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1 Introduction

By their very design, many robot control programs are non-terminating. To give a simple example — one
we shall use in this paper — an office coffee-delivery robot might be implemented as an infinite loop in
which the robot responds to exogenous requests for coffee that are maintained on a queue. Since a future
coffee request is always possible, the program never terminates.

As is the case for more conventional programs, we want some reliability assurances for robot con-
trollers. This paper describes the approach being taken by our Cognitive Robotics Group to expressing
and proving properties of non-terminating programs expressed in GOLOG, a high level logic program-
ming language for modeling and implementing dynamical systems. The kinds of properties we have in
mind are traditional in computer science: liveness, fairness, etc. We differ from the “classical” approaches
([LS87, Cou90, MP95]) for reasons dictated by the following characteristics of GOLOG:

1. To write a GOLOG program, the programmer first axiomatizes the primitive actions of the appli-
cation domain, using first order logic. These actions may also include exogenous events.

2. Next, she describes, in GOLOG, the complex behaviors her robot is to exhibit in this domain. This
GOLOG program is interpreted by means of a formula, this time in second order logic.

3. Finally, a suitable theorem-prover executes the program.

Because these features are all represented in classical (second order) logic, it is natural to express and
prove properties of GOLOG programs, including non-terminating ones, in the very same logic. This
approach to program proofs has the advantage of logical uniformity and the availability of classical proof
theory. It also provides a very rich language with which to express program properties, as we shall see in
this paper. Moreover, it provides for proofs of programs with incomplete initial state, the normal situation
in robotics where the agent does not have complete information about the world it inhabits. Finally, this
approach gracefully accommodates exogenous event occurrences, and proofs of program properties in
their presence.

2 Formal Preliminaries

2.1 The Situation Calculus

The situation calculus is a second order language specifically designed for representing dynamically chang-
ing worlds. All changes to the world are the result of named actions. A possible world history, which
is simply a sequence of actions, is represented by a first order term called a situation. The constant
Sp is used to denote the initial situation, namely the empty history. There is a distinguished binary
function symbol do; do(a, s) denotes the successor situation to s resulting from performing the action «.
Actions may be parameterized. For example, put(z,y) might stand for the action of putting object  on
object y, in which case do(put(A, B),s) denotes that situation resulting from placing A on B when the
history is s. Notice that in the situation calculus, actions are denoted by first order terms, and situations
(world histories) are also first order terms. For example, do(putdown(A), do(walk(L), do(pickup(A), Sp)))



is a situation denoting the world history consisting of the sequence of actions [pickup(A), walk(L), put-
down(A)]. Notice that the sequence of actions in a history, in the order in which they occur, is obtained
from a situation term by reading off the actions from right to left. The situation calculus has a distin-
guished predicate symbol Poss; the intended meaning of Poss(a, s) is that it is possible to perform the
action a in situation s.

Relations (functions) whose truth values (function values) vary from situation to situation are called
relational (functional) fluents. They are denoted by predicate (function) symbols taking a situation term
as their last argument. For example, hasCoffee(p, s) is a relational fluent whose intended meaning is that
person p has coffee in situation s; robotLocation(s) is a functional fluent denoting the robot’s location in
situation s.

When formalizing an application domain, one must specify certain axioms:

e Action precondition axioms, one for each primitive action. These characterize the relation Poss,
and give the preconditions for the performance of an action in a situation. In a robot coffee delivery
setting, such an axiom might be:

Poss(giveCoffee(person),s) =
holdingCoffee(s) A robotLocation(s) = office(person)

This says that the preconditions for the robot to give coffee to person p are that the robot is carrying
coffee, and the robot’s location is p’s office.

e Successor state axioms, one for each fluent. These capture the causal laws of the domain, together
with a solution to the frame problem [Rei91]. For our coffee delivery robot, the following is an
example:

Poss(a, s) D [holdingCoffee(do(a,s)) =
a = pickupCoffee Vv
holdingCoffee(s) A ~(Iperson)a = giveCoffee(person)].

In other words, provided the action a is possible, the robot will be holding a cup of coffee after
action a is performed iff a is the action of the robot picking up the coffee, or the robot is already
holding coffee and a is not the action of the robot giving that coffee to someone.

e Unique names axioms for the primitive actions, stating that different names for actions denote
different actions.

e Axioms describing the initial situation — what is true initially, before any actions have occurred.
This is any finite set of sentences which mention no situation term, or only the situation term Sp.
Examples of axioms for the initial situation for our coffee delivery example are:

=(Ip)hasCoffee(p, Sy), robotLocation(Sy) = CM.

These have the intended reading that initially, no one has coffee, and the robot is located at the
coffee machine (C'M).

See [LRL*97] for a full description.

2.2 GOLOG

GOLOG [LRL™97] is a situation calculus-based logic programming language that allows for defining
complex actions using a repertoire of user specified primitive actions. GOLOG provides the usual kinds
of imperative programming language control structures as well as various forms of nondeterminism.
Briefly, GOLOG programs are formed by using the following constructs:

1. Primitive actions: a. Do action a in the current situation. Actually a is a pseudo-action obtained
from an action by suppressing the situation argument in each functional fluent. The function als]
that given a pseudo-action a and a situation s returns the original action (see [LRLT97]).

2. Test actions: ¢?. Test the truth value of expression ¢ in the current situation. As for primitive
actions, ¢ is a pseudo-formula obtained from a situation calculus formula by suppressing all situation
arguments. The function ¢[s] that given a pseudo-formula ¢ and a situation s returns the original
formula.

3. Sequence: d1; 9. Execute program 4, followed by program d,.



4. Nondeterministic action choice: 61 | d2. Execute d; or ds.

ot

Nondeterministic choice of arguments: (rz)d. Nondeterministically pick a value for z, and for that
value of z, execute program 0.

Nondeterministic repetition: §*. Execute ¢ a nondeterministic number of times.
While loops: while ¢ do § endWhile, which is expressed as (¢7;6)*; —¢?).
Conditionals: if ¢ then 6; else d2, which is expressed as (¢7;01) | (—d7;d2).

© »® N

Procedures, including recursion: proc ProcName(V) 0procName endProc.

3 Single step semantics for GOLOG

In [LRL*97], GOLOG programs are interpreted by means of a special relation Do(d,s,s’) that given
a (generally nondeterministic) program ¢ and a situation s returns a possible situation s’, resulting by
executing ¢ starting from s. Actually in [LRL197] the relation Do is not denoted by a predicate, but
instead it is defined implicitly by using macros expansion rules such as:

Do(6y; 02, s, s’)déf(ﬂs”)Do((Sl,s, s") N Do(d2,5s",s")
Do(01 | 02,5, s’)défDo((Sl, s,8") V Do(d2,s,s)

Do(6*,5,5") < (YP)[... > P(s, "]

where ... stands for the conjunction of:
(Vs,s)P(s,s)
(Vs,s",s")P(s,s") A Do(d,s",s") D P(s,s")

one for each construct in the language. By using such macro expansions rules the relation Do(J, s, s") for
the particular program ¢ is defined by a (generally second order) formula ®;(s, s’) not mentioning ¢ at
all. This is very convenient, since it completely avoids the introduction of programs into the language
(they are used only during the macro expansion process to get the formulas ®5(s,s’) corresponding to
Do(6,s,s")). Observe however that in this way programs cannot be quantified over, because they are not
terms of the language of the situation calculus.

The kind of semantics Do associates to programs, which is based on the complete evaluation of
the program, is sometimes called evaluation semantics [Hen90]. Such a semantics is not well suited to
interpret non-terminating programs, like infinite loops, since for such programs the evaluation can never
be completed and a final situation can never be reached.

For non-terminating programs one needs to rely on a semantics that allows for interpreting segments
of program ezecutions. So we adopt a kind of semantics called computational semantics [Hen90], which is
based on “single steps” of computation, or transitions'. A step here is either a primitive or a test action.
We begin by introducing two special relations, Final and Trans. Final() is intended to say that program
0 is in a final state, i.e. it may legally terminate in the current situation. Trans(d,s,d’,s’) is intended to
say that program ¢ in situation s may legally execute one step, ending in situation s’ with program ¢’
remaining.

To follow this approach it is necessary to quantify over programs and so, unlike in [LRL*97], we need
to encode GOLOG programs as first-order terms, including introducing constants denoting variables, and
so on. This is laborious but quite straightforward [Lei94]?>. We omit all such details here and simply use
programs within formulas as if they were already first-order terms.

Final and Trans are denoted by predicates defined inductively on the structure of the first argument.
It is convenient to include a special “empty” program e, denoting that nothing of the program remains
to be performed.

IBoth types of semantics belong to the family of structural operational semantics introduced in [Plo81].
2We assume that the predicates introduced in this section, including Final and Trans, cannot occur in tests, hence
disallowing self-reference.



The definition of Final is as follows:

(V6) Final(8) = (YF)[... > F(6)]

where . .. stands for the conjunction of the universal closure of the following clauses:

€
FE53) F(d2) D F(01;02)
F(5)V F(52) 5 F(éy | 62)
F(0) 5 F((m2)d))
F(6%)
F(0procName) D F(ProcName(Z))

Observe that being final is a syntactic property of programs: programs of a certain form are considered
to be in a final state. Moreover being final does not depend on the objects the program deals with, indeed
Final((72)0) and Final(ProcName(#)) depend only on § and dp;oecname and not on the partlcular values
of z and & respectively. Observe that from the above definition we get that primitive and test actions
are never final: for all actions a Final(a) = False and for all tests ¢7 Final(¢?) = False.

The definition of Trans is as follows:?

(V4,s,8', ") Trans(d, s,8", ') = (VT)[... D T(4,s,08',s")]

where ... stands for the conjunction of the universal closure of the following clauses:
Poss(a[s],s) D T(a,s,e,do(a[s], s))
¢ls] DT (7, 5,¢,5)

T(61,s,01,s") D T(d1;02,s,07;d2,8")
Final(61) A T(02,5,d%,s") D T(d1;02,s,05,s")

T(61,s,01,8") DT (1 | d2,8,01,5")
T(6275765)SI) ) T((sl | 6275765)3,)

(FY)T(6;,5,0",5") D T((mz)é(x),s,d',s")
T(6,s,0',s") DT(6*,s,0';0%,s")
((6ProcName)" s,0',s') D T'(ProcName(%), s, ', s")

The clauses defining Trans characterize when a configuration (§,s) can evolve (in a single step) to a
configuration (&', s’). Intuitively they can be read as follows:

e (a,s) evolves to (g,do(a[s], s)), provided a[s] is possible in s. Observe that after having performed
a, nothing remains to be performed.

(¢?, s) evolves to (g, s), provided that ¢[s] holds. Otherwise it cannot proceed. Observe that in any
case the situation remains unchanged.

(01509, s) can evolve to (d1; d2, s"), provided that (d1, s) can evolve to (41, s"). Moreover it can evolve
to (8%, "), provided that d; is final and (d2, s) can evolve to (d5,s').

(01 | 92, s) can evolve to (0',s'), provided that either (d1,s) or (d2,s) can do so.

((r2)d, ) can evolve to (&', s'), provided that there exists a y such that (J;,s) can evolve to (&', s')
— z is bound by 7 in (7z)d and is typically free in J.

(6*, s) can evolve to (8'; 9, s") provided that (d, s) can evolve to (¢’,s’). Observe that (6*,s) can also
not evolve at all, since §* is final.

(ProcName(Z), s) can evolve to (0', "), provided that the body dp,.ocName Of the procedure ProcName,
with the actual parameters Z substituted for the formal parameters ¢, can do so.

The possible configurations that can be reached by a program 4 starting in a situation s are those
obtained by repeatly following the transition relation denoted by Trans starting from (4, s), i.e. those in

3Here, 45 is the usual notion of substitution, in which the nondeterministic choice operator = is treated like a quantifier.



the reflexive transitive closure of the transition relation. Such a relation is denoted by the “reflexive-
transitive closure” of Trans, Trans® defined as:

(Vd,s,8',s") Trans* (4, s,0',s") =VU[... D U(4,s,0¢', s')]

where . .. stands for the conjunction of the universal closure of the following clauses:
U(6,s,0,s)
U(d,s,0",s") A Trans(d',s',8",s") D U(d,s,0",s")

Using Trans™ and Final we may denote the relation Do as follows:
Do(4, s, s')déf(Elé') Trans*(6,s,8',s") A Final(§')

In other words, Do(d,s,s") holds if it is possible to repeatedly single-step the program §, obtaining a
program ¢’ and a situation s’ such that ¢’ can legally terminate in s’. Note that this formulation of Do
is equivalent to the one in [LRLT97] (c.f. [Hen90]).

4 Exogenous actions

Exogenous action are primitive actions that are not under the control of the program. They are executed
by other agents in an asynchronous way wrt the program. Trans can be easily modified to take into
account exogenous actions as well. It suffice to add to the above definition a clause having, as a first
approximation, the form:

Ezo(exo) A Poss(ezxo,s) D T'(4,s,d,do(exo, s))

which says that any configuration (J, s) can evolve, due to the occurrence of an exogenous action ezxo, to
(6,do(exo, s)), where the situation has changed but the program hasn’t.

The above clause enables the occurrence of an exogenous action exo every time the action preconditions
for exo, and hence Poss(exo, s), are true. However it is of interest, to restrict further the actual occurrence
of exo along a sequence of transitions, establishing some sort of dynamics for exogenous actions. Such a
dynamics has a role similar to that of programs for normal primitive actions although typically it is not
strict enough to extract a program that implements it. Rather the dynamics of exogenous actions has to
be specified by means of suitable axioms.

A possible way to follow such a strategy is to introduce a special fluent DynaPoss(exo, s) and modify
Trans by introducing the following refinement of the above clause:

Ezo(exo) A Poss(exo, s) A DynaPoss(exo,s) D T(4, s, d, do(exo, s)).

Then one uses special axioms expressing the dynamics of exogenous actions by specifying in which situa-
tions s along a sequence of transitions DynaPoss(exo, s) holds. Such axioms may express sophisticated
temporal /dynamic laws and typically they are going to be second order. Observe that exo can actually
occur only if both Poss(exo, s) and DynaPoss(exo, s) hold in s.

5 Logical representation of inductive definitions and fixpoints

The relations Trans and Final are defined inductively. Inductive definitions [Acz77, Mos74] are broadly
used in mathematical logic for defining sets. For the past several years they became popular in computer
science [CC92). A rule-based inductive definition is a set R of rules of the form £, where P is the set of
premises and c is the conclusion, together with a closure condition: a set Z is R-closed if each rule in
R whose premises are in Z also has its conclusion in Z. A set H, inductively defined by R, is given by
H={Z | Z is Rclosed} or by H = |J{Z | Z is R-closed}. The former is called a positive inductive
definition of H, the latter is called a negative inductive or coinductive definition of H. Let U be a set.
An operator induced by an inductive definition is a total mapping I' : Pow(U) +— Pow(U), such that

P
[(Z)={ceU|3PCZ : —€R}

That is, I' is a mapping taking sets to sets.
Inductive definitions are strongly related to fixpoint properties i.e. properties defined as solutions of
recursive equations. Specifically, positive inductive definitions are related to least fixpoints. i.e. minimal



solution of the recursive equations, whereas negative inductive definitions are related to greatest fixpoints,
i.e. maximal solutions of the recursive equations. Dynamic properties are typically fixpoint properties,
expressed as the least or greatest solutions of certain recursive logical equations (e.g. see [Sti96]).

Every property definable as an extreme fixpoint must have, by definition:

e its own construction principle, a recursive equation a fixpoint of which is our property;

e an appropriate induction or coinduction principle to guarantee the minimality or maximality of the
solution of the recursive equation.

5.1 Construction principle

To define a set Z, here denoted by a predicate Z (&), we need to say what its elements are. The construction
principle tells us how to obtain these elements recursively.

(V2)Z(7) = 8(Z, 7) (1)

In this case ® is called a constructor for Z. Any solution of this recursive equation is called a fizpoint of the
operator ®. The Knaster-Tarski Theorem [Kna28, Tar55] guarantees that if the operator ® is monotone,
the equation (1) has both a least and a greatest solution. A sufficient condition for monotonicity is that
all occurrence of Z occur within a even number of negations?. This condition is always satisfied in this

paper.

5.2 Induction principle: Least fixpoints

To guarantee that Z is the smallest solution, we apply the induction principle:®
VP, D){[(Vy)®(P, ) D P(§)] D [Z(Z) > P(D)]} (2)
i.e., whatever solution P of the recursive specification we take, Z is included in it.

A set Z satisfying construction principle (1) and induction principle (2) is denoted by pup 7®(P,%)(Z),
and it is called a least fizpoint of an operator ®(P, ). Note that in pp y®(P,7)(Z) the predicate variable
P and the individual variables ¢ are considered bounded by u, while the individual variables Z are free.
Another view of pupy®(P,#)(Z) is that upy®(P,¥) is the name of a defined predicate, and & are its
arguments.

We can rewrite the induction principle (2) in the following way

(Vi){Z(Z) D [(VP)[(Vi)®(P, %) D P()] > P(Z)]} (3)

Notice that implication in the opposite direction follows from the construction principle (1). We obtain

(VO ppy® (P, §) () = [(VP)[(VH)®(P,5) D P(i)] > P(D)]} (4)

The last sentence is often considered as a formal definition of a least fixpoint. Observe that it has exactly
the form we have used to define Trans and Final (as well as Do(d6*,s,s’) in [LRL*97]).

5.3 Coinduction principle: Greatest fixpoints

To guarantee that Z is the biggest solution of (1), we apply the coinduction principle:

VP, D){[(V§)P() > (P, )] D [P(¥) D Z(D)]} (5)

i.e., whatever solution P of the recursive specification we take, Z includes it.
We can rewrite the coinduction principle (5) in the following way

(VE{[EP)(VH) P(G) > @(P,i)] A P(F)] > Z(7)} (6)

An explicit expression for a greatest fixpoint can be obtained in a similar way as was done for a least
fixpoint:
(V) {vpy®(P,§) (%) = [BP)[(VH)P(Y) > ®(P,§)] A P(D)]} (7)

The last sentence can be taken as a definition of a greatest fixpoint.

4Interpreting ® D ¥ as an abbreviation for -® v ¥
5The idea of defining a least fixpoint using two principles, construction and induction, is from [Heh93].



6 Examples of expressible dynamic properties

With Trans and Final in place a wide variety of dynamic properties can be expressed by relying on second
order formulae expressing least and greatest fixpoint properties. In particular properties expressible
by logics of programs, such as dynamic logics [KT90], mu-calculus [Par70, Sti96], and temporal logics
[Eme96], can be rephrased in our setting. Let us present some examples.

1. The formula:
Q1(60, 50) 2 pip.s.s[¥(5,5) Vv (30", ') Trans(5, 5,0', ') A P(8',5")](do, 50)

(where dp, so are individual variables) defines a predicate QQ1(do, So) that denotes the smallest set
of configurations C such that a configuration (4, s) belongs to this set (the predicate @ is true on
(6, s)) if and only if either 4 is true on (4, s) or there exists a configuration (¢', s’), reachable in one
step by the relation Trans, which also belongs to the set C'.

In this way the formula expresses that from each configuration (dp,so) on which the specified
predicate is true, there exists an execution path that eventually reaches a configuration (4,s) on
which 1 is true.

As a special case, by taking (9, s)défgzﬁ(s) A Final(0) one can express that there exists a terminating
execution of program dg starting from situation sg such that ¢ is true in the final situation.

2. The formula:
Q2 (80, so)défup,57s{z/)(5, s)V [(30',5") Trans(d, s,d',s")] A (V4',s") Trans(d, s,4',s") D P(&', s")}(do, s0)

defines a predicate Q2(d,s0) that denotes the smallest set of configurations C> such that the
predicate is true on configuration (4, s) if and only if either ¢ is true on (d,s) or there exists a
configuration (&', s') reachable in one step by the relation Trans, and on all such configurations the
predicate is still true.

In this way the formula expresses that from each configuration (Jp,so) on which the specified
predicate is true, all execution paths eventually reach a configuration (J, s) on which ¢ is true.

3. The formula:
Q3(60, 50) L vps.5[1(5,5) A (30", ') Trans(s,5,8', ') A P(&',5")](Jo, 50)

defines a predicate Q3(do,s0) that denotes the greatest set of configurations C3 such that the
predicate is true on configuration (4, s) if and only if both ¢ is true on (J,s) and the predicate is
still true on at least one configuration (', s’) reachable in one step by the relation Trans.

In this way the formula expresses that from each configuration (Jp,so) on which the specified
predicate is true, there exists a non-terminating execution path along which ¢ is always true.

. d . . . .
As a special case, by ¥(9, s) éfTrue, one can express that there exists a non-terminating execution
path.

4. The formula:
Qu(60,50) L vps.[10(5,5) A (V8 8") Trans(s, s, 8", ') > P(5',5")](5o, 50)

defines a predicate that denotes the greatest set of configurations Cy such that the predicate is true
on configuration (4, s) if and only if both ¢ is true on (4, s) and the predicate is still true on each
configuration (¢’,s’) reachable in one step by the relation Trans.

In this way the formula expresses that from each configuration (Jp,sg) on which the specified
predicate is true, along all execution paths v is always true.

As a special case, by (9, s)déf—rFinal(é)/\(Elé’, s") Trans(d, s,0', s"), one can express that all execution
paths are non-terminating and no final state is ever reached.



7 Example: A Coffee Delivery Robot

Here, we describe a robot whose task is to deliver coffee in an office environment. The robot can carry
just one cup of coffee at a time, and there is a central coffee machine from which it gets the coffee. The
robot receives asynchronous requests for coffee from employees. These requests are put in a queue. The
robot continuously takes the first request from the queue and serves coffee to the specified person. The
use of the queue guarantees that all requests will in fact be served (implementing a fair serving policy).
7.1 Representation of the queue

As usual, to define an abstract data type we need to specify the domain of its values, and its functions
and predicates.

The domain of values for queues is constructed inductively from the constant nil and the functor
cons(-,-) as follows:5

(V@) IsQueue(q) = (VQ)[... > Q(q)]

where ... stands for the conjunction of:
Q(nil)
(Vf,m)Q(r) D Q(cons(f,r))

The functions and predicates for queues are the usual first(-), dequeue(-), enqueue(-,-) and isEmpty(-).
They are defined in our setting as follows:

(Vf,r)first(cons(f,r)) = f (unspecified for nil)
(Vf,r)dequeue(cons(f,r)) =r (unspecified for nil)

(Vp)enqueue(nil, p) = cons(p, nil)
(Vp, f,r)enqueue(cons(f,r),p) = cons(f, enqueue(r, p))

(Vq)isEmpty(q) = (g = nil)

To these we add the function length(-) that returns the length of the queue, and the predicate isFull(-)
since we are going to need queues of a bounded length.

length(nil) =0
(Vf,r)length(cons(f,r)) =1+ length(r)

(Vq)isFull(q) = (length(q) = 100)
We enforce unique name assumption for terms built from nil and cons(:,), but obviously not for those

built with the functions dequeue(-), enqueue(-,-) and length(-).

7.2 Formalization of the Example

Primitive Actions:

e requestCoffee(person). A request for coffee is received from the employee person. This action is
an erogenous one, i.e. an action not under the control of the robot. (Vp)Ezo(requestCoffee(p))
holds.

e select Request(person). The first request in the queue is selected, and the employee person that
made that request will be served.

e pickupCoffee. The robot picks up a cup of coffee from the coffee machine.
e giveCoffee(person). The robot gives a cup of coffee to person.
e startGo(locy,locy). The robot starts to go from location loc; to locs.

e endGo(locy, locs). The robot ends its process of going from location loc; to locs.

6Equivalently, (Vgo)IsQueue(qo) = pq,qlq = nil vV (3f,r)g = cons(f,7) A Q(r)](go)-



Fluents:
e queue(s). A functional fluent denoting the queue of requests in situation s.
e robotLocation(s). A functional fluent denoting the robot’s location in situation s.
e hasCoffee(person,s). person has coffee in s.
e going(locy,locs, s). In situation s, the robot is going from loc; to locs.

e holdingCoffee(s). In situation s, the robot is holding a cup of coffee.

Situation Independent Predicates and Functions:
e office(person). Denotes the office of person.
e C'M. Constant denoting coffee machine’s location.

e Sue, Mary, Bill, Joe. Constants denoting people.

Primitive Action Preconditions:

Poss(requestCoffee(p),s) = —isFull(queue(s))

Poss(selectRequest(p), s) = —isEmpty(queue(s)) A p = first(queue(s))
Poss(pickupCoffee, s) = —holdingCoffee(s) A robot Location(s) = CM
Poss(giveCoffee(person),s) = holdingCoffee(s) A robotLocation(s) = office(person)
Poss(startGo(locy, locz), s) = —(31,1")going (1,1, s) A locy # locy A robot Location(s) = loc
Poss(endGo(locy,locs), s) = going(locy, loca, s).

Successor State Axioms:
Poss(a, s) D [queue(do(a,s)) = q =
(Ip)a = requestCoffee(p) A ¢ = enqueue(queue(s),p) V
(3p)a = select Request(p) A g = dequeue(queue(s),p) V
(Vp)a # requestCoffee(p) A a # select Request(p) A ¢ = queue(s)]

Poss(a, s) D [hasCof fee(person,do(a, s)) =
a = giveCoffee(person) V hasCoffee(person, s)]

Poss(a, s) D [robotLocation(do(a, s)) = loc =
(Jloc")a = endGo(lod ,loc) V
robot Location(s) = loc A =(3loc’,loc)a = endGo(loc',loc")]

Poss(a, s) D [going(l,1',do(a, s)) =
a = startGo(l,1") Vv
going(l,1',s) A a # endGo(l,1")]

Poss(a, s) D [holdingCoffee(do(a,s)) =
a = pickupCoffee V
holdingCoffee(s) A ~(Iperson)a = giveCoffee(person)].

Additional Axioms: 7

(Vs)IsQueue(queue(s)) (the values of queue(-) are queues)

Unique names axioms stating that the following terms, together with those formed from nil and cons(:, -)
(see above), are pairwise unequal:

Sue, Mary, Bill, Joe, CM, office(Sue),
office(Mary), office(Bill), office(Joe).

"The first axiom is not strictly necessary, we add it for sake of clarity.



Initial Situation:
robot Location(Sy) = CM A —holdingCoffee(Sp) A =(3l,1")going(l,l’, So) A
=(Ip)hasCoffee(p, So) A queue(So) = nil

Robot’s GOLOG Program: The robot execute the program DeliverCoffee defined as follows (note
the suppressed situation argument in primitive and test actions):

proc DeliverCoffee
while True do
if ~isEmpty(queue)
then (wp)select Request(p); ServeCoffee(p)
else True? (skip)
endWhile

endProc

proc ServeCoffee(p)
Goto(CM);
pickupCoffee;
Goto(of fice(p));

giveCoffee(p)
endProc

proc Goto(loc)
startGo(robot Location, loc);
endGo(robot Location, loc)
endProc

Dynamics of Exogenous Actions: Along all possible evolutions of any program dg, starting from Sy,

into any configuration, in a finite number of transitions, a situation s is reached where somebody may

request coffee (DynaPoss holds) (provided that it is possible to request coffee, i.e. that also Poss holds):
(Vdo, 9, s) Trans* (0o, So,d, s) D ExoLaws(d, s)

ExoLaws(61, sl)déf

we.5,s{[(3p) DynaPoss(requestCoffee(p),s)| V [(Vd',s' ) Trans(d,s,d',s") D E(',s")]}(d1, s1)

7.3 Reasoning

Next we show some dynamic properties of the overall system (the program plus the exogenous actions).
First it is easy to see, from its structure, that the program DeliverCoffee will never reach a final
configuration:

(V0, s) Trans* (DeliverCoffee, So, d,s) D = Final(d).
A more complex property that is possible to show is the following: every request for coffee sooner or later
will be served. Formally, the fairness property Fair(DeliverCoffee,Sp) holds, where:

Fair(do, so)déf

(Vp, 9, s)T'rans*(do, so, 9, do(requestCoffee(p), s)) D EventuallyServed(p, §, do(requestCoffee(p),s))
and
EventuallyServed(p, 61, sl)déf
up,s,s{[(3s")s = do(select Request(p), s")] V
[((6".s")Trans(d,s,8',s")) A (V' s )Trans(6,s,d',s") D P(¢',s")]}(d1,51)
It is also possible to show that there exists an (infinite) execution path where no coffee is ever served:
Possibly AlwaysIdle(DeliverCoffee, Sy)

where

Possibly AlwaysIdle(do, so)déf

vas,s{[(Vp,s") (s # do(select Request(p), s")] A (3, s")Trans(d,s,d’,s") A A(d', s")]} (o, So)-

However, by the fairness property above, this means that no requests for coffee were made along that
execution path.
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8 Conclusion and further work

In this paper we have given an account of non-terminating programs in the Situation Calculus. The
framework obtained is quite powerful. It allows the specification of the dynamic system by modeling one
agent with a program, and external events by suitable dynamic laws (extensions to multiple agents are
also possible, see [DGLLI7] for hints). Observe that although related this framework is more general than
that typically considered in program verification, where exogenous actions that are specified by dynamic
laws (axioms) are not allowed. There are many directions for further research. Among these we mention
the development of systematic techniques for verification, such as suitable induction principles.
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