Lecture 3: High-level Programming in the Situation Calculus: Golog and ConGolog

Yves Lespérance

Dept. of Computer Science & Engineering, York University, Toronto, Canada

June 25, 2009
Outline

The Approach

Golog

ConGolog

Formal Semantics

Implementation
<table>
<thead>
<tr>
<th>Approach</th>
<th>Golog</th>
<th>ConGolog</th>
<th>Semantics</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Outline</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>The Approach</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golog</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConGolog</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal Semantics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plan synthesis can be very hard; but often we can sketch what a good plan might look like.

Instead of planning, agent’s task is executing a high-level plan/program.

But allow nondeterministic programs.

Then, can direct interpreter to search for a way to execute the program.
• Can still do planning/deliberation.
• Can also completely script agent behaviors when appropriate.
• Can control nondeterminism/amount of search done.
• Related to work on planning with domain specific search control information.
The Approach (cont.)

- Programs are *high-level*.
- Use primitive actions and test conditions that are *domain dependent*.
- Programmer specifies preconditions and effects of primitive actions and what is known about initial situation in a logical theory, a *basic action theory* in the situation calculus.
- Interpreter uses this in search/lookahead and in updating world model.
Outline

The Approach

Golog

ConGolog

Formal Semantics

Implementation
Golog [LRLLS97]

Means “AlGOl in LOGic”. Constructs:

- $\alpha$, primitive action
- $\phi ?$, test a condition
- $(\delta_1; \delta_2)$, sequence
- if $\phi$ then $\delta_1$ else $\delta_2$ endIf, conditional
- while $\phi$ do $\delta$ endWhile, loop
- proc $\beta(\vec{x})$ $\delta$ endProc, procedure definition
- $\beta(\vec{t})$, procedure call
- $(\delta_1 \mid \delta_2)$, nondeterministic branch
- $\pi \vec{X}[\delta]$, nondeterministic choice of arguments
- $\delta^*$, nondeterministic iteration
Golog Semantics

- High-level program execution task is a special case of planning
- **Program Execution**: Given domain theory $\mathcal{D}$ and program $\delta$, find a sequence of actions $\vec{a}$ such that:

  $$\mathcal{D} \models Do(\delta, S_0, do(\vec{a}, S_0))$$

  where $Do(\delta, s, s')$ means that program $\delta$ when executed starting in situation $s$ has $s'$ as a legal terminating situation.

- Since Golog programs can be nondeterministic, may be several terminating situations $s'$.
- Will see how $Do$ can be defined later.
Nondeterminism

• A nondeterministic program may have several possible executions. E.g.:

\[ ndp_1 = (a \mid b); c \]

• Assuming actions are always possible, we have:

\[ Do(ndp_1, S_0, s) \equiv s = do([a, c], S_0) \lor s = do([b, c], S_0) \]

• Above uses abbreviation \( do([a_1, a_2, \ldots, a_{n-1}, a_n], s) \) meaning \( do(a_n, do(a_{n-1}, \ldots, do(a_2, do(a_1, s)))) \).

• Interpreter searches all the way to a final situation of the program, and only then starts executing corresponding sequence of actions.
Nondeterminism (cont.)

- When condition of a test action or action precondition is false, backtrack and try different nondeterministic choices. E.g.:
  
  \[ ndp_2 = (a \mid b); c; P? \]

- If \( P \) is true initially, but becomes false iff \( a \) is performed, then

  \[ Do(ndp_2, S_0, s) \equiv s = do([b, c], S_0) \]

  and interpreter will find it by backtracking.
Using Nondeterminism: A Simple Example

- A program to clear blocks from table:

  \[ (\pi b \ [OnTable(b)\?; \ putAway(b)])^\ast; \ \neg \exists b \ OnTable(b)\? \]

- Interpreter will find way to unstack all blocks (\(putAway(b)\) is only possible if \(b\) is clear).
Example: Controlling an Elevator

Primitive actions: \textit{up}(n), \textit{down}(n), \textit{turnoff}(n), \textit{open}, \textit{close}.

Fluents: \textit{floor}(s) = n, \textit{on}(n, s).

Fluent abbreviation: \textit{next\_floor}(n, s).

Action Precondition Axioms:

\[
\begin{align*}
\text{Poss}(\text{up}(n), s) & \equiv \text{floor}(s) < n. \\
\text{Poss}(\text{down}(n), s) & \equiv \text{floor}(s) > n. \\
\text{Poss}(\text{open}, s) & \equiv \text{True}. \\
\text{Poss}(\text{close}, s) & \equiv \text{True}. \\
\text{Poss}(\text{turnoff}(n), s) & \equiv \text{on}(n, s). \\
\text{Poss}(\text{no\_op}, s) & \equiv \text{True}.
\end{align*}
\]
Successor State Axioms:

\[
\text{floor}(\text{do}(a, s)) = m \equiv \\
a = \text{up}(m) \lor a = \text{down}(m) \lor \\
\text{floor}(s) = m \land \neg \exists n \ a = \text{up}(n) \land \neg \exists n \ a = \text{down}(n).
\]

\[
\text{on}(m, \text{do}(a, s)) \equiv \\
a = \text{push}(m) \lor \text{on}(m, s) \land a \neq \text{turnoff}(m).
\]

Fluent abbreviation:

\[
\text{next}_\text{floor}(n, s) \overset{\text{def}}{=} \text{on}(n, s) \land \\
\forall m. \text{on}(m, s) \supset |m - \text{floor}(s)| \geq |n - \text{floor}(s)|.
\]
Elevator Example (cont.)

Golog Procedures:

**proc** serve(n)
  go_floor(n); turnoff(n); open; close
endProc

**proc** go_floor(n)
  [floor = n? | up(n) | down(n)]
endProc

**proc** serve_a_floor
  π n [next_floor(n)?; serve(n)]
endProc
Elevator Example (cont.)

Golog Procedures (cont.):

**proc control**

  **while** \( \exists n \text{ on}(n) \text{ do serve}_a\text{_floor endWhile;} \)

**park**

endProc

**proc park**

  **if** floor = 0 **then** open

  **else** down(0); open

endIf

endProc
Elevator Example (cont.)

Initial situation:

\[\text{floor}(S_0) = 4, \ \text{on}(5, S_0), \ \text{on}(3, S_0).\]

Querying the theory:

\[Axioms \models \exists s \ Do(\text{control}, S_0, s).\]

Successful proof might return

\[s = do(\text{open}, do(\text{down}(0), do(\text{close}, do(\text{open},
\text{do}(\text{turnoff}(5), do(\text{up}(5), do(\text{close}, do(\text{open},
\text{do}(\text{turnoff}(3), do(\text{down}(3), S_0))))))))))).\]
Using Nondeterminism to Do Planning: A Mail Delivery Example

This control program searches to find a schedule/route that serves all clients and minimizes distance traveled:

```
proc control
    minimize_distance(0)
endProc

proc minimize_distance(distance)
    serve_all_clients_within(distance)
    | % or
    minimize_distance(distance + Increment)
endProc
```

`minimize_distance` does iterative deepening search.
A Control Program that Plans (cont.)

\[
\text{proc } \text{serve\_all\_clients\_within}(\text{distance}) \
\quad \neg \exists c \ \text{Client\_to\_serve}(c)? \ % \text{if no clients to serve, we're done} \n\mid \ % \text{or} \n\quad \pi c, d [(\text{Client\_to\_serve}(c) \wedge \ % \text{choose a client} \n\quad \quad d = \text{distance\_to}(c) \wedge d \leq \text{distance}?); \n\quad \text{go\_to}(c); \ % \text{and serve him} \n\quad \text{serve\_client}(c); \n\quad \text{serve\_all\_clients\_within}(\text{distance} - d)] \n\text{endProc}
\]
Outline

The Approach

Golog

ConGolog

Formal Semantics

Implementation
ConGolog Motivation

- A key limitation of Golog is its lack of support for concurrent processes.
- Can’t program several agents within a single Golog program.
- Can’t specify an agent’s behavior using concurrent processes. Inconvenient when you want to program reactive or event-driven behaviors.
ConGolog Motivation (cont.)

Address this by developing ConGolog (Concurrent Golog) which handles:

- concurrent processes with possibly different priorities,
- high-level interrupts,
- arbitrary exogenous actions.
Concurrency

- We model concurrent processes as *interleavings* of the primitive actions in the component processes. E.g.:

  \[ cp_1 = (a; b) \parallel c \]

- Assuming actions are always possible, we have:

  \[
  Do(cp_1, S_0, s) \equiv \\
  s = do([a, b, c], S_0) \lor s = do([a, c, b], S_0) \lor s = do([c, a, b], S_0)
  \]
Concurrency (cont.)

- Important notion: process becoming \textit{blocked}. Happens when a process $\delta$ reaches a primitive action whose preconditions are false or a test action $\phi ?$ and $\phi$ is false.

- Then execution need not fail as in Golog. May continue provided another process executes next. The process is blocked. E.g.:

$$cp_2 = (a; P?; b) \parallel c$$

- If $a$ makes $P$ false, $b$ does not affect it, and $c$ makes it true, then we have

$$Do(cp_2, S_0, s) \equiv s = do([a, c, b], S_0).$$
Approach Golog ConGolog Semantics Implementation

Concurrency (cont.)

- If no other process can execute, then backtrack. Interpreter still searches all the way to a final situation of the program before executing any actions.
New ConGolog Constructs

\( (\delta_1 \parallel \delta_2) \), concurrent execution
\( (\delta_1 \triangleright \delta_2) \), concurrent execution with different priorities
\( \delta\| \), concurrent iteration
\( <\phi \rightarrow \delta> \), interrupt.

- In \((\delta_1 \triangleright \delta_2)\), \(\delta_1\) has higher priority than \(\delta_2\). \(\delta_2\) executes only when \(\delta_1\) is done or blocked.
- \(\delta\|\) is like nondeterministic iteration \(\delta^*\), but the instances of \(\delta\) are executed concurrently rather than in sequence.
ConGolog Constructs (cont.)

- An interrupt $<\phi \rightarrow \delta>$ has trigger condition $\phi$ and body $\delta$.
- If interrupt gets control from higher priority processes and condition $\phi$ is true, it triggers and body is executed.
- Once body completes execution, may trigger again.
In Golog:

\[
\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endif} \quad \overset{\text{def}}{=} \quad (\phi?; \delta_1)\mid(\neg\phi?; \delta_2)
\]

In ConGolog:

- \textbf{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endif}, synchronized conditional
- \textbf{while } \phi \text{ do } \delta \text{ endwhile}, synchronized loop.
- \textbf{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endif} \text{ differs from } (\phi?; \delta_1)\mid(\neg\phi?; \delta_2) \text{ in that no action (or test) from an other process can occur between the test and the first action (or test) in the if branch selected } (\delta_1 \text{ or } \delta_2).
- Similarly for \textbf{while}. 
Exogenous Actions

One may also specify *exogenous actions* that can occur at random. This is useful for simulation. It is done by defining the \( \text{Exo} \) predicate:

\[
\text{Exo}(a) \equiv a = a_1 \lor \ldots \lor a = a_n
\]

Executing a program \( \delta \) with the above amounts to executing

\[
\delta \| a_1^* \| \ldots \| a_n^*
\]

In some implementations the programmer can specify probability distributions.

But strange semantics in combination with search; better handled in IndiGolog.
E.g. Two Robots Lifting a Table

- **Objects:**
  Two agents: \( \forall r \text{ Robot}(r) \equiv r = \text{Rob}_1 \lor r = \text{Rob}_2 \).
  Two table ends: \( \forall e \text{ TableEnd}(e) \equiv e = \text{End}_1 \lor e = \text{End}_2 \).

- **Primitive actions:**
  \( \text{grab}(\text{rob}, \text{end}) \)
  \( \text{release}(\text{rob}, \text{end}) \)
  \( \text{vmove}(\text{rob}, z) \)  
  move robot arm up or down by \( z \) units.

- **Primitive fluents:**
  \( \text{Holding}(\text{rob}, \text{end}) \)
  \( \text{vpos}(\text{end}) = z \)  
  height of the table end

- **Initial state:**
  \( \forall r \forall e \neg \text{Holding}(r, e, S_0) \)
  \( \forall e \text{ vpos}(e, S_0) = 0 \)

- **Preconditions:**
  \( \text{Poss(grab}(r, e), s) \equiv \forall r^* \neg \text{Holding}(r^*, e, s) \land \forall e^* \neg \text{Holding}(r, e^*, s) \)
  \( \text{Poss(release}(r, e), s) \equiv \text{Holding}(r, e, s) \)
  \( \text{Poss(vmove}(r, z), s) \equiv \text{True} \)
E.g. 2 Robots Lifting Table (cont.)

- Successor state axioms:
  \[ \text{Holding}(r, e, \text{do}(a, s)) \equiv a = \text{grab}(r, e) \lor \right\]
  \[ \text{Holding}(r, e, s) \land a \neq \text{release}(r, e) \]
  \[ vpos(e, \text{do}(a, s)) = p \equiv \right\]
  \[ \exists r, z (a = vmove(r, z) \land \text{Holding}(r, e, s) \land p = vpos(e, s) + z) \lor \right\]
  \[ \exists r a = \text{release}(r, e) \land p = 0 \lor \right\]
  \[ p = vpos(e, s) \land \forall r a \neq \text{release}(r, e) \land \right\]
  \[ \neg(\exists r, z a = vmove(r, z) \land \text{Holding}(r, e, s)) \]
• Goal is to get the table up, but keep it sufficiently level so that nothing falls off.

• $TableUp(s) \overset{\text{def}}{=} vpos(End_1, s) \geq H \land vpos(End_2, s) \geq H$
  (both ends of table are higher than some threshold $H$)

• $Level(s) \overset{\text{def}}{=} |vpos(End_1, s) - vpos(End_2, s)| \leq T$
  (both ends are at same height to within a tolerance $T$)

• $Goal(s) \overset{\text{def}}{=} TableUp(s) \land \forall s^* \leq s \ Level(s^*)$. 
Goal can be achieved by having $Rob_1$ and $Rob_2$ execute the same procedure $ctrl(r)$:

```plaintext
proc ctrl(r)
    \[ e [ TableEnd(e)?; grab(r, e) ]; \]
    while \( \neg TableUp \) do
        SafeToLift(r)?; vmove(r, A)
    endwhile
endProc
```

where $A$ is some constant such that $0 < A < T$ and

$$SafeToLift(r, s) \overset{\text{def}}{=} \exists e, e' e \neq e' \land TableEnd(e) \land TableEnd(e') \land Holding(r, e, s) \land vpos(e) \leq vpos(e') + T - A$$

**Proposition**

$$Ax \models \forall s. Do(ctrl(Rob_1) \parallel ctrl(Rob_2), S_0, s) \supset Goal(s)$$
E.g. A Reactive Elevator Controller

- ordinary primitive actions:
  
  - `goDown(e)`
  - `goUp(e)`
  - `buttonReset(n)`
  - `toggleFan(e)`
  - `ringAlarm`

  move elevator down one floor
  move elevator up one floor
  turn off call button of floor $n$
  change the state of elevator fan
  ring the smoke alarm

- exogenous primitive actions:
  
  - `reqElevator(n)`
  - `changeTemp(e)`
  - `detectSmoke`
  - `resetAlarm`

  call button on floor $n$ is pushed
  the elevator temperature changes
  the smoke detector first senses smoke
  the smoke alarm is reset

- primitive fluents:
  
  - `floor(e, s) = n` the elevator is on floor $n$, $1 \leq n \leq 6$
  - `temp(e, s) = t` the elevator temperature is $t$
  - `FanOn(e, s)` the elevator fan is on
  - `ButtonOn(n, s)` call button on floor $n$ is on
  - `Smoke(s)` smoke has been detected
E.g. Reactive Elevator (cont.)

- defined fluents:
  \[ \text{TooHot}(e, s) \overset{\text{def}}{=} \text{temp}(e, s) > 3 \]
  \[ \text{TooCold}(e, s) \overset{\text{def}}{=} \text{temp}(e, s) < -3 \]

- initial state:
  \[ \text{floor}(e, S_0) = 1 \quad \neg \text{FanOn}(e, S_0) \quad \text{temp}(e, S_0) = 0 \]
  \[ \text{ButtonOn}(3, S_0) \quad \text{ButtonOn}(6, S_0) \]

- exogenous actions:
  \[ \forall a. \text{Exo}(a) \equiv a = \text{detectSmoke} \lor a = \text{resetAlarm} \lor \]
  \[ \exists e a = \text{changeTemp}(e) \lor \exists n a = \text{reqElevator}(n) \]

- precondition axioms:
  \[ \text{Poss(goDown}(e), s) \equiv \text{floor}(e, s) \neq 1 \]
  \[ \text{Poss(goUp}(e), s) \equiv \text{floor}(e, s) \neq 6 \]
  \[ \text{Poss(buttonReset}(n), s) \equiv \text{True} \]
  \[ \text{Poss(toggleFan}(e), s) \equiv \text{True} \]
  \[ \text{Poss(reqElevator}(n), s) \equiv (1 \leq n \leq 6) \land \neg \text{ButtonOn}(n, s) \]
  \[ \text{Poss(ringAlarm)} \equiv \text{True} \]
  \[ \text{Poss(changeTemp, s)} \equiv \text{True} \]
  \[ \text{Poss(detectSmoke, s)} \equiv \neg \text{Smoke}(s) \]
  \[ \text{Poss(resetAlarm, s)} \equiv \text{Smoke}(s) \]
### E.g. Reactive Elevator (cont.)

- **successor state axioms:**
  
  \[
  \text{floor}(e, \text{do}(a, s)) = n \equiv \\
  (a = \text{goDown}(e) \land n = \text{floor}(e, s) - 1) \lor \\
  (a = \text{goUp}(e) \land n = \text{floor}(e, s) + 1) \lor \\
  (n = \text{floor}(e, s) \land a \neq \text{goDown}(e) \land a \neq \text{goUp}(e))
  \]

  \[
  \text{temp}(e, \text{do}(a, s)) = t \equiv \\
  (a = \text{changeTemp}(e) \land \text{FanOn}(e, s) \land t = \text{temp}(e, s) - 1) \lor \\
  (a = \text{changeTemp}(e) \land \neg \text{FanOn}(e, s) \land t = \text{temp}(e, s) + 1) \lor \\
  (t = \text{temp}(e, s) \land a \neq \text{changeTemp}(e))
  \]

  \[
  \text{FanOn}(e, \text{do}(a, s)) \equiv \\
  (a = \text{toggleFan}(e) \land \neg \text{FanOn}(e, s)) \lor \\
  (a \neq \text{toggleFan}(e) \land \text{FanOn}(e, s))
  \]

  \[
  \text{ButtonOn}(n, \text{do}(a, s)) \equiv \\
  a = \text{reqElevator}(n) \lor \text{ButtonOn}(n, s) \land a \neq \text{buttonReset}(n)
  \]

  \[
  \text{Smoke}(\text{do}(a, s)) \equiv \\
  a = \text{detectSmoke} \lor \text{Smoke}(s) \land a \neq \text{resetAlarm}
  \]
E.g. Reactive Elevator (cont.)

In Golog, might write elevator controller as follows:

```golog
proc controlG(e)
    while ∃ n. ButtonOn(n) do
        π n [BestButton(n)?; serveFloor(e, n)];
    endwhile
    while floor(e) ≠ 1 do goDown(e) endwhile
endProc

proc serveFloor(e, n)
    while floor(e) < n do goUp(e) endwhile;
    while floor(e) > n do goDown(e) endwhile;
    buttonReset(n)
endProc
```
E.g. Reactive Elevator (cont.)

Using this controller, get execution traces like:

\[ Ax \models Do(controlG(e), S_0, \]
\[ do([u, u, r_3, u, u, u, r_6, d, d, d, d, d], S_0)) \]

where \( u = goUp(e) \), \( d = goDown(e) \), \( r_n = buttonReset(n) \) (no exogenous actions in this run).

Problem with this: at end, elevator goes to ground floor and stops even if buttons are pushed.
E.g. Reactive Elevator (cont.)

Better solution in ConGolog, use interrupts:

\[
< \exists n \ ButtonOn(n) \rightarrow \\
\pi n \ [BestButton(n)?; \ serveFloor(e, n)] >
\]

\[
\langle floor(e) \neq 1 \rightarrow \ goDown(e) \rangle
\]

Easy to extend to handle emergency requests. Add following at higher priority:

\[
< \exists n \ EButtonOn(n) \rightarrow \\
\pi n \ [EButtonOn(n)?; \ serveEFloor(e, n)] >
\]
If we also want to control the fan, as well as ring the alarm and only serve emergency requests when there is smoke, we write:

```golog
proc control(e)
    (⟨TooHot(e) ∧ ¬FanOn(e) → toggleFan(e)⟩ ∥
    ⟨TooCold(e) ∧ FanOn(e) → toggleFan(e)⟩)
    ⟨∃n EButtonOn(n) →
    π n [EButtonOn(n)?; serveEFloor(e, n)]⟩
    ⟨Smoke → ringAlarm⟩
    ⟨∃n ButtonOn(n) →
    π n [BestButton(n)?; serveFloor(e, n)]⟩
    ⟨floor(e) ≠ 1 → goDown(e)⟩
endProc
```
E.g. Reactive Elevator (cont.)

- To control a single elevator $E_1$, we write $\text{control}(E_1)$.
- To control $n$ elevators, we can simply write:

$$\text{control}(E_1) \parallel \ldots \parallel \text{control}(E_n)$$

- Note that priority ordering over processes is only a partial order.
- In some cases, want unbounded number of instances of a process running in parallel. E.g. FTP server with a manager process for each active FTP session. Can be programmed using concurrent iteration $\delta\parallel$. 
Outline

The Approach

Golog

ConGolog

Formal Semantics

Implementation
In [LRLLS97], $\text{Do}(\delta, s, s')$ is simply viewed as an abbreviation for a formula of the situation calculus; defined inductively as follows:

$\text{Do}(a, s, s') \overset{\text{def}}{=} \text{Poss}(a[s], s) \land s' = \text{do}(a[s], s)$

$\text{Do}(\phi?, s, s') \overset{\text{def}}{=} \phi[s] \land s = s'$

$\text{Do}(\delta_1; \delta_2, s, s') \overset{\text{def}}{=} \exists s''. \text{Do}(\delta_1, s, s'') \land \text{Do}(\delta_2, s'', s')$

$\text{Do}(\delta_1 | \delta_2, s, s') \overset{\text{def}}{=} \text{Do}(\delta_1, s, s') \lor \text{Do}(\delta_2, s, s')$

$\text{Do}(\pi x, \delta(x), s, s') \overset{\text{def}}{=} \exists x. \text{Do}(\delta(x), s, s')$
\[
\text{Do}(\delta^*, s, s') \overset{\text{def}}{=} \forall P. \{ \forall s_1. P(s_1, s_1) \land \\
\forall s_1, s_2, s_3. [P(s_1, s_2) \land \text{Do}(\delta, s_2, s_3) \supset P(s_1, s_3)] \} \\
\supset P(s, s').
\]

i.e., doing action $\delta$ zero or more times takes you from $s$ to $s'$ iff $(s, s')$ is in every set (and thus, the smallest set) s.t.:

1. $(s_1, s_1)$ is in the set for all situations $s_1$.
2. Whenever $(s_1, s_2)$ is in the set, and doing $\delta$ in situation $s_2$ takes you to situation $s_3$, then $(s_1, s_3)$ is in the set.
The above is the standard 2nd-order way of expressing this set.

Must use 2nd-order logic because transitive closure is not 1st-order definable.

For procedures (more complex) see [LRLLS97].
A Transition Semantics for ConGolog

• Can develop Golog-style semantics for ConGolog with \( Do(\delta, s, s') \) as a macro, but makes handling prioritized concurrency difficult.

• So define a computational semantics based on transition systems, a fairly standard approach in the theory of programming languages [NN92]. First define relations \( Trans \) and \( Final \).

• \( Trans(\delta, s, \delta', s') \) means that

\[
(\delta, s) \rightarrow (\delta', s')
\]

by executing a single primitive action or wait action.

• \( Final(\delta, s) \) means that in configuration \((\delta, s)\), the computation may be considered completed.
ConGolog Transition Semantics (cont.)

\[
\text{Trans}(\text{nil}, s, \delta, s') \equiv \text{False}
\]

\[
\text{Trans}(\alpha, s, \delta, s') \equiv
\]
\[
Poss(\alpha[s], s) \land \delta = \text{nil} \land s' = \text{do}(\alpha[s], s)
\]

\[
\text{Trans}(\phi?, s, \delta, s') \equiv \phi[s] \land \delta = \text{nil} \land s' = s
\]

\[
\text{Trans}([\delta_1; \delta_2], s, \delta, s') \equiv
\]
\[
\text{Final}(\delta_1, s) \lor \text{Trans}(\delta_2, s, \delta, s') \lor
\]
\[
\exists \delta'. \delta = (\delta'; \delta_2) \land \text{Trans}(\delta_1, s, \delta', s')
\]

\[
\text{Trans}([\delta_1 \mid \delta_2], s, \delta, s') \equiv
\]
\[
\text{Trans}(\delta_1, s, \delta, s') \lor \text{Trans}(\delta_2, s, \delta, s')
\]

\[
\text{Trans}(\pi x \delta, s, \delta', s') \equiv \exists x. \text{Trans}(\delta, s, \delta', s')
\]
ConGolog Transition Semantics (cont.)

• Here, Trans and Final are predicates that take programs as arguments.
• So need to introduce terms that denote programs (reify programs).
• In 3rd axiom, $\phi$ is term that denotes formula; $\phi[s]$ stands for \textit{Holds}($\phi$, $s$), which is true iff formula denoted by $\phi$ is true in $s$.
• Details in [DLL00].
ConGolog Transition Semantics (cont.)

\[ \text{Trans}(\delta^*, s, \delta, s') \equiv \exists \delta'. \delta = (\delta'; \delta^*) \land \text{Trans}(\delta, s, \delta', s') \]

\[ \text{Trans} (\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endIf}, s, \delta, s') \equiv \]
\[ \phi(s) \land \text{Trans}(\delta_1, s, \delta, s') \lor \neg \phi(s) \land \text{Trans}(\delta_2, s, \delta, s') \]

\[ \text{Trans} (\text{while } \phi \text{ do } \delta \text{ endwhile}, s, \delta', s') \equiv \phi(s) \land \exists \delta''. \delta' = (\delta''; \text{while } \phi \text{ do } \delta \text{ endwhile}) \land \text{Trans}(\delta, s, \delta'', s') \]

\[ \text{Trans} (\lbrack \delta_1 \parallel \delta_2 \rbrack, s, \delta, s') \equiv \exists \delta'. \]
\[ \delta = (\delta' \parallel \delta_2) \land \text{Trans}(\delta_1, s, \delta', s') \lor \]
\[ \delta = (\delta_1 \parallel \delta') \land \text{Trans}(\delta_2, s, \delta', s') \]

\[ \text{Trans} (\lbrack \delta_1 \triangleright \triangleright \delta_2 \rbrack, s, \delta, s') \equiv \exists \delta'. \]
\[ \delta = (\delta' \triangleright \triangleright \delta_2) \land \text{Trans}(\delta_1, s, \delta', s') \lor \]
\[ \delta = (\delta_1 \triangleright \triangleright \delta') \land \text{Trans}(\delta_2, s, \delta', s') \land \]
\[ \neg \exists \delta''. s''. \text{Trans}(\delta_1, s, \delta'', s'') \]

\[ \text{Trans}(\delta\parallel, s, \delta', s') \equiv \]
\[ \exists \delta''. \delta' = (\delta'' \parallel \delta\parallel) \land \text{Trans}(\delta, s, \delta'', s') \]
ConGolog Transition Semantics (cont.)

\[ \text{Final}(\text{nil}, s) \equiv \text{True} \]
\[ \text{Final}(\alpha, s) \equiv \text{False} \]
\[ \text{Final}(\phi?, s) \equiv \text{False} \]
\[ \text{Final}([\delta_1; \delta_2], s) \equiv \text{Final}(\delta_1, s) \land \text{Final}(\delta_2, s) \]
\[ \text{Final}([\delta_1 | \delta_2], s) \equiv \text{Final}(\delta_1, s) \lor \text{Final}(\delta_2, s) \]
\[ \text{Final}(\pi x \delta, s) \equiv \exists x. \text{Final}(\delta, s) \]
\[ \text{Final}(\delta^*, s) \equiv \text{True} \]
\[ \text{Final}(\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endIf}, s) \equiv \]
\[ \phi(s) \land \text{Final}(\delta_1, s) \lor \neg\phi(s) \land \text{Final}(\delta_2, s) \]
\[ \text{Final}(\text{while } \phi \text{ do } \delta \text{ endWhile}, s) \equiv \]
\[ \phi(s) \land \text{Final}(\delta, s) \lor \neg\phi(s) \]
\[ \text{Final}([\delta_1 \parallel \delta_2], s) \equiv \text{Final}(\delta_1, s) \land \text{Final}(\delta_2, s) \]
\[ \text{Final}([\delta_1 \rangle\rangle \delta_2], s) \equiv \text{Final}(\delta_1, s) \land \text{Final}(\delta_2, s) \]
\[ \text{Final}(\delta\ll, s) \equiv \text{True} \]
Then, define relation $\text{Do}(\delta, s, s')$ meaning that process $\delta$, when executed starting in situation $s$, has $s'$ as a legal terminating situation:

$$\text{Do}(\delta, s, s') \overset{\text{def}}{=} \exists \delta'. \text{Trans}^*(\delta, s, \delta', s') \land \text{Final}(\delta', s')$$

where $\text{Trans}^*$ is the transitive closure of $\text{Trans}$.

That is, $\text{Do}(\delta, s, s')$ holds iff the starting configuration $(\delta, s)$ can evolve into a configuration $(\delta, s')$ by doing a finite number of transitions and $\text{Final}(\delta, s')$. 
ConGolog Transition Semantics (cont.)

\[ \text{Trans}^*(\delta, s, \delta', s') \overset{\text{def}}{=} \forall T[\ldots \supset T(\delta, s, \delta', s')] \]

where the ellipsis stands for:

\[
\forall s. \ T(\delta, s, \delta, s) \land \\
\forall s, \delta', s', \delta'', s''. \ T(\delta, s, \delta', s') \land \\
\text{Trans}(\delta', s', \delta'', s'') \supset T(\delta, s, \delta'', s'').
\]
Interrupts

- Interrupts can be defined in terms of other constructs:

\[
\langle \phi \rightarrow \delta \rangle \overset{\text{def}}{=} \text{while Interrupts\_running do if } \phi \text{ then } \delta \text{ else False? endIf endWhile}
\]

- Uses special fluent \textit{Interrupts\_running}.

- To execute a program \( \delta \) containing interrupts, actually execute:

\[
\text{start\_interrupts} ; (\delta \triangleright\triangleright \text{stop\_interrupts})
\]

- This stops blocked interrupt loops in \( \delta \) at lowest priority, i.e., when there are no more actions in \( \delta \) that can be executed.
Outline

The Approach

Golog

ConGolog

Formal Semantics

Implementation
trans(act(A), S, nil, do(AS, S)) :-
    sub(now, S, A, AS), poss(AS, S).

trans(test(C), S, nil, S) :- holds(C, S).

trans(seq(P1, P2), S, P2r, Sr) :-
    final(P1, S), trans(P2, S, P2r, Sr).
trans(seq(P1, P2), S, seq(P1r, P2), Sr) :- trans(P1, S, P1r, Sr).

trans(choice(P1, P2), S, Pr, Sr) :-
    trans(P1, S, Pr, Sr) ; trans(P2, S, Pr, Sr).

trans(conc(P1, P2), S, conc(P1r, P2), Sr) :- trans(P1, S, P1r, Sr).
trans(conc(P1, P2), S, conc(P1, P2r), Sr) :- trans(P2, S, P2r, Sr).
...

Prolog Implementation (cont.)

final(seq(P1,P2),S):- final(P1,S), final(P2,S).
...


do(P,S,Sr):- trans*(P,S,Pr,Sr),final(Pr,Sr).
Prolog Implementation (cont.)

```prolog
holds(and(F1,F2),S):- holds(F1,S), holds(F2,S).
holds(or(F1,F2),S):- holds(F1,S); holds(F2,S).
holds(neg(and(F1,F2)),S):- holds(or(neg(F1),neg(F2)),S).
holds(neg(or(F1,F2)),S):- holds(and(neg(F1),neg(F2)),S).
holds(some(V,F),S):- sub(V,_,F,Fr), holds(Fr,S).
holds(neg(some(V,F)),S):- not holds(some(V,F),S). /* NAF! */
... 
holds(P_Xs,S):-
    P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),
    P_Xs\=all(_,_),P_Xs\=some(_,_),
    sub(now,S,P_Xs,P_XsS), P_XsS.
holds(neg(P_Xs),S):-
    P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),
    P_Xs\=all(_,_),P_Xs\=some(_,_),
    sub(now,S,P_Xs,P_XsS), not P_XsS. /* NAF! */
```

Note: makes closed-world assumption; must have complete knowledge!
/* Precondition axioms */

poss(grab(Rob,E),S):-
    not holding(_,E,S), not holding(Rob,_,S).
poss(release(Rob,E),S):- holding(Rob,E,S).
poss(vmove(Rob,Amount),S):- true.

/* Successor state axioms */

val(vpos(E,do(A,S)),V) :-
    (A=vmove(Rob,Amt), holding(Rob,E,S),
     val(vpos(E,S),V1), V is V1+Amount);
    (A=release(Rob,E), V=0) ;
    (val(vpos(E,S),V), not((A=vmove(Rob,Amt),
     holding(Rob,E,S))), A\=release(Rob,E)).

holding(Rob,E,do(A,S)) :-
    A=grab(Rob,E) ; (holding(Rob,E,S), A\=release(Rob,E)).
/* Defined Fluents */

tableUp(S) :- val(vpos(end1,S),V1), V1 >= 3,
             val(vpos(end2,S),V2), V2 >= 3.

safeToLift(Rob,Amount,Tol,S) :-
    tableEnd(E1), tableEnd(E2), E2\=E1, holding(Rob,E1,S),
    val(vpos(E1,S),V1), val(vpos(E2,S),V2),
    V1 =< V2+Tol-Amount.

/* Initial state */

val(vpos(end1,s0),0). /* plus by CWA: */
val(vpos(end2,s0),0). /* */
tableEnd(end1). /* not holding(rob1,___,s0) */
tableEnd(end2). /* not holding(rob2,___,s0) */
/* Control procedures */

proc(ctrl(Rob,Amount,Tol),
    seq(pick(e,seq(test(tableEnd(e)),act(grab(Rob,e))))),
    while(neg(tableUp(now)),
        seq(test(safeToLift(Rob,Amount,Tol,now)),
            act(vmove(Rob,Amount))))).

proc(jointLiftTable,
    conc(pcall(ctrl(rob1,1,2)), pcall(ctrl(rob2,1,2)))).
Running 2 Robots E.g.

?- do(pcall(jointLiftTable),s0,S).

S = do(vmove(rob2,1), do(vmove(rob1,1), do(vmove(rob2,1),
    do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
    do(vmove(rob1,1), do(vmove(rob1,1), do(grab(rob1,end1),
    s0)))))))));

S = do(vmove(rob2,1), do(vmove(rob1,1), do(vmove(rob2,1),
    do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
    do(vmove(rob1,1), do(vmove(rob1,1), do(grab(rob1,end1),
    s0)))))))));

S = do(vmove(rob1,1), do(vmove(rob2,1), do(vmove(rob2,1),
    do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
    do(vmove(rob1,1), do(vmove(rob1,1), do(grab(rob1,end1),
    s0)))))))));

Yes
In Golog and ConGolog, the interpreter must search over the whole program to find an execution before it starts doing anything. Not practical.

Also, one generally needs to do sensing before deciding on subsequent course of action, i.e. interleave sensing and acting.

*IndiGolog* extends ConGolog to support interleaving search and execution, performing online sensing, and detecting exogenous actions.

More on this in Lecture 5.
References


