
DIS La Sapienza — PhD Course

Autonomous Agents and Multiagent Systems

Lecture 5: Sensing and

Planning under Incomplete Information

and Dynamic Evironments

Yves Lespérance

Dept. of Computer Science & Engineering
York University

Toronto, Canada

Embedded Agents

An agent that operates in a real environment (robot or softbot)
faces many difficult problems:

• agents planning must be interleaved with its acting, need
incremental execution;

• agent only has incomplete knowledge & must sense the en-
vironment to know what to do;

• agent operates in a dynamic environment ; other agents act
& agent must detect this & consider how it affects him.

2

Incremental Execution

Search over nondeterministic program is how Golog/ConGolog
support planning.

But search/planning/exploring your options is something you do
in your head before you act; at some point, must stop thinking
and start acting.

Agent with simple task can do all its planning first, & then exe-
cute its plan.

Golog/ConGolog work according to this simple model; search
all the way to final situation of nondeterministic program & return
the situation; then can execute it.

3

Incremental Execution (cont.)

But agent that has complex task & must run for a long time can-
not do all its planning before it acts.

Must do some planning, then execute some of the plan con-
structed, then some more planning, then more acting, . . .

For this, simple Golog/ConGolog execution model is inadequate;
need a version of the language where search is interleaved with
execution.

4

Incomplete Knowledge and Sensing

Another problem: agents have incomplete knowledge and must
perform sensing actions.

E.g. agent must go to the airport & board a flight; cannot know
which flight gate to go to in advance; must do sensing once it is
at airport to find out!

Representing & reasoning about incomplete knowledge is hard.

Need mechanism to update knowledge following sensing.

Golog/ConGolog does not support sensing; Prolog implementa-
tion makes closed world assumption.

5

Planning with Sensing Actions

When plan includes sensing actions, it needs to branch on result
of sensing.

So in general, need to generate plans that include sensing ac-
tions, branching/conditionals, even loops.

Very hard search problem!

Can try to avoid generating conditional plans by interleaving
sensing and planning; to do this, need search control knowl-
edge.

6

Operating in a Dynamic World

3rd problem: the world is dynamic & other agents perform ac-
tions.

Even if agent has complete knowledge initially, does not stay
that way.

Need to determine what exogenous actions occur & reason about
their effects.

7

Operating in a Dynamic World (cont.)

Sometimes, agent can easily determine what exogenous ac-
tions have occurred (through sensing); then, executor can mon-
itor for these & incorporate them into the situation.

In general, agent needs to diagnose what exogenous actions
have occurred to explain sensing data; similar to a planning task
(hard).

8

Execution Monitoring & Replanning

When exogenous action occurs, plan may no longer be valid.

Need to monitor plan execution for exogenous actions that make
it fail.

When this is detected need to replan or do plan repair.

9

Planning for Dynamic Environment

When planning for dynamic environment, may need to anticipate
likely contingencies, e.g. action failures, likely events/actions by
others, etc.

Contingency plan branches on possible contingencies and achieves
goal despite them.

Decision-theoretic planning models uncertain knowledge & ac-
tion outcome probabilities, & produces plans that maximize ex-
pected utility.

10

Multiagent Planning

Other intelligent agents are rational : will not do actions that do
not further their goals; also reason about what other agents may
do.

Game-theoretic planning finds optimal strategies for agents that
interact with other agents.

11

IndiGolog

IndiGolog [DegLev99a] addresses some of these problems; sup-
ports:

• interleaving search & execution: use search block when
lookahead/planning is needed; otherwise makes arbitrary
choice of next action & executes;

• execution of sensing actions & knowledge expansion by
sensed information; uses a dynamic closed world assump-
tion;

• observation of exogenous actions (user must define moni-
toring routines).

12

IndiGolog Search Block

By default, IndiGolog does no search/lookahead.

But, programmer can tell interpreter to search over block of code
(on-line) using new search block construct Σ δ.

Semantics :

Trans(Σ δ, s, δ′, s′) ≡
Trans(δ, s, δ′, s′) ∧ ∃δ′′, s′′ Do(δ′, s′, δ′′, s′′)

Can cache the plan found for efficiency.

13

IndiGolog Sensing

Program can include sensing actions that acquire new informa-
tion.

Sensed fluent axioms specify what condition is sensed, e.g.

SF (senseDoor(d), s) ≡ Open(d, s)

Programmer must provide method to get sensing result.

Result of sensing is added to basic action theory (& assumed
consistent).

14

IndiGolog Semantics

A history σ is a sequence of ground actions with associated
sensing results.

An online configuration (δi, σi) involves a program & a history.

Can perform an online transition (δi, σi) → (δi+1, σi+1) iff

D ∪ {Sensed[σi]} |= Trans(δi, end[σi], δi+1, end[σi+1]),

where σi+1 is σi if transition does not do an action, & σi ◦(a, x)
if it performs action a with sensing result x.

An online configuration (δn, σn) can successfully terminate iff

D ∪ {Sensed[σn]} |= Final(δn, end[σn]).

15

IndiGolog Implementation

In Prolog implementation, evaluation of projection queries uses
regression, but traps on matching sensing results.

This amounts to making dynamic closed world assumption [De-
gLev99b].

If program never tests an initially unknown condition before sens-
ing it, then it will never get an incorrect answer (from CWA).

16

IndiGolog Exogenous Actions

Changes in environment can be detected as exogenous actions:

Interpreter monitors for them and adds them to history.

Programmer must provide method to check for their occurrence.

Effects must be specified as for ordinary actions.

17

IndiGolog Replanning

When an exogenous action happens while executing a search
block, may need to replan [DRS98].

E.g. when running mail delivery program that minimizes dis-
tance travelled and new shipment order is made.

Then, IndiGolog checks if the sequence of actions found earlier
is still an execution of the program in the search block; other-
wise, it redoes the search.

Original IndiGolog cannot find a plan for this e.g. because it
restarts search from remaining program.

IndiGolog of [LesNg00] restarts search from original program,
so it does find a new plan.

Only committed to the actions it has performed.
18

Reasoning about Incomplete Knowledge and
Action

Dynamic CWA is not always warranted.

Reasoning with arbitrary incomplete KBs is intractable.

Some work on KBs with limited forms of incompleteness where
reasoning is efficient, e.g. [BacPet98], [LiuLev05].

19

Possible Values Implementation of IndiGolog

Proposed in [SarVas05].

Incomplete knowledge restricted to having a set of possible val-
ues for each functional fluent, e.g.

temp(S0) = 19 ∨ temp(S0) = 20 ∨ temp(S0) = 22

A formula is possibly true if there exists a choice of possible
values for the fluents in it that makes it true.

A formula φ is certainly true/known to be true iff ¬phi is not
possibly true.

20

Possible Values Implementation of IndiGolog
(cont.)

Handles sensing actions such that if we get result r, then the
value of the fluent f must be/cannot be v, when w is known to
be true.

Regression mechanism is defined; guaranteed to be sound un-
der some conditions.

21

Contingent Planning for APLs [LDO07]

Assume that both planning agent’s task δ and behavior of agents
in environment ρ are expressed as high-level nondeterministic
concurrent programs in ConGolog (or some other APL); envi-
ronment has higher priority.

Planning must produce deterministic conditional plan that can
be successfully executed against all possible executions of en-
vironment program.

Handle actions with nondeterministic effects & sensing actions
by treating them as actions that trigger an environmental reac-
tion that is not under agent’s control.

22

E.g. An Interfering Environment Agent

IA moves stacked blocks back to table:

proc interferingAgtBehavior(IA, n)
(n ≤ 0?)|
((n > 0 ∧ LastActionNotBy(IA) ∧ ∃x, yOn(x, y))? ;

[π x.∃yOn(x, y)?;moveToTable(IA, x);
interferingAgtBehavior(IA, n− 1)] |

[noOp(IA); interferingAgtBehavior(IA, n)])
endProc

n is bound on number of interfering moves.

23

E.g. A Planning Agent

PA’s task is to build 3 blocks tower:

proc mkTower(PA)
while ¬HaveTower do

if ∃x, y On(x, y) then
π x, z.[∃y On(x, y)?;move(PA, z, x)]

else
π x, y.move(PA, x, y)

endIf
endWhile

endProc

Can vary amount of nondeterminism in task spec.

24

E.g. Actions with Nondeterministic Effects

Nature agent NA determines whether move attempts succeed:

proc natureBehavior(NA, n)
π x, y.[(n > 0 ∧MoveAttempted(PA, x, y))?;

moveFails(NA, PA, x, y);
natureBehavior(NA, n− 1)] |

π x, y.[MoveAttempted(PA, x, y)?;
moveSucceeds(NA, PA, x, y);
natureBehavior(NA, n)]

endProc

n is bound on number of failures.

25

E.g. Sensing

PA does sensing by querying humidity sensor agent HSA:

proc humiditySensorBehavior(HSA)
〈 x : WetnessQueried(PA, HSA, x) →

(reportWet(HSA, PA, x) |
reportNotWet(HSA, PA, x)) 〉

endProc

Sensor report has knowledge producing effect.

In general, learn that preconditions of observed exogenous ac-
tions must hold.

26

E.g. Helpful Environment Agent

Environment agent DA will dry a block when requested:

proc dryingAgtBehavior(DA)
〈 x : DryingRequested(PA, DA, x) → dry(DA, x) 〉

endProc

27

Contingent Planning – APL Primitives

• EnvTrans(〈ρ, s〉, 〈ρ′, s′〉): agent considers it possible that
environment program ρ in state s can make transition to
state s′ with program ρ′ remaining;

• AgtTrans(〈δ, s〉, 〈δ′, s′〉): agent knows that agent program
δ in state s can make transition to state s′ with program δ′

remaining;

• AgtFinal(〈δ, s〉): agent knows that agent program δ can
legally terminate in state s.

28

Contingent Planning – Definition

AbleBy(σ, δ, ρ, s) means that agent is able to execute task δ in
environment ρ in state s by executing conditional program σ.

AbleBy(σ, δ, ρ, s) is smallest relation R(σ, δ, ρ, s) s.t.:

(A) for all triples (δ, ρ, s), if
EnvBlocked(〈ρ, s〉) and AgtFinal(〈δ, s〉),

then R(nil, δ, ρ, s);

29

Contingent Planning – Definition (cont.)

(B) for all quadruples (σ, δ, ρ, s), if
EnvBlocked(〈ρ, s〉) and
there exist δ′, s′ such that

AgtTrans(〈δ, s〉, 〈δ′, s〉) and R(σ, δ′, ρ, s′) and
actsPerf(s, s′) = 〈〉,

then R(σ, δ, ρ, s);

(C) for all a, σ, δ, ρ, s, if
EnvBlocked(〈ρ, s〉) and
there exist δ′, s′ such that

AgtTrans(〈δ, s〉, 〈δ′, s′〉) and R(σ, δ′, ρ, s′) and
actsPerf(s, s′) = a,

then R((a;σ), δ, ρ, s);

30

Contingent Planning – Definition (cont.)

(D) for all triples (δ, ρ, s), if
it is not the case that EnvBlocked(〈ρ, s〉) and
FiniteEnvTrans∗(〈ρ, s〉) and
for all ρ′, s′

EnvTransm(〈ρ, s〉, 〈ρ′, s′〉) implies
for some σ′, R(σ′, δ, ρ′, s′),

then R(σ, δ, ρ, s) where
σ = if Done(actsPerf(s, s1)) then σ1 else

. . .

if Done(actsPerf(s, sn)) then σn else nil

and EnvTransm(〈ρ, s〉) = {〈ρ1, s1〉, . . . , 〈ρn, sn〉}
and R(σi, δ, ρi, si) for i = 1, . . . , n.

31

Contingent Planning Implementation

Relies on possible values implementation of IndiGolog [SarVas05].

Handles knowledge producing effects of observing environment
actions of the form: exogenous action a is possible iff fluent f

has/does not have value v, when condition w holds.

Implemented by adapting [SarVas05]’s regression mechanism.

32

Interfacing with a Robot Control Architecture
E.g. [LTJ99]

User

Hardware World

Module
Navigation

Low-Level

Module
Control

Indigolog
High-Level
Control
Module

path planning pose maintenance map editing

path following collision avoidance

Indigolog
Control
Program

Indigolog

Interpreter

robot status
sensor data

Interface

primitive actions exogenous events

path to be followed
sensor control instructions

33

Interfacing High-Level Controller
with Rest of Architecture

One approach: view rest of architecture as another agent; prim-
itive actions are commands to it and signals it sends back are
exogenous actions.

In high-level controller, use model of rest architecture.

Simple version of this in [LTJ99].

Other work on this problem: [FinPir01], and [GroLak00] on cc-
Golog for continuous control.

34

Interfacing H-L Controller, E.g. model of [LTJ99]

From navigation point of view, model robot as being in a state
robotState(s) which can change as a result of actions by the
high-level controller and exogenous events:

!
"

#
$

!
"

#
$

!
"

#
$! !

"
"

"
"

"
"

"
"

"
"

""#
!
"

#
$

$
$

$
$

$
$

$
$$%

!
"

#
$

Idle
startGoTo(p)

Moving
reachDest

Reached

Stuck

getStuck

Frozen

freezeRobot

Also action resetRobot that returns robot to Idle state; can be
performed in any state. Also fluents robotDestination(s) and
robotP lace(s).

35

Interfacing H-L Controller [LTJ99] (cont.)

So treat “going to a location” as an “activity” in the sense [Gat92];
the primitive actions are not the activity; only initiate and termi-
nate it.

36

SitCalc-Based Robot Control Work

Controllers written in situation calculus-based high-level program-
ming languages tested on real robots at York, U. of Toronto,
and U. of Bonn; Bonn group created very successful “museum
guide” application [Bur+98].

At York: high-Level controllers that do mail delivery and handle
new orders and navigation failures; run on RWI B12 and Nomad
Super Scout.

Use low-level control and navigation modules based on software
developed for ARK project [Nic+98]. Modules run in separate
processes that communicate via TCP/IP sockets.

In [LesNg00], system using extended IndiGolog tested on sce-
narios that require planning to optimize delivery route, react-
ing/replanning when new order arrives or navigation fails.

37

Recap

High-level programming in situation calculus is promising ap-
proach to agent programming.

IndiGolog high-level programming language supports:

• complex behaviors: loops, concurrency, etc.,

• reactive behaviors: interrupts,

• on-line linear planning,

• execution in dynamic & incompletely known environments
with dynamic CWA.

Have extensions for efficient reasoning with limited forms of in-
complete knowledge and sensing, contingent planning, etc.

38

Recap (cont.)

Have interfaces to OAA [LapLes02] & JADE with some support
for FIPA ACL & protocols [MarLes04a][MarLes04b].

Logical foundations support:

• formal specification and verification,

• general reasoning with incomplete information.

Tested in applications including real robot control.

Also high-level programming in event calculus [ShaWit00] and
fluent calculus [Thielscher00], and related work on Model-Based
Programming [WCG01] and structured-reactive controllers [Beetz01].

39

Major Issues in Current Agent Research

Efficient reasoning about knowledge and action [BacPet98], [DemDel00],
[LiuLev05], progression [Thielscher05], [VasLev07].

Models of planning with sensing [BacPet98], [FPR00], [Sardina01],
[Reiter01a], [Levesque96], [LLLS01], [DLLS04], [SarPad07], [SDLL07]
and contingent planning [LesNg00], [LDO07] for agents.

Interfacing with state-of-the-art operator-based planners [BFM07],
[CHL07].

Programmer-friendly implementation, tools.

APLs with declarative goals [VVM03], [SarPad07], models of
goals and goal change [SLL07].

40

Major Issues in Current Agent Research (cont.)

Agent programming languages based on probability theory [Fin-
Pir01], [GroLak01], [BHL95] and decision theory [BRST00], [WCG01],
and reinforcement learning mechanisms for these.

Reasoning about other agents, their knowledge, goals, etc. [SLL02],
[KhaLes05], [SLL07]; finding efficient methods for this.

Game-theoretic planning [FinLuk04], [FFL07], [GLL07].

Plan, activity, and intent recognition [GouLes07].

41

Other Issues in Agent Research

Dealing with the ramification and qualification problems [Re-
iter01b].

Modeling & interfacing with non-symbolic processes, dealing
with temporal constraints [Reiter98], continuous control [Gro-
Lak00], [Sandewall97].

Accounts of sensing and knowledge change [Iocchi99], [ShaWit00],
[MciSch00], on-line sensors and just-in-time programs [DLS01],
noisy sensors [BHL95], models of vision, anchoring [CorSaf01].

42

Other Issues in Agent Research (cont.)

Execution monitoring and replanning [DRS98], agent architec-
ture.

Practical use of planning as nondeterministic programming.

MAS development tools and methodologies.

Verification.

Emotions, Personality, etc.

43

