
1

Service Composition and Synthesis
The Roman Model

Giuseppe De Giacomo

SAPIENZA Università di Roma, Italy

Joint work with Daniela Berardi, Massimiliano de Leoni, Diego Calvanese, Fahima Cheikh,
Rick Hull, Maurizio Lenzerini, Massimo Mecella, Fabio Patrizi, Antonella Poggi, Riccardo
Rosati, Sebastian Sardina

2

Introduction

• The promise of Service Computing is to use services fundamental
elements for realizing distributed applications/solutions.

• Services are processes that export their abstract specification

• When no available service satisfies a desired specification, one might
check whether (parts of) available services can be composed and
orchestrated in order to realize the specification.

• Working at an abstract level enable us to exploit results from automatic
verification and synthesis to verify and compose services.

• The problem of automatic composition becomes especially interesting in
the presence of stateful (conversational) services.

• Among the various frameworks proposed in the literature, here we
concentrate on the so called ``Roman Model’’ (name by Rick Hull).

3

Data Integration

Global view
or

domain ontology

Client

Client’s query

Mapping2 Mappingn

Source1 Source2 Sourcen

Mapping1

… … …

4

Service integration/composition:

Target service
spec. of the desired service behavior

expressed in terms of virtual actions

Available services
spec. of the behavior of available service processes

 expressed in terms of the environment

Action ontology
spec. of atomic processes and data

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

5

The Roman Model: basics

Target service
Expressed as a Transition System

spec. of the desired service behavior

Available services
Each expressed as a Transition System

 spec. of the behavior of available service processes

Action ontology
Shared Actions

Environment expr. as a Transition Systems
spec. of atomic processes and data

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

6

Roman Model’s main ingredients

• The Roman Model exemplifies what can be achieved by composing
conversational services and uncovers relationships with automated
synthesis of reactive processes in Verification and AI Planning.

• Roman Model’s main ingredients

– Each available service is formally specified as a transition
system that captures its possible conversations with a generic
client.

– Desired specification is a target service, described itself as a
transition system.

– the aim is to automatically synthesize orchestrators that
realize the target service by delegating its actions to the available
services, exploiting fragments of their execution.

7

• We represent services as transition systems:

• A TS is a tuple < A, S, s0, δ> where:

– A is the set shared of actions

– S is the set of states

– s0 2 S is the set of initial states

– δ µ S £ A £ S is the transition relation

Transition systems

8

Problem of composition existence

• Given:

- available services B1,…,Bn

- target service T

over the same environment (same set of atomic actions)

• Check whether T can be realized by delegating actions to
B1,…,Bn so as to mimic T over time (forever!)

Composition synthesis

synthesis of the orchestrator that does the delegation

Service composition

9

Service composition as a game

There are at least two kinds of games. One could be called
finite, the other infinite.

A finite game is played for the purpose of winning ...
... an infinite game for the purpose of continuing the play.

Finite and Infinite Games
J. P. Carse, philosopher

10

Service composition as a game:
 Service composition vs Planning

Planning

• Operators: atomic actions

• Goal: desired state of affair

• Game: finite!
– compose operators

sequentially so as to reach
the goal

• Playing strategy: plan
(program having operators

invocation as atomic instructions)

Service composition

• Operators: available transition
systems

• Goal: target transition system

• Game: infinite!
– compose available transition

systems concurrently so as to
play the target transition system

• Playing strategy: orchestrator
(process that delegate target actions to
the available service

Stateless service
composition

Roman model

11

Simple example of service composition

a

a

service 1

service 2

target service

a

b

b

b

S10 S11

S20

orchestrator

Devilish nondeterminism!

 T1 T0

For simplicity we don’t consider
environment.

12

Simple example of service composition

a

a

service 1

service 2

target service

a

b

b

S10 S11

S20

orchestrator

b

 T1 T0

13

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

S10 S11

S20

orchestrator

b

 T1 T0

14

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

S10 S11

S20

observe the
actual state!

orchestrator

b

 T1 T0

15

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

S10 S11

S20

observe the
actual state!

orchestrator

b

 T1 T0

16

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

observe the
actual state!

orchestrator

b

 T1 T0

17

Simple example of service composition

orchestrator

a

a

service 1

service 2

target service

a

b

b

S10 S11

S20

• Orchestrator program is any function P(h,a) = i
that takes a history h and an action a to execute
and delegates a to one of the available services i

• A history is a sequence that alternates states of
the available services with actions performed:

(s1
0,s2

0,…,sn
0) a1 (s1

1,s2
1,…,sn

1) … ak (sk
1,s2

k,…,sn
k)

• Observe that to take a decision P has full access
to the past, but no access to the future

b

 T1 T0

18

• Techniques for computing compositions:

• Reduction to PDL SAT

• Simulation-based

• LTL synthesis as model checking of game structure

(all techniques are for finite state services)

Synthesizing compositions

19

Simulation-based technique

Directly based on

 ... controlling the concurrent execution of available services
B1,…,Bn so as to mimic the target service T

Thm: Composition exists iff the asynchronous (Cartesian)
product C of B1,…,Bn can (ND-)simulate T

20

Example of composition by simulation

B1:

B2:

B3:

T:

Given from available and
target service …

21

Computing composition via simulation

Let B1,…,Bn be the TSs of the available behaviors.

The Available behaviors TS C = < A, SC, sC
0, δC,FC>

is the asynchronous product of B1,...,Bn where:

• A is the set of actions
• SC = S1 £...£ Sn

• sC0 = (s0
1,..., s0

m)
• δC µ SC £ A £ SC is defined as follows:
• (s1 £...£ sn) !a (s’1 £...£ s’n) iff

 9 i. si !a s’i 2 δi and 8 j≠i. s’j = sj

22

22

B1:

B2:

B3:

Example of composition by simulation

C :

… consider the asynchronous product of
the available services …

23

Simulation relation

Given a target service T and (the asynchronous product of) available
services C, a (ND-)simulation is a relation R between the states t 2 T
an (s1,..,sn) of C such that:

(t, s1,..,sn) 2 R implies that

 for all t !a t’ in T, exists a Bi 2 C s.t.

• 9 si !a s’i in Bi Æ

• 8 si !a s’i in Bi) (t’, s1,..s’i,..sn) 2 R

• If exists a simulation relation R (such that (t0, s1
0,..,sn

0) 2 R,
then we say that or T is simulated by C (or C simulates T).

• Simulated-by is
–(i) a simulation;
–(ii) the largest simulation.

Simulated-by is a coinductive definition

24

Algorithm Compute (ND-)simulation

Input: target behavior T and (async. prod. of) available behaviors C

Output: the simulated-by relation (the largest simulation)

Body

 R = ;

 R’ = ST £ S1 £..£ Sn

 while (R ≠ R’) {

 R := R’

 R’ := R’ - {(t, s1,..,sn) | 9 t !a t’ in T Æ

 ¬ (9 si !a s’i in Bi Æ 8 si !a s’i in Bi) (t’, s1,..s’i,..sn) 2 R’)}

 }

 return R’

End

Simulation relation (cont.)

25

25

B1:

B2:

B3:

Example of composition by simulation

T:

C :

… compute ND-simulation

26

• Given the largest simulation R of T by C, we can build every
composition through the orchestrator generator (OG).

• OG = < A, [1,…,n], Sr, sr
0, δr, ωr,> with

• A : the actions shared by the behaviors

• [1,…,n]: the identifiers of the available services in the community

• Sr = ST£ S1 £...£ Sn : the states of the orchestrator generator

• sr
0 = (t0, s0

1, ..., s0
n) : the initial state of the orchestrator generator

• ω: Sr £ Ar ! 2[1,…,n] : the output function, defined as follows:

ω(t, s1,..,sn, a) =
 { i | 9 t !a, t’ in T Æ 9 si !a, si’ in Bi Æ (t’, s1,..,s’i ,..,sn)2 R}

• δ µ Sr £ A £ [1,…,n] ! Sr : the state transition function, defined as follows

(t, s1 , ..., si , ..., sn)!a,i (t’, s1 , ..., s’i , ..., sn) iff i 2 ω(t, s1 , .., si , .., sn, a)

Using simulation for composition

27

B1:

B2:

B3:

Example of composition by simulation

T:

C :

Orchestrator Generator

W(t1,s1q1,a) = {1,2}
W(t1,s1q1,c) = {2}
W(t1,s2q1,a) = {2}
W(t1,s2q1,c) = {2}

W(t2,s1q1,b) = {3}
W(t2,s1q2,b) = {2}
W(t2,s2q1,b) = {1,3}
W(t2,s2q2,b) = {2}

W(t3,s1q1,b) = {2}
W(t3,s2q1,b) = {2}

W(t4,s1q1,b) = {3}
W(t4,s1q2,b) = {2}
W(t4,s2q1,b) = {1,3}
W(t4,s2q2,b) = {2}

… compute the orchestrator generator

28

• Thm: choosing at each point any value in returned by the orchestrator
generator gives us a composition.

• Thm: every composition can be obtained by choosing, at each point a
suitable value among those returned by the orchestrator generator.

Note: there infinitely many compositions but
only one orchestrator generator that captures them all

• Thm: computing the orchestrator generator is EXPTIME, and in fact
exponential only in the number (and not the size) of the available behaviors.

Composition in the Roman Model was shown to be EXPTIME-hard
[Muscholl&Walukiewicz07]

Results

29

• Once we have the orchestrator generator ...

• ... we can avoid choosing any particular
composition a priori ...

• ... and use directly ω to choose the available behavior to
which delegate the next action.

• We can be lazy and make such choice just-in-time,
possibly adapting reactively to runtime feedback.

Just-in-time composition

Just-in-time compositions can be used to
reactively act upon failures [KR08]!

30

• Computing simulation is a well-studied problem (related to
computing bisimulation a key notion in process algebra).
Tools, like the Edinburgh Concurrency Workbench and its
clones, can be adapted to compute composition via
simulation.

• Also LTL-based synthesis tools, like TLV, can be used for
(indirectly) computing composition via simulation [Patrizi
PhD09]

We are currently focusing on the second approach.

Tools for computing composition based on
simulation

31

Adding data to the Roman Model

Adding data is crucial in certain contexts:
• Data - rich description of the static information of interest.

• Behaviors - rich description of the dynamics of the process

But makes the approach extremely challenging:

• We get to work with infinite transition systems
• Simulation can still be used for capturing composition
• But it cannot be computed explicitly anymore.

We present two orthogonal approaches to deal with them.

32

The Roman Model: American tweak

Target service
Expressed as a Guarded TS with

parameters
spec. of the desired service behavior

Available services
Each expressed as a Guarded TS with parameters

 spec. of the behavior of available service processes

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

with Rick Hull + Jianwen Su

33

Data-Aware Service Composition

34• Also actions may be messages between services

Store

Ware-
House

Bank

• Actions may impact “real world” – modeled as FOL relations

Services act on an integrated view of the world …

“Real World”

Client
(human or machine)

[BCDHM-VLDB05]

35

Service behavior of as abstract finite state machines
that query and act on the infinite state world …

• Local store

• Edge conditions based
on local store (and
incoming message)

• Edge actions
– Atomic Process

• acting on the world

• set the local store

– Create/send
message

– Read message

?
requestOrder(
payBy,cartNum,
addr,price)

(payBy == PREPAID) ∧ (price ≤ 10) /
charge(cartNum; paymentOK)

(payBy == CC) ∨ (price > 10) /
! requestCCCheck(cartNum)

?
replyCCCheck(app
roved)

? requestShipStatus(oid)

!
shipStatus(oid,
date,status)

checkShipStatus(o
id; date,status)

paymentOK == T /
requestShip(wh,addr;
oid,date,status)

approved == F /
! replyOrder(“fail”)

paymentOK == F /
! replyOrder(“fail”)

!
shipStatus(oid,
date,status)

approved == T /
requestShip(wh,a

ddr;
oid,date,status)

[BCDHM-VLDB05]

36

The Roman Model: Australian/Canadian tweak

Target service
Expressed as a ConGolog Program

spec. of the desired service behavior

Available services
Each expressed as a ConGolog Program

 spec. of the behavior of available service processes

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

with Sebastian Sardina
RMIT/UOT!

37

Composition of ConGolog Programs

38

Mixing data and service integration:
 A real challenge for the whole CS

We have all the issues of data integration but in addition …

• Behavior: description of the dynamics of the process!

• Behavior should be formally and abstractly described: conceptual
modeling of dynamics (not a la OWL-S). Which?
– Workflows community may help
– Business process community may help
– Services community may help
– Process algebras community may help
– AI & Reasoning about actions community may help
– DB community may help
– … may help

• Techniques for analysis/synthesis of services in presence of unbounded
data can come from different communities:
– Verification (CAV) community: abstraction to finite states
– AI (KR) community: working directly in FOL/SOL, e.g., SitCalc

Artifact-centric approach
promising!

39

The Roman Model: Italian dream

Target service
Expressed in conceptual process

description language
spec. of the desired service behavior

Available services
Each expressed conceptual process description language

 spec. of the behavior of available service processes

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

Very preliminary ideas in DL07

40

References
[ICSOC’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: Automatic Composition of E-

services That Export Their Behavior. ICSOC 2003

[WES’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: A Foundational Vision of e-
Services. WES 2003

[TES’04] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: : A Tool for Automatic
Composition ofServices Based on Logics of Programs. TES 2004

[ICSOC’04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, Diego Calvanese: Synthesis of underspecified
composite e-services based on automated reasoning. ICSOC 2004

[IJCIS’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: Automatic Service Composition
Based on Behavioral Descriptions. Int. J. Cooperative Inf. Syst. 14(4): 333-376 (2005)

[VLDB’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, Massimo Mecella: Automatic Composition of Transition-
based Semantic Web Services with Messaging. VLDB 2005

[ICSOC’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella: Composition of Services with Nondeterministic
Observable Behavior. ICSOC 2005

[SWS’06] Fahima Cheikh, Giuseppe De Giacomo, Massimo Mecella: Automatic web services composition in trustaware communities.
Proceedings of the 3rd ACM workshop on Secure web services 2006.

[AISC’06] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella. Automatic Web Service Composition: Service-
tailored vs. Client-tailored Approaches. In Proc. AISC 2006, International Workshop jointly with ECAI 2006.

[FOSSACS’07] Anca Muscholl, Igor Walukiewicz: A lower bound on web services composition. Proceedings FOSSACS, LNCS, Springer,
Volume 4423, page 274--287 - 2007.

[ICWS07] Giuseppe De Giacomo, Massimiliano De Leoni, Massimo Mecella, Fabio Patrizi.. Automatic Workflows Composition of Mobile
Services. ICWS 2007.

[IJCAI’07] Giuseppe De Giacomo, Sebastian Sardiña: Automatic Synthesis of New Behaviors from a Library of Available Behaviors. IJCAI
2007.

[AAAI’07] Sebastian Sardiña, Fabio Patrizi, Giuseppe De Giacomo: Automatic synthesis of a global behavior from multiple distributed
behaviors. AAAI 2007.

[DL07] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati. Actions and programs over description logic
ontologies. DL 2007.

[IJFCS08] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, Fabio Patrizi: Automatic Service Composition via Simulation. IJFCS,
2008

[KR08] Sebastian Sardiña, Fabio Patrizi, Giuseppe De Giacomo: Behavior composition in the presence of failure. KR 2008.

[ICAPS08] Sebastian Sardiña, Giuseppe De Giacomo: Realizing Multiple Autonomous Agents through Scheduling of Shared Devices.
ICAPS 2008.

