
1

Composition of Services that Share an In!nite-

State Blackboard

Fabio Patrizi & Giuseppe De Giacomo

SAPIENZA Università di Roma, Italy

IIWEB’09 - IJCAI’09 Workshop on Information Integration on the Web

Pasadena, California, July 11, 2009

2

Basic ideas

Actual available processes

…

Key points

•! Services are stateful

•! They share atomic

operations

•! They act over a shared

blackboard

•! No available process for

the target service

•! Must realize target service

by delegating operation

executions to available

services …

•! … by repurposing fragment

of available services to

realize the requested

target service

3

Simple example of service composition
without the shared blackboard

a

a

service 1

service 2

target service

a

b

b

b

orchestrator

Devilish nondeterminism!

For simplicity we don’t consider blackboard for now.

4

Simple example of service composition

a

a

service 1

service 2

target service

a

b

b

orchestrator

b

5

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

orchestrator

b

6

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

orchestrator

b

7

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

orchestrator

b

8

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

b

orchestrator

b

9

Simple example of service composition

orchestrator

a

a

service 1

service 2

target service

a

b

b

•! Orchestrator program is any function P(h,a) = i
that takes a history h and an action a to execute
and delegates a to one of the available services i

•! A history is a sequence that alternates states of
the available services with actions performed:

(s1
0,s2

0,…,sn
0) a1 (s1

1,s2
1,…,sn

1) … ak (sk
1,s2

k,…,sn
k)

•! Observe that to take a decision P has full access
to the past, but no access to the future

b

10

•!Techniques for computing compositions:

•!Reduction to PDL SAT

•!Simulation-based

•!LTL synthesis as model checking of game structure

(all techniques are for finite state services)

Synthesizing compositions

11

Simulation relation

12

•! Given the largest simulation R of T by C, we can build every

composition through the orchestrator generator (OG).

•! OG = < A, [1,…,n], Sr, sr
0, !r, "r,> with

•! A : the actions shared by the behaviors

•! [1,…,n]: the identifiers of the available services in the community

•! Sr = ST! S1 !...! Sn : the states of the orchestrator generator

•! sr
0 = (t0, s0

1, ..., s0
n) : the initial state of the orchestrator generator

•! ": Sr ! Ar " 2[1,…,n] : the output function, defined as follows:

!(t, s1,..,sn, a) =

 { i | # t "a, t’ in T $ # si "a, si’ in Bi $ (t’, s1,..,s’i ,..,sn)% R}

•! ! & Sr ! A ! [1,…,n] " Sr : the state transition function, defined as follows

(t, s1 , ..., si , ..., sn)"a,i (t’, s1 , ..., s’i , ..., sn) iff i % "(t, s1 , .., si , .., sn, a)

Using simulation for composition

13

Adding data

Adding data is crucial in certain contexts:

•! Data - rich description of the static information of interest.

•! Behaviors - rich description of the dynamics of the process

But makes the approach extremely challenging:

•! We get to work with infinite transition systems

•! Simulation can still be used for capturing composition

•! But it cannot be computed explicitly anymore.

We are currently investigating two orthogonal approaches to deal with them.

•! Based on SitCalc (see “Composition of ConGolog Programs” - IJCAI09 - next Wednesday ,

July 15)

•! Based on “symbolic abstraction” (eg., the current paper)

Infinite-state shared blackboard

We consider a shared blackboard, where data can be added and removed.

! The blackboard is modeled as an associative list: set of pairs
〈attribute, value〉

! The maximal size of the blackboard is fixed...

! ... but it can contain values an infinite, ordered (≤) and dense
(interpretation) domain ∆ (e.g., alphanumeric strings).

Example of blackboard R:

person1 Giuseppe De Giacomo
person2 Fabio Patrizi

The blackboard is a sort of artifact, see [Deutsch,Hull,Patrizi,Vianu-ICDT09]

Atomic operations on the blackboard

! tuple insertion/modification: R(χ) = v

! tuple deletion: ¬R(χ)

Examples

Del:
lastname1 De Giacomo
lastname2 Patrizi

¬R(lastname2)−→ lastname1 De Giacomo

Mod: lastname1 De Giacomo
R(lastname1)=Rossi−→ lastname1 Rossi

Ins: lastname1 Rossi
R(lastname3)=Patrizi−→ lastname1 Rossi

lastname3 Patrizi

! Attributes can be added and removed

! Atomic operations can be arbitrarily concatenated

Atomic operations on the blackboard (cont.d)
Operations with formal parameters:

o(q) = {〈φ1(q), ν1(q)〉, . . . , 〈φm(q), νm(q)〉}

! φi (q), condition over R,∆,≤
e.g.: isDef (R(name)) ∧ R(name) ≤ q ∧ q ≤ R(name)

! νi (q), sequence of atomic operations
e.g.: R(name) = q,¬R(lastname), . . .

! the formal parameter q is resolved with actual parameter given by the client
at run time.

Successor relation:

R̄
o,q̄−→ R̄ ′ (q ∈ ∆) iff:

! ∃φi (q) | 〈R̄,≤〉 |= φi (q̄)

! R̄
νi (q̄)−→ R̄ ′

! Nondeterministic: several φi ’s can be satisfied at the same time
! Not input-bounded: client can choose any value from ∆ as actual parameter
! For simplicity we use 1 parameter per operation in this talk

Composition

Given:

! an initial state of the blackboard R̄0

! a deterministic target service St

! a set of n available nondeterministic services {S1, . . . ,Sn}
Find a composition, i.e., a simulation St by the asynchronous product of
S1, . . . ,Sn) Σ, such that 〈st0, 〈s10, . . . , sn0〉, R̄0〉 ∈ Σ

As before, the core problem amounts to building a simulation relation.

From infinite to finite states

Objective: build a finite abstraction on the an infinite blackboard configurations
and adopt finite-state reasoning

! The blackboard is infinite-state

! But for every blackboard state R̄ we have |adom(R̄)| ≤ b

! We get a finite representation of the infinite-state system by abstracting over
actual values in the blackboard.

Abstracting over actual values

Intuition: since |adom(R̄)| ≤ b...

! replace adom(R̄) with a symbolic version ˆadom(R̄) = {â1, . . . , âb}
! define a mapping m : adom(R̄) −→ ˆadom(R̄) which preserves ≤ and R̄ (resp.
≤̂ and R̂)

Example

m(1) = â3, m(3) = â2

m(12) = â1, m(15) = â4

R̄ =
12 3
1 15
3 3

R̂ =
â1 â2

â3 â4

â2 â2

←− m −→
adom(R̄) = {1, 3, 12, 15} ˆadom(R̄) = {â1, â2, â3, â4}

1 ≤ 3 ≤ 12 ≤ 15 a3 ≤ a2 ≤ a1 ≤ a4

Non-symbolic vs. symbolic simulation

! Q: What is the relation between (non-symbolic) simulation and symbolic
simulation (the simulation performed on the symbolic abstraction)?

! A: they are equivalent (!)

Theorem:
A (non-symbolic) simulation of the target service by the available services exists iff
the symbolic simulation does.

Finite-state techniques apply!

From the orchestrator generator associated to the symbolic simulation one easily
extracts the orchestrator generator for the original (non-symbolic) setting.

Mixing data and service integration:

 A real challenge for the whole CS

We have all the issues of data integration but in addition …

• Behavior: description of the dynamics of the process!

• Behavior should be formally and abstractly described: conceptual
modeling of dynamics (not a la OWL-S). Which?

– Workflows community may help

– Business process community may help

– Services community may help

– Process algebras community may help

– AI & Reasoning about actions community may help

– DB community may help

– … may help

• Techniques for analysis/synthesis of services in presence of unbounded
data can come from different communities:

– Verification (CAV) community: abstraction to finite states

– AI (KR) community: working directly in FOL/SOL, e.g., SitCalc

