delegating actions to 
B1,…,Bn so as to mimic T over time (forever!)

Composition synthesis

synthesis of the orchestrator that does the delegation

Service composition
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Service composition as a game

There are at least two kinds of games. One could be called 
finite, the other infinite.

A finite game is played for the purpose of winning ...
... an infinite game for the purpose of continuing the play.

Finite and Infinite Games
J. P. Carse, philosopher 
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Service composition as a game:
 Service composition vs Planning

Planning

• Operators: atomic actions 

• Goal: desired state of affair

• Game: finite! 
– compose operators

sequentially so as to reach 
the goal

• Playing strategy: plan 
(program having operators 

invocation as atomic instructions)

Service composition

• Operators: available transition 
systems 

• Goal: target transition system

• Game: infinite! 
– compose available transition 

systems concurrently so as to 
play the target transition system

• Playing strategy: orchestrator 
(process that delegate target actions to 
the available service

Stateless service 
composition

Roman model
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Simple example of service composition

a 

a 

service 1

service 2

target service

a 

b 

b 

b 

S10 S11

S20

orchestrator

Devilish nondeterminism!  

 T1 T0

For simplicity we don’t consider 
environment.
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Simple example of service composition

orchestrator

a 

a 

service 1

service 2

target service

a 

b 

b 

S10 S11

S20

• Orchestrator program is any function P(h,a) = i 
that takes a history h and an action a to execute 
and delegates a to one of the available services i

• A history is a sequence that alternates states of 
the available services with actions performed:

(s1
0,s2

0,…,sn
0) a1 (s1

1,s2
1,…,sn

1) … ak (sk
1,s2

k,…,sn
k)

• Observe that to take a decision P has full access 
to the past, but no access to the future

b 

 T1 T0
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• Techniques for computing compositions:

• Reduction to PDL SAT

• Simulation-based

• LTL synthesis as model checking of game structure 

(all techniques are for finite state services)

Synthesizing compositions
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Simulation-based technique

Directly based on

  ... controlling the concurrent execution of available services 
B1,…,Bn  so as to mimic the target service T 

Thm: Composition exists iff the asynchronous (Cartesian) 
product C of B1,…,Bn can (ND-)simulate T
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Example of composition by simulation

B1:

B2:

B3:

T:

Given from available and 
target service …



21

Computing composition via simulation

Let B1,…,Bn be the TSs of the available behaviors. 

The Available behaviors TS C = < A, SC, sC
0, δC,FC> 

is the asynchronous product of B1,...,Bn where:

• A is the set of actions
• SC = S1 £...£ Sn

• sC0 = (s0
1,..., s0

m)
• δC µ SC £ A £ SC is defined as follows:
• (s1 £...£ sn) !a (s’1 £...£ s’n) iff 

                            9 i. si !a s’i  2 δi  and 8 j≠i. s’j = sj 
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B1:

B2:

B3:

Example of composition by simulation

C :

… consider the asynchronous product of 
the available services …
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Simulation relation

Given a target service T and (the asynchronous product of) available 
services C, a (ND-)simulation is a relation R between the states t 2 T 
an (s1,..,sn) of C such that:

(t, s1,..,sn) 2 R implies that  

     for all t !a t’  in T, exists a Bi 2 C  s.t.

• 9 si !a s’i in Bi  Æ

• 8 si !a s’i in Bi ) (t’,  s1,..s’i,..sn) 2 R 

• If exists a simulation relation R (such that (t0, s1
0,..,sn

0) 2 R, 
then we say that or T is simulated by C  (or C simulates T).

• Simulated-by is  
–(i) a simulation;                       
–(ii) the largest simulation.  
                                 

Simulated-by is a coinductive definition



24

Algorithm Compute (ND-)simulation 

Input: target behavior T and (async. prod. of) available behaviors C

Output: the simulated-by  relation (the largest simulation)

Body

 R = ;

 R’ = ST £ S1 £..£ Sn

 while (R ≠ R’) {

  R := R’

  R’ := R’   -   {(t, s1,..,sn) | 9 t !a t’ in T Æ 

           ¬ (9 si !a s’i in Bi  Æ 8 si !a s’i in Bi ) (t’,  s1,..s’i,..sn) 2 R’ )}

 }

 return R’

End

Simulation relation (cont.)
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B1:

B2:

B3:

Example of composition by simulation

T:

C :

… compute ND-simulation
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• Given the largest simulation R of T  by C, we can build every 
composition through the orchestrator generator (OG).

• OG = < A, [1,…,n], Sr, sr
0, δr, ωr,> with

• A : the actions shared by the behaviors

• [1,…,n]: the identifiers of the available services in the community

• Sr =  ST£ S1 £...£ Sn : the states of the orchestrator generator 

• sr
0 = (t0, s0

1, ..., s0
n) : the initial state of the orchestrator generator 

• ω: Sr £ Ar ! 2[1,…,n] : the output function, defined as follows:

ω(t, s1,..,sn, a) = 
     { i | 9 t !a, t’  in T  Æ 9 si !a, si’ in Bi Æ (t’,  s1,..,s’i ,..,sn )2 R}

• δ µ Sr £ A £ [1,…,n] ! Sr : the state transition function,  defined as follows

(t, s1 , ..., si , ..., sn)!a,i (t’, s1 , ..., s’i , ..., sn) iff i 2 ω(t, s1 , .., si , .., sn, a) 

Using simulation for composition
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B1:

B2:

B3:

Example of composition by simulation

T:

C :

 
Orchestrator Generator

W(t1,s1q1,a) = {1,2} 
W(t1,s1q1,c) = {2}
W(t1,s2q1,a) = {2}
W(t1,s2q1,c) = {2}

W(t2,s1q1,b) = {3}
W(t2,s1q2,b) = {2}
W(t2,s2q1,b) = {1,3}
W(t2,s2q2,b) = {2}

W(t3,s1q1,b) = {2}
W(t3,s2q1,b) = {2}

W(t4,s1q1,b) = {3}
W(t4,s1q2,b) = {2}
W(t4,s2q1,b) = {1,3}
W(t4,s2q2,b) = {2}

… compute the orchestrator generator
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• Thm: choosing at each point any value in returned by the orchestrator 
generator gives us a composition.

• Thm: every composition can be obtained by choosing, at each point a 
suitable value among those returned by the orchestrator generator.

Note: there infinitely many compositions but 
only one orchestrator generator that captures them all

• Thm: computing the orchestrator generator is EXPTIME, and in fact 
exponential only in the number (and not the size) of the available behaviors.

Composition in the Roman Model was shown to be EXPTIME-hard 
[Muscholl&Walukiewicz07]

Results
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• Once we have the orchestrator generator ...

•     ... we can avoid choosing any particular 
composition a priori ... 

•     ... and use directly ω to choose the available behavior to 
which delegate the next action. 

• We can be lazy and make such choice just-in-time, 
possibly adapting reactively to runtime feedback.

Just-in-time composition

Just-in-time compositions can be used to 
reactively act upon failures [KR08]!
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• Computing simulation is a well-studied problem (related to 
computing bisimulation a key notion in process algebra).  
Tools, like the Edinburgh Concurrency Workbench and its 
clones, can be adapted to compute composition via 
simulation. 

• Also LTL-based synthesis tools, like TLV, can be used for 
(indirectly) computing composition via simulation [Patrizi 
PhD09] 

We are currently focusing on the second approach.

Tools for computing composition based on 
simulation
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Adding data to the Roman Model

Adding data is crucial in certain contexts:
• Data -  rich description of the static information of interest.

• Behaviors - rich description of the dynamics of the process

But makes the approach extremely challenging:

• We get to work with infinite transition systems
• Simulation can still be used for capturing composition
• But it cannot be computed explicitly anymore.

We present two orthogonal approaches to deal with them.
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The Roman Model: American tweak

Target service
Expressed as a Guarded TS with 

parameters
spec. of the desired service behavior

Available services
Each expressed as a Guarded TS with parameters

 spec. of the behavior of available service processes

Actual available processes

…

Key points

No available process for 
the target service

Must realize target 
service by delegating 
actual actions to 
available services

Available services are 
stateful, hence must 
realize the  target  
using fragments of their 
computations

with Rick Hull + Jianwen Su
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Data-Aware Service Composition



34• Also actions may be messages between services

Store

Ware-
House

Bank

• Actions may impact “real world” – modeled as FOL relations

Services act on an integrated view of the world …

“Real World”

Client
(human or machine)

[BCDHM-VLDB05]
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Service behavior of as abstract finite state machines 
that query and act on the infinite state world … 

• Local store

• Edge conditions based 
on local store (and 
incoming message)

• Edge actions
– Atomic Process 

• acting on the world 

• set the local store

– Create/send 
message

– Read message

?
requestOrder(       
payBy,cartNum,
addr,price)

(payBy == PREPAID) ∧ (price ≤ 10) /
charge(cartNum; paymentOK)

(payBy == CC) ∨ (price > 10) /
! requestCCCheck(cartNum)

?
replyCCCheck( app
roved)

? requestShipStatus(oid)

! 
shipStatus( oid,
date,status)

checkShipStatus( o
id; date,status)

paymentOK == T / 
requestShip(wh,addr; 
oid,date,status)

approved == F /
! replyOrder(“fail”)

paymentOK == F /
! replyOrder(“fail”)

! 
shipStatus( oid,
date,status)

approved == T /
requestShip(   wh,a

ddr; 
oid,date,status)

[BCDHM-VLDB05]
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The Roman Model: Australian/Canadian tweak

Target service
Expressed as a ConGolog Program

spec. of the desired service behavior

Available services
Each expressed as a ConGolog Program

 spec. of the behavior of available service processes

Actual available processes

…

Key points

No available process for 
the target service

Must realize target 
service by delegating 
actual actions to 
available services

Available services are 
stateful, hence must 
realize the  target  
using fragments of their 
computations

with Sebastian Sardina 
RMIT/UOT!
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Composition of ConGolog Programs
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Mixing data and service integration: 
 A real challenge for the whole CS

We have all the issues of data integration but in addition …

• Behavior: description of the dynamics of the process!

• Behavior should be formally and abstractly described: conceptual 
modeling of dynamics (not a la OWL-S). Which?
– Workflows community may help
– Business process community may help
– Services community may help
– Process algebras community may help
– AI & Reasoning about actions community may help
– DB community may help
– … may help

• Techniques for analysis/synthesis of services in presence of unbounded 
data can come from different communities:
– Verification (CAV) community:  abstraction to finite states
– AI (KR) community:  working directly in FOL/SOL, e.g., SitCalc

Artifact-centric approach
promising!
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The Roman Model: Italian dream

Target service
Expressed in conceptual process 

description language 
spec. of the desired service behavior

Available services
Each expressed conceptual process description language 

 spec. of the behavior of available service processes

Actual available processes

…

Key points

No available process for 
the target service

Must realize target 
service by delegating 
actual actions to 
available services

Available services are 
stateful, hence must 
realize the  target  
using fragments of their 
computations

Very preliminary ideas in DL07
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