) SAPIENZA
a’twf UNIVE

INTVERSITA DI ROMA

Compoaosition of Services that Share an Infinite-
State Blackboard

Fabio Patrizi & Giuseppe De Giacomo
SAPIENZA Universita di Roma, Italy

IWEB'OS - IJCAI'O9 Workshop on Information Integration on the Web
Pasadena, California, July 11, 2009

-ﬁv SAPIENZA

¢/ UNIVERSITA DI ROMA

Basic ideas

, 9 Key points
g

& e Services are stateful
Tapget service * They share atomic
operations
Exprressed as a Transition System >
: spec. of the desired service behavior * They act over a shared
: blackboard

* No available process for
the target service

Shared set of atomic operations

* Must realize target service
+ shared blackboard by delegating operation

executions to available
services ...

. * ... by repurposing fragment
Ava||ab|e services of available services to

{ realize the requested
Each expressed as a Transition System eq
- Y target service
* spec. of the behavior of available service processes

W i Actual available processes /Y.
- - A

il
G
/

INTVERSITA DI ROMA

b SAPIENZA
e/ U

Simple example of service composition
without the shared blackboard

Devilish nondeterminism!

N~—_0b

a
—O
orchestrator \ service 2

4)

For simplicity we don’t consider blackboard for now. _ -/

- SAPIENZA
Wy v

INTVERSITA DI ROMA

Simple example of service composition

orchestrator

- SAPIENZA
Wy v

INTVERSITA DI ROMA

Simple example of service composition

N~—_0b

orchestrator

~

INTVERSITA DI ROMA

b SAPIENZA
_,A‘,a‘ U

Simple example of service composition

\ .
} observe the

actual state!

N~—_0b

orchestrator \

b SAPIENZA
e U

INTVERSITA DI ROMA

Simple example of service composition

\ .
} observe the
N—_ b

actual state!

~

b SAPIENZA
e U

INTVERSITA DI ROMA

Simple example of service composition

\ .,
a > observe the
N_ b actual state!

~

@ sarenza

W5/ UNIVERSITA DI ROMA

Simple example of service composition

Q=0 i
~~_ “ﬁ% / \bQ

* Orchestrator program is any function P[h,a] =i |
that takes a history h and an action a to execute
and delegates a to one of the available services i

service 2
A history is a sequence that alternates states of)
the available services with actions performed: . b
(5,9855,...5.%) a4 (5418578, 1] .. . (8, ',85%,-,S ")
J

e (Observe that to take a decision P has full access
to the past, but no access to the future g

- SAPIENZA
Wy U

INTVERSITA DI ROMA

Synthesizing compositions

* Technigues for computing compositions:

e Reduction to PDL SAT

e Simulation-based h

*|_TL synthesis as model checking of game structure

(all techniques are for finite state services)

10

@ sarienza

Simulation relation

Given a target service T and (the asynchronous product of) available
services C, a (ND-)simulation is a relation R between the stateste 7

an (si,..,sn) of C such that:

(t, s1,..,5n) € R implies that
forallt —at’ inT, exists a Bi € C s.t.
e dsi—asiin Bi A
e VsSi —asiin Bi= (t, si1,..5%,..50) €R

o If exists a simulation relation R (such that (t9, s19,..,sn9) € R,
then we say that or T is simulated by C (or C simulates T).

e Simulated-by is
—(i) a simulation;
—(ii) the largest simulation.

Simulated-by is a coinductive definition

11

@ sarenza

Using simulation for composition

Given the largest simulation R of T by C, we can build every
composition through the orchestrator generator (0OG).

OG = < A, [1,...,n], S, s, &, wr,> with

A : the actions shared by the behaviors

[1,...,n]: the identifiers of the available services in the community
Sr = Stx S1 x...x Sn: the states of the orchestrator generator

si0 = (t9, s%, ..., s%) : the initial state of the orchestrator generator
w: Sr x Ar = 2111 1 the output function, defined as follows:

w(t, s1,..,Sn, Q) =
{i|dt—5,t" INT A3 si—a si'inBi A (Y, s1,..,58i,--,Sn)€ R}

dC SrxAx[1,..,n] = Sr: the state transition function, defined as follows

(t, s, ..., Si, ..., Sn)—a,i (t', 51, ..., S, ..., sn) iffi e w(t, s1, .., Si, .., Sn, Q)

12

@ sarenza

Adding data

Adding data is crucial in certain contexts:
 Data- rich description of the static information of interest.
* Behaviors - rich description of the dynamics of the process

But makes the approach extremely challenging:

* \We get to work with infinite transition systems

e Simulation can still be used for capturing composition
* But it cannot be computed explicitly anymore.

We are currently investigating two orthogonal approaches to deal with them.

 Based on SitCalc (see “Composition of ConGolog Programs” - IJCAIOS - next Wednesday ,
July 15)

» Based on "symbolic abstraction” (eg., the current paper]

13

Infinite-state shared blackboard

We consider a shared blackboard, where data can be added and removed.

» The blackboard is modeled as an associative list: set of pairs
(attribute, value)

» The maximal size of the blackboard is fixed...

» ... but it can contain values an infinite, ordered (<) and dense
(interpretation) domain A (e.g., alphanumeric strings).

Example of blackboard R:

personl || Giuseppe De Giacomo
person?2 Fabio Patrizi

The blackboard is a sort of artifact, see [Deutsch,Hull,Patrizi,Vianu-ICDT09]

Atomic operations on the blackboard

» tuple insertion/modification: R(x) = v

> tuple deletion: —R(x)

Examples
lastnamel || De Giacomo | —R(/astname2) :
Del: i — lastnamel || De Giacomo
lasthame2 Patrizi
- R(lastnamel)=Rossi -
Mod: | lasthamel De Giacomo — lasthamel Rossi
— R(lastname3)=Patrizi | lastnamel Rossi
Ins: | lasthamel Rossi — —
lastname3 || Patrizi

» Attributes can be added and removed

» Atomic operations can be arbitrarily concatenated

Atomic operations on the blackboard (cont.d)
Operations with formal parameters:

o(q) = {{#1(q),v1(q)),- - -, (®m(q), vm(q))}

> ¢i(q), condition over R, A, <
e.g.: isDef(R(name)) A R(name) < g A g < R(name)
» v;(q), sequence of atomic operations
e.g.. R(name) = q,—R(lastname), . ..
» the formal parameter g is resolved with actual parameter given by the client
at run time.

Successor relation:
R 2% R (q€A)iff
> 30i(q) | (R, <) k= 0:()
» RN B
» Nondeterministic: several ¢;'s can be satisfied at the same time

» Not input-bounded: client can choose any value from A as actual parameter
» For simplicity we use 1 parameter per operation in this talk

Composition

Given:
» an initial state of the blackboard R,
» a deterministic target service S;
> a set of n available nondeterministic services {S1,...,Sp}

Find a composition, i.e., a simulation &; by the asynchronous product of
Si, ... ,Sn) >, such that <St0, <510, . ,Sn0>, R0> € X

As before, the core problem amounts to building a simulation relation.

From infinite to finite states

Objective: build a finite abstraction on the an infinite blackboard configurations
and adopt finite-state reasoning

» The blackboard is infinite-state
» But for every blackboard state R we have |adom(R)| < b

» We get a finite representation of the infinite-state system by abstracting over
actual values in the blackboard.

Abstracting over actual values

Intuition: since |adom(R)| < b...
> replace adom(R) with a symbolic version adom(R) = {41,...,3,}
> define a mapping m : adom(R) — adom(R) which preserves < and R (resp.

< and R)
12 | 3
R=[11]15
3 || 3

adom(R) = {1,3,12,15}

Example

m(l) = 33, m(3) = 32

— m —

ai || a
R=| 33 EN
a || a

adom(R) = {41, 5, 33, 34}

aa<a<a <a

Non-symbolic vs. symbolic simulation

» Q: What is the relation between (non-symbolic) simulation and symbolic
simulation (the simulation performed on the symbolic abstraction)?

» A: they are equivalent (!)

Theorem:

A (non-symbolic) simulation of the target service by the available services exists iff
the symbolic simulation does.

Finite-state techniques apply!

From the orchestrator generator associated to the symbolic simulation one easily
extracts the orchestrator generator for the original (non-symbolic) setting.

Mixing data and service integration: @ ooz
A real challenge for the whole CS

\We have all the issues of data integration but in addition ...
* Behavior: description of the dynamics of the process!

* Behavior should be formally and abstractly described: conceptual
modeling of dynamics (not a la OWL-S). Which?

- Workflows community may help

- Business process community may help

- Services community may help

- Process algebras community may help

- Al & Reasoning about actions community may help
- DB community may help

- .. may help

* Technigues for analysis/synthesis of services in presence of unbounded
data can come from different communities:

- Verification (CAV) community: abstraction to finite states
- Al [KR] community: working directly in FOL/S0L, e.g., SitCalc

