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� Introduction

By their very design� many robot control programs are non�terminating� To give a simple example � one
we shall use in this paper � an o�ce co�ee�delivery robot might be implemented as an in�nite loop in
which the robot responds to exogenous requests for co�ee that are maintained on a queue� Since a future
co�ee request is always possible� the program never terminates�

As is the case for more conventional programs� we want some reliability assurances for robot con�
trollers� This paper describes the approach being taken by our Cognitive Robotics Group to expressing
and proving properties of non�terminating programs expressed in GOLOG� a high level logic program�
ming language for modeling and implementing dynamical systems� The kinds of properties we have in
mind are traditional in computer science	 liveness� fairness� etc� We di�er from the 
classical� approaches
�
LS��� Cou��� MP���� for reasons dictated by the following characteristics of GOLOG	

�� To write a GOLOG program� the programmer �rst axiomatizes the primitive actions of the appli�
cation domain� using �rst order logic� These actions may also include exogenous events�

�� Next� she describes� in GOLOG� the complex behaviors her robot is to exhibit in this domain� This
GOLOG program is interpreted by means of a formula� this time in second order logic�

�� Finally� a suitable theorem�prover executes the program�

Because these features are all represented in classical �second order� logic� it is natural to express and
prove properties of GOLOG programs� including non�terminating ones� in the very same logic� This
approach to program proofs has the advantage of logical uniformity and the availability of classical proof
theory� It also provides a very rich language with which to express program properties� as we shall see in
this paper� Moreover� it provides for proofs of programs with incomplete initial state� the normal situation
in robotics where the agent does not have complete information about the world it inhabits� Finally� this
approach gracefully accommodates exogenous event occurrences� and proofs of program properties in
their presence�

� Formal Preliminaries

��� The Situation Calculus

The situation calculus is a second order language speci�cally designed for representing dynamically chang�
ing worlds� All changes to the world are the result of named actions� A possible world history� which
is simply a sequence of actions� is represented by a �rst order term called a situation� The constant
S� is used to denote the initial situation� namely the empty history� There is a distinguished binary
function symbol do� do��� s� denotes the successor situation to s resulting from performing the action ��
Actions may be parameterized� For example� put�x� y� might stand for the action of putting object x on
object y� in which case do�put�A�B�� s� denotes that situation resulting from placing A on B when the
history is s� Notice that in the situation calculus� actions are denoted by �rst order terms� and situations
�world histories� are also �rst order terms� For example� do�putdown�A�� do�walk�L�� do�pickup�A�� S����
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is a situation denoting the world history consisting of the sequence of actions 
pickup�A�� walk�L�� put�
down�A��� Notice that the sequence of actions in a history� in the order in which they occur� is obtained
from a situation term by reading o� the actions from right to left� The situation calculus has a distin�
guished predicate symbol Poss� the intended meaning of Poss�a� s� is that it is possible to perform the
action a in situation s�

Relations �functions� whose truth values �function values� vary from situation to situation are called
relational �functional� �uents � They are denoted by predicate �function� symbols taking a situation term
as their last argument� For example� hasCoffee�p� s� is a relational �uent whose intended meaning is that
person p has co�ee in situation s� robotLocation�s� is a functional �uent denoting the robot�s location in
situation s�

When formalizing an application domain� one must specify certain axioms	

� Action precondition axioms� one for each primitive action� These characterize the relation Poss�
and give the preconditions for the performance of an action in a situation� In a robot co�ee delivery
setting� such an axiom might be	

Poss�giveCoffee�person�� s� �
holdingCoffee�s� � robotLocation�s� � office�person�

This says that the preconditions for the robot to give co�ee to person p are that the robot is carrying
co�ee� and the robot�s location is p�s o�ce�

� Successor state axioms� one for each �uent� These capture the causal laws of the domain� together
with a solution to the frame problem 
Rei���� For our co�ee delivery robot� the following is an
example	

Poss�a� s� � 
holdingCoffee�do�a� s�� �
a � pickupCoffee �
holdingCoffee�s� � ���person�a � giveCoffee�person���

In other words� provided the action a is possible� the robot will be holding a cup of co�ee after
action a is performed i� a is the action of the robot picking up the co�ee� or the robot is already
holding co�ee and a is not the action of the robot giving that co�ee to someone�

� Unique names axioms for the primitive actions� stating that di�erent names for actions denote
di�erent actions�

� Axioms describing the initial situation � what is true initially� before any actions have occurred�
This is any �nite set of sentences which mention no situation term� or only the situation term S��
Examples of axioms for the initial situation for our co�ee delivery example are	

���p�hasCoffee�p� S��� robotLocation�S�� � CM�

These have the intended reading that initially� no one has co�ee� and the robot is located at the
co�ee machine �CM��

See 
LRL���� for a full description�

��� GOLOG

GOLOG 
LRL���� is a situation calculus�based logic programming language that allows for de�ning
complex actions using a repertoire of user speci�ed primitive actions� GOLOG provides the usual kinds
of imperative programming language control structures as well as various forms of nondeterminism�
Brie�y� GOLOG programs are formed by using the following constructs	

�� Primitive actions� a� Do action a in the current situation� Actually a is a pseudo�action obtained
from an action by suppressing the situation argument in each functional �uent� The function a
s�
that given a pseudo�action a and a situation s returns the original action �see 
LRL������

�� Test actions� ��� Test the truth value of expression � in the current situation� As for primitive
actions� � is a pseudo�formula obtained from a situation calculus formula by suppressing all situation
arguments� The function �
s� that given a pseudo�formula � and a situation s returns the original
formula�

�� Sequence� ��� ��� Execute program ��� followed by program ���
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�� Nondeterministic action choice� �� j ��� Execute �� or ���

�� Nondeterministic choice of arguments� ��z��� Nondeterministically pick a value for z� and for that
value of z� execute program ��

�� Nondeterministic repetition� ��� Execute � a nondeterministic number of times�

�� While loops� while � do � endWhile� which is expressed as ���� ���������

�� Conditionals� if � then �� else ��� which is expressed as ���� ��� j ����� ����

�� Procedures� including recursion	 proc ProcName��v� �ProcName endProc�

� Single step semantics for GOLOG

In 
LRL����� GOLOG programs are interpreted by means of a special relation Do��� s� s�� that given
a �generally nondeterministic� program � and a situation s returns a possible situation s�� resulting by
executing � starting from s� Actually in 
LRL���� the relation Do is not denoted by a predicate� but
instead it is de�ned implicitly by using macros expansion rules such as	

Do���� ��� s� s
��
def
� ��s���Do���� s� s

��� �Do���� s
��� s��

Do��� j ��� s� s
��
def
�Do���� s� s

�� �Do���� s� s
��

Do���� s� s��
def
� ��P �
� � � � P �s� s���

where � � � stands for the conjunction of	
��s� s�P �s� s�
��s� s��� s��P �s� s��� �Do��� s��� s�� � P �s� s��

one for each construct in the language� By using such macro expansions rules the relation Do��� s� s�� for
the particular program � is de�ned by a �generally second order� formula ���s� s

�� not mentioning � at
all� This is very convenient� since it completely avoids the introduction of programs into the language
�they are used only during the macro expansion process to get the formulas ���s� s

�� corresponding to
Do��� s� s���� Observe however that in this way programs cannot be quanti�ed over� because they are not
terms of the language of the situation calculus�

The kind of semantics Do associates to programs� which is based on the complete evaluation of
the program� is sometimes called evaluation semantics 
Hen���� Such a semantics is not well suited to
interpret non�terminating programs� like in�nite loops� since for such programs the evaluation can never
be completed and a �nal situation can never be reached�

For non�terminating programs one needs to rely on a semantics that allows for interpreting segments
of program executions� So we adopt a kind of semantics called computational semantics 
Hen���� which is
based on 
single steps� of computation� or transitions�� A step here is either a primitive or a test action�
We begin by introducing two special relations� Final and Trans� Final��� is intended to say that program
� is in a �nal state� i�e� it may legally terminate in the current situation� Trans��� s� ��� s�� is intended to
say that program � in situation s may legally execute one step� ending in situation s� with program ��

remaining�
To follow this approach it is necessary to quantify over programs and so� unlike in 
LRL����� we need

to encode GOLOG programs as �rst�order terms� including introducing constants denoting variables� and
so on� This is laborious but quite straightforward 
Lei����� We omit all such details here and simply use
programs within formulas as if they were already �rst�order terms�

Final and Trans are denoted by predicates de�ned inductively on the structure of the �rst argument�
It is convenient to include a special 
empty� program 	� denoting that nothing of the program remains
to be performed�

�Both types of semantics belong to the family of structural operational semantics introduced in �Plo����
�We assume that the predicates introduced in this section� including Final and Trans� cannot occur in tests� hence

disallowing self�reference�
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The de�nition of Final is as follows	

����Final��� � ��F �
� � � � F ����
where � � � stands for the conjunction of the universal closure of the following clauses	

F �	�
F ���� � F ���� � F ���� ���
F ���� � F ���� � F ��� j ���
F ��� � F ���z����
F ����
F ��ProcName� � F �ProcName��x��

Observe that being �nal is a syntactic property of programs	 programs of a certain form are considered
to be in a �nal state� Moreover being �nal does not depend on the objects the program deals with� indeed
Final���z��� and Final�ProcName��x�� depend only on � and �ProcName and not on the particular values
of z and �x respectively� Observe that from the above de�nition we get that primitive and test actions
are never �nal	 for all actions a Final�a� � False and for all tests �� Final���� � False�

The de�nition of Trans is as follows	�

���� s� ��� s��Trans��� s� ��� s�� � ��T �
� � � � T ��� s� ��� s���
where � � � stands for the conjunction of the universal closure of the following clauses	

Poss�a
s�� s� � T �a� s� 	� do�a
s�� s��

�
s� � T ���� s� 	� s�

T ���� s� �
�

�� s
�� � T ���� ��� s� �

�

�� ��� s
��

Final���� � T ���� s� �
�

�� s
�� � T ���� ��� s� �

�

�� s
��

T ���� s� �
�

�� s
�� � T ��� j ��� s� �

�

�� s
��

T ���� s� �
�

�� s
�� � T ��� j ��� s� �

�

�� s
��

��y�T ��zy � s� �
�� s�� � T ���z���x�� s� ��� s��

T ��� s� ��� s�� � T ���� s� ��� ��� s��

T ���ProcName�
�v
�x� s� �

�� s�� � T �ProcName��x�� s� ��� s��

The clauses de�ning Trans characterize when a con�guration ��� s� can evolve �in a single step� to a
con�guration ���� s��� Intuitively they can be read as follows	

� �a� s� evolves to �	� do��
s�� s��� provided a
s� is possible in s� Observe that after having performed
a� nothing remains to be performed�

� ���� s� evolves to �	� s�� provided that �
s� holds� Otherwise it cannot proceed� Observe that in any
case the situation remains unchanged�

� ���� ��� s� can evolve to ����� ��� s
��� provided that ���� s� can evolve to ����� s

��� Moreover it can evolve
to ����� s

��� provided that �� is �nal and ���� s� can evolve to ����� s
���

� ��� j ��� s� can evolve to ���� s��� provided that either ���� s� or ���� s� can do so�

� ���z��� s� can evolve to ���� s��� provided that there exists a y such that ��zy � s� can evolve to ���� s��
� z is bound by � in ��z�� and is typically free in ��

� ���� s� can evolve to ���� �� s�� provided that ��� s� can evolve to ���� s��� Observe that ���� s� can also
not evolve at all� since �� is �nal�

� �ProcName��x�� s� can evolve to ���� s��� provided that the body �ProcName of the procedure ProcName�
with the actual parameters �x substituted for the formal parameters �v� can do so�

The possible con�gurations that can be reached by a program � starting in a situation s are those
obtained by repeatly following the transition relation denoted by Trans starting from ��� s�� i�e� those in

�Here� �zy is the usual notion of substitution� in which the nondeterministic choice operator � is treated like a quanti	er�
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the re�exive transitive closure of the transition relation� Such a relation is denoted by the 
re�exive�
transitive closure� of Trans� Trans� de�ned as	

���� s� ��� s��Trans���� s� ��� s�� � �U 
� � � � U��� s� ��� s���
where � � � stands for the conjunction of the universal closure of the following clauses	

U��� s� �� s�
U��� s� ��� s�� � Trans���� s�� ���� s��� � U��� s� ���� s���

Using Trans� and Final we may denote the relation Do as follows	

Do��� s� s��
def
� �����Trans���� s� ��� s�� � Final����

In other words� Do��� s� s�� holds if it is possible to repeatedly single�step the program �� obtaining a
program �� and a situation s� such that �� can legally terminate in s�� Note that this formulation of Do
is equivalent to the one in 
LRL���� �c�f� 
Hen�����

� Exogenous actions

Exogenous action are primitive actions that are not under the control of the program� They are executed
by other agents in an asynchronous way wrt the program� Trans can be easily modi�ed to take into
account exogenous actions as well� It su�ce to add to the above de�nition a clause having� as a �rst
approximation� the form	

Exo�exo� � Poss�exo� s� � T ��� s� �� do�exo� s��

which says that any con�guration ��� s� can evolve� due to the occurrence of an exogenous action exo� to
��� do�exo� s��� where the situation has changed but the program hasn�t�

The above clause enables the occurrence of an exogenous action exo every time the action preconditions
for exo� and hence Poss�exo� s�� are true� However it is of interest� to restrict further the actual occurrence
of exo along a sequence of transitions� establishing some sort of dynamics for exogenous actions� Such a
dynamics has a role similar to that of programs for normal primitive actions although typically it is not
strict enough to extract a program that implements it� Rather the dynamics of exogenous actions has to
be speci�ed by means of suitable axioms�

A possible way to follow such a strategy is to introduce a special �uent DynaPoss�exo� s� and modify
Trans by introducing the following re�nement of the above clause	

Exo�exo� � Poss�exo� s� �DynaPoss�exo� s� � T ��� s� �� do�exo� s���

Then one uses special axioms expressing the dynamics of exogenous actions by specifying in which situa�
tions s along a sequence of transitions DynaPoss�exo� s� holds� Such axioms may express sophisticated
temporal dynamic laws and typically they are going to be second order� Observe that exo can actually
occur only if both Poss�exo� s� and DynaPoss�exo� s� hold in s�

� Logical representation of inductive de�nitions and �xpoints

The relations Trans and Final are de�ned inductively� Inductive de�nitions 
Acz��� Mos��� are broadly
used in mathematical logic for de�ning sets� For the past several years they became popular in computer
science 
CC���� A rule�based inductive de�nition is a set R of rules of the form P

c
� where P is the set of

premises and c is the conclusion� together with a closure condition	 a set Z is R�closed if each rule in
R whose premises are in Z also has its conclusion in Z� A set H � inductively de�ned by R� is given by
H �

T
fZ j Z is R�closedg or by H �

S
fZ j Z is R�closedg� The former is called a positive inductive

de�nition of H � the latter is called a negative inductive or coinductive de�nition of H � Let U be a set�
An operator induced by an inductive de�nition is a total mapping ! 	 Pow�U� 	
 Pow�U�� such that

!�Z� � fc � U j �P � Z 	
P

c
� Rg

That is� ! is a mapping taking sets to sets�
Inductive de�nitions are strongly related to �xpoint properties i�e� properties de�ned as solutions of

recursive equations� Speci�cally� positive inductive de�nitions are related to least �xpoints� i�e� minimal
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solution of the recursive equations� whereas negative inductive de�nitions are related to greatest �xpoints�
i�e� maximal solutions of the recursive equations� Dynamic properties are typically �xpoint properties�
expressed as the least or greatest solutions of certain recursive logical equations �e�g� see 
Sti�����

Every property de�nable as an extreme �xpoint must have� by de�nition	

� its own construction principle� a recursive equation a �xpoint of which is our property�

� an appropriate induction or coinduction principle to guarantee the minimality or maximality of the
solution of the recursive equation�

��� Construction principle

To de�ne a set Z� here denoted by a predicate Z��x�� we need to say what its elements are� The construction
principle tells us how to obtain these elements recursively�

���x�Z��x� � ��Z� �x� ���

In this case � is called a constructor for Z� Any solution of this recursive equation is called a �xpoint of the
operator �� The Knaster�Tarski Theorem 
Kna��� Tar��� guarantees that if the operator � is monotone�
the equation ��� has both a least and a greatest solution� A su�cient condition for monotonicity is that
all occurrence of Z occur within a even number of negations�� This condition is always satis�ed in this
paper�

��� Induction principle� Least �xpoints

To guarantee that Z is the smallest solution� we apply the induction principle��

��P� �x�f
���y���P� �y� � P ��y�� � 
Z��x� � P ��x��g ���

i�e�� whatever solution P of the recursive speci�cation we take� Z is included in it�
A set Z satisfying construction principle ��� and induction principle ��� is denoted by 
P��y��P� �y���x��

and it is called a least �xpoint of an operator ��P� �y�� Note that in 
P��y��P� �y���x� the predicate variable
P and the individual variables �y are considered bounded by 
� while the individual variables �x are free�
Another view of 
P��y��P� �y���x� is that 
P��y��P� �y� is the name of a de�ned predicate� and �x are its
arguments�

We can rewrite the induction principle ��� in the following way

���x�fZ��x� � 
��P �
���y���P� �y� � P ��y�� � P ��x��g ���

Notice that implication in the opposite direction follows from the construction principle ���� We obtain

���x�f
P��y��P� �y���x� � 
��P �
���y���P� �y� � P ��y�� � P ��x��g ���

The last sentence is often considered as a formal de�nition of a least �xpoint� Observe that it has exactly
the form we have used to de�ne Trans and Final �as well as Do���� s� s�� in 
LRL������

��� Coinduction principle� Greatest �xpoints

To guarantee that Z is the biggest solution of ���� we apply the coinduction principle�

��P� �x�f
���y�P ��y� � ��P� �y�� � 
P ��x� � Z��x��g ���

i�e�� whatever solution P of the recursive speci�cation we take� Z includes it�
We can rewrite the coinduction principle ��� in the following way

���x�f
��P �
���y�P ��y� � ��P� �y�� � P ��x�� � Z��x�g ���

An explicit expression for a greatest �xpoint can be obtained in a similar way as was done for a least
�xpoint	

���x�f�P��y��P� �y���x� � 
��P �
���y�P ��y� � ��P� �y�� � P ��x��g ���

The last sentence can be taken as a de�nition of a greatest �xpoint�

�Interpreting 
 � � as an abbreviation for �
 ��
�The idea of de	ning a least 	xpoint using two principles� construction and induction� is from �Heh�
��
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� Examples of expressible dynamic properties

With Trans and Final in place a wide variety of dynamic properties can be expressed by relying on second
order formulae expressing least and greatest �xpoint properties� In particular properties expressible
by logics of programs� such as dynamic logics 
KT���� mu�calculus 
Par��� Sti���� and temporal logics

Eme���� can be rephrased in our setting� Let us present some examples�

�� The formula	

Q����� s��
def
� 
P���s
���� s� � ����� s��Trans��� s� ��� s�� � P ���� s������� s��

�where ��� s� are individual variables� de�nes a predicate Q����� s�� that denotes the smallest set
of con�gurations C� such that a con�guration ��� s� belongs to this set �the predicate Q� is true on
��� s�� if and only if either � is true on ��� s� or there exists a con�guration ���� s��� reachable in one
step by the relation Trans� which also belongs to the set C��

In this way the formula expresses that from each con�guration ���� s�� on which the speci�ed
predicate is true� there exists an execution path that eventually reaches a con�guration ��� s� on
which � is true�

As a special case� by taking ���� s�
def
� ��s��Final��� one can express that there exists a terminating

execution of program �� starting from situation s� such that � is true in the �nal situation�

�� The formula	

Q����� s��
def
� 
P���sf���� s� � 
����� s��Trans��� s� ��� s��� � ����� s��Trans��� s� ��� s�� � P ���� s��g���� s��

de�nes a predicate Q����� s�� that denotes the smallest set of con�gurations C� such that the
predicate is true on con�guration ��� s� if and only if either � is true on ��� s� or there exists a
con�guration ���� s�� reachable in one step by the relation Trans� and on all such con�gurations the
predicate is still true�

In this way the formula expresses that from each con�guration ���� s�� on which the speci�ed
predicate is true� all execution paths eventually reach a con�guration ��� s� on which � is true�

�� The formula	

Q����� s��
def
� �P���s
���� s� � ����� s��Trans��� s� ��� s�� � P ���� s������� s��

de�nes a predicate Q����� s�� that denotes the greatest set of con�gurations C� such that the
predicate is true on con�guration ��� s� if and only if both � is true on ��� s� and the predicate is
still true on at least one con�guration ���� s�� reachable in one step by the relation Trans�

In this way the formula expresses that from each con�guration ���� s�� on which the speci�ed
predicate is true� there exists a non�terminating execution path along which � is always true�

As a special case� by ���� s�
def
� True� one can express that there exists a non�terminating execution

path�

�� The formula	

Q����� s��
def
� �P���s
���� s� � ����� s��Trans��� s� ��� s�� � P ���� s������� s��

de�nes a predicate that denotes the greatest set of con�gurations C� such that the predicate is true
on con�guration ��� s� if and only if both � is true on ��� s� and the predicate is still true on each
con�guration ���� s�� reachable in one step by the relation Trans�

In this way the formula expresses that from each con�guration ���� s�� on which the speci�ed
predicate is true� along all execution paths � is always true�

As a special case� by ���� s�
def
� �Final��������� s��Trans��� s� ��� s��� one can express that all execution

paths are non�terminating and no �nal state is ever reached�
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� Example	 A Co
ee Delivery Robot

Here� we describe a robot whose task is to deliver co�ee in an o�ce environment� The robot can carry
just one cup of co�ee at a time� and there is a central co�ee machine from which it gets the co�ee� The
robot receives asynchronous requests for co�ee from employees� These requests are put in a queue� The
robot continuously takes the �rst request from the queue and serves co�ee to the speci�ed person� The
use of the queue guarantees that all requests will in fact be served �implementing a fair serving policy��

��� Representation of the queue

As usual� to de�ne an abstract data type we need to specify the domain of its values� and its functions
and predicates�

The domain of values for queues is constructed inductively from the constant nil and the functor
cons�
� 
� as follows	�

��q�IsQueue�q� � ��Q�
� � � � Q�q��
where � � � stands for the conjunction of	

Q�nil�
��f� r�Q�r� � Q�cons�f� r��

The functions and predicates for queues are the usual first�
�� dequeue�
�� enqueue�
� 
� and isEmpty�
��
They are de�ned in our setting as follows	

��f� r�first�cons�f� r�� � f �unspecified for nil�

��f� r�dequeue�cons�f� r�� � r �unspecified for nil�

��p�enqueue�nil� p� � cons�p� nil�
��p� f� r�enqueue�cons�f� r�� p� � cons�f� enqueue�r� p��

��q�isEmpty�q� � �q � nil�

To these we add the function length�
� that returns the length of the queue� and the predicate isFull�
�
since we are going to need queues of a bounded length�

length�nil� � �
��f� r�length�cons�f� r�� � � " length�r�

��q�isFull�q� � �length�q� � ����

We enforce unique name assumption for terms built from nil and cons�
� 
�� but obviously not for those
built with the functions dequeue�
�� enqueue�
� 
� and length�
��

��� Formalization of the Example

Primitive Actions�

� requestCoffee�person�� A request for co�ee is received from the employee person� This action is
an exogenous one� i�e� an action not under the control of the robot� ��p�Exo�requestCoffee�p��
holds�

� selectRequest�person�� The �rst request in the queue is selected� and the employee person that
made that request will be served�

� pickupCoffee� The robot picks up a cup of co�ee from the co�ee machine�

� giveCoffee�person�� The robot gives a cup of co�ee to person�

� startGo�loc�� loc��� The robot starts to go from location loc� to loc��

� endGo�loc�� loc��� The robot ends its process of going from location loc� to loc��

�Equivalently� ��q��IsQueue�q�� � �Q�q �q � nil � ��f� r�q � cons�f� r� �Q�r���q���

�



Fluents�

� queue�s�� A functional �uent denoting the queue of requests in situation s�

� robotLocation�s�� A functional �uent denoting the robot�s location in situation s�

� hasCoffee�person� s�� person has co�ee in s�

� going�loc�� loc�� s�� In situation s� the robot is going from loc� to loc��

� holdingCoffee�s�� In situation s� the robot is holding a cup of co�ee�

Situation Independent Predicates and Functions�

� office�person�� Denotes the o�ce of person�

� CM � Constant denoting co�ee machine�s location�

� Sue� Mary� Bill� Joe� Constants denoting people�

Primitive Action Preconditions�

Poss�requestCoffee�p�� s� � �isFull�queue�s��

Poss�selectRequest�p�� s� � �isEmpty�queue�s�� � p � first�queue�s��

Poss�pickupCoffee� s� � �holdingCoffee�s� � robotLocation�s� � CM

Poss�giveCoffee�person�� s� � holdingCoffee�s� � robotLocation�s� � office�person�

Poss�startGo�loc�� loc��� s� � ���l� l��going�l� l�� s� � loc� �� loc� � robotLocation�s� � loc�

Poss�endGo�loc�� loc��� s� � going�loc�� loc�� s��

Successor State Axioms�

Poss�a� s� � 
queue�do�a� s�� � q �
��p�a � requestCoffee�p� � q � enqueue�queue�s�� p� �
��p�a � selectRequest�p� � q � dequeue�queue�s�� p� �
��p�a �� requestCoffee�p� � a �� selectRequest�p� � q � queue�s��

Poss�a� s� � 
hasCoffee�person� do�a� s�� �
a � giveCoffee�person� � hasCoffee�person� s��

Poss�a� s� � 
robotLocation�do�a� s�� � loc �
��loc��a � endGo�loc�� loc� �
robotLocation�s� � loc � ���loc�� loc���a � endGo�loc�� loc����

Poss�a� s� � 
going�l� l�� do�a� s�� �
a � startGo�l� l�� �
going�l� l�� s� � a �� endGo�l� l���

Poss�a� s� � 
holdingCoffee�do�a� s�� �
a � pickupCoffee �
holdingCoffee�s� � ���person�a � giveCoffee�person���

Additional Axioms� 	

��s�IsQueue�queue�s�� �the values of queue�
� are queues�

Unique names axioms stating that the following terms� together with those formed from nil and cons�
� 
�
�see above�� are pairwise unequal	

Sue� Mary� Bill� Joe� CM� office�Sue��
office�Mary�� office�Bill�� office�Joe��

�The 	rst axiom is not strictly necessary� we add it for sake of clarity�

�



Initial Situation�

robotLocation�S�� � CM � �holdingCoffee�S�� � ���l� l
��going�l� l�� S�� �

���p�hasCoffee�p� S�� � queue�S�� � nil

Robot�s GOLOG Program� The robot execute the program DeliverCoffee de�ned as follows �note
the suppressed situation argument in primitive and test actions�	

proc DeliverCoffee
while True do

if �isEmpty�queue�
then ��p�selectRequest�p��ServeCoffee�p�
else True� �skip�

endWhile
endProc

proc ServeCoffee�p�
Goto�CM��
pickupCoffee�
Goto�office�p���
giveCoffee�p�

endProc

proc Goto�loc�
startGo�robotLocation� loc��
endGo�robotLocation� loc�

endProc

Dynamics of Exogenous Actions� Along all possible evolutions of any program ��� starting from S��
into any con�guration� in a �nite number of transitions� a situation s is reached where somebody may
request co�ee �DynaPoss holds� �provided that it is possible to request co�ee� i�e� that also Poss holds�	

����� �� s�Trans
����� S�� �� s� � ExoLaws��� s�

ExoLaws���� s��
def
�


E���sf
��p�DynaPoss�requestCoffee�p�� s�� � 
����� s��Trans��� s� ��� s�� � E���� s���g���� s��

��� Reasoning

Next we show some dynamic properties of the overall system �the program plus the exogenous actions��
First it is easy to see� from its structure� that the program DeliverCoffee will never reach a �nal
con�guration	

���� s�Trans��DeliverCoffee� S�� �� s� � �Final����

A more complex property that is possible to show is the following	 every request for co�ee sooner or later
will be served� Formally� the fairness property Fair�DeliverCoffee� S�� holds� where	

Fair���� s��
def
�

��p� �� s�Trans����� s�� �� do�requestCoffee�p�� s�� � EventuallyServed�p� �� do�requestCoffee�p�� s��

and

EventuallyServed�p� ��� s��
def
�


P���sf
��s
���s � do�selectRequest�p�� s���� �


������s��Trans��� s� ��� s��� � ����� s��Trans��� s� ��� s�� � P ���� s���g���� s��

It is also possible to show that there exists an �in�nite� execution path where no co�ee is ever served	

PossiblyAlwaysIdle�DeliverCoffee� S��

where

PossiblyAlwaysIdle���� s��
def
�

�A���sf
��p� s
����s �� do�selectRequest�p�� s���� � 
����� s��Trans��� s� ��� s�� � A���� s���g���� s���

However� by the fairness property above� this means that no requests for co�ee were made along that
execution path�

��



� Conclusion and further work

In this paper we have given an account of non�terminating programs in the Situation Calculus� The
framework obtained is quite powerful� It allows the speci�cation of the dynamic system by modeling one
agent with a program� and external events by suitable dynamic laws �extensions to multiple agents are
also possible� see 
DGLL��� for hints�� Observe that although related this framework is more general than
that typically considered in program veri�cation� where exogenous actions that are speci�ed by dynamic
laws �axioms� are not allowed� There are many directions for further research� Among these we mention
the development of systematic techniques for veri�cation� such as suitable induction principles�
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