
On the Semantics of Deliberation in IndiGolog —

From Theory to Implementation

Yves Lespérance

Department of Computer Science & Engineering
York University

Toronto, Canada

Joint work with Giuseppe De Giacomo, Hector Levesque, and Sebas-
tian Sardina.

See paper in Annals of Math. and AI, 41(2-4), 259–299, Aug. 2004.

http://www.cse.yorku.ca/˜lesperan

The Problem: What is Planning under Incomplete
Information?

Interested in planning where agent only has incomplete information
and run-time sensing is required.

Needed in many applications, e.g., information agents, autonomous
robots, etc.

Need specification of what it means to solve the problem.

What should planner return?

Can’t ask for straight-line plan, because often none is a solution.

Could say must return a program, but in general, figuring out how to
execute a program can be as hard as planning (e.g., Golog programs).

1

The Problem (cont.)

Planning should produce specification of the desired behavior that does
not require deliberation to interpret.

In [Levesque 96], problem addressed by requiring that the planner re-
turn programs of a syntactically restricted form. Also the case in most
work on planning with incomplete information.

2

Our Account of Planning under Incomplete
Information

Here: a more abstract, semantically-motivated account.

Treat plans as epistemically feasible programs, i.e., programs for which
the agent, at every stage of execution, by virtue of what it knew initially
and the subsequent sensing, always knows what step to take next.

3

Our Account (cont.)

Account applies not only to planning but also to execution of high-level
programs in agent programming language such as Golog.

High-level programs can be non-deterministic; then interpreter must
search for an execution.

Planning is a special case.

Can specify domain-specific control information, plan skeletons, etc.

IndiGolog = Golog + concurrency + incremental execution with sens-
ing. Supports lookahead search/planning over parts of program.

4

Our Account (cont.)

Account framed as a semantics for search construct of IndiGolog.

Resolves problems with semantics in [De Giacomo & Levesque 99]:

Trans(Σ(δ), s, δ′, s′) ≡
Trans(δ, s, δ′, s′) ∧ ∃s′′ Do(δ′, s′, s′′)

Agent may know that there is some action that leads to successful
termination without knowing which.

E.g. Σ([a; if φ do b else c endIf] | d) may do a even when agent does
not know whether φ after doing a.

5

Example: Getting on Flight at Airport [Levesque 96]

Agent wants to board flight. Does not know gate in advance; must
sense at airport.

To do planning to get on flight, execute IndiGolog program:

Σ(achieve(On plane(Flight123), T rue))

where

achieve(Goal, GoodSit)
def
=

while ¬Goal do
π a[a;GoodSit(now)?]

endWhile

6

Example: Getting on Flight (cont.)

A fully detailed plan/solution:

go(Airport);

check departures;

if Parked(Flight123, GateA) then
go(GateA); board plane(Fligth123)

else
go(GateB); board plane(Fligth123)

endIf

Without sensing, goal cannot be achieved!

7

Our Account (cont.)

• characterizes epistemically feasible programs formally,

• defines IndiGolog search construct in terms of these,

• shows that programs belonging to certain syntactically restricted
classes are epistemically feasible,

• shows that in certain cases — conformant planning and condi-
tional planning — when there is an epistemically feasible program
that solves the problem, there must be a program from a syntacti-
cally restricted class that does too, and

• specifies a form of deliberation with execution monitoring and re-
planning.

8

Situation Calculus [McCarthy63]

A language of predicate logic for representing dynamically changing
worlds.

The constant S0 represents the initial situation.

The term do(α, s) represents the situation that results from primitive
action α being performed in situation s.

Predicates and functions whose value varies from situation to situation
are called fluents.

e.g.

At(Home, S0)

At(Airport, do(go(Airport), S0))

9

Modeling Knowledge and Sensing

Model knowledge by adapting Kripke semantics to situation calculus
[Moore 85]:

Know (agt, φ(now), s)
def
= ∀s′(K(agt, s′, s) ⊃ φ(now/s′)).

Here, binary sensing actions only.

Information provided by sensing action represented by SF(a, s). Have
axioms:

SF(senseφ, s) ≡ φ(s)

SF(nonSensingAct, s) ≡ True

10

Modeling Knowledge and Sensing (cont.)

Knowledge dynamics specified by successor state axiom for K

[Scherl & Levesque 93, Levesque 96]:

K(s′′, do(a, s)) ≡
∃s′[K(s′, s) ∧ s′′ = do(a, s′) ∧ Poss(a, s′) ∧

(SF(a, s′) ≡ SF(a, s))]

After sensing, agent knows truth-value of associated fluent.

11

Specifying Domain Dynamics in Situation Calculus

Use theory of the form:

• axioms describing initial situation S0,

• action precondition axioms that characterize Poss(a, s),

• successor state axioms that characterize F(~x, do(a, s)) in terms
of what holds in s — provide solution to frame problem [Reiter 91],

• sensed fluent axioms that characterize SF(a, s),

• successor state axiom for K,

• unique names axioms for primitive actions,

• foundational axioms [Lakemeyer & Levesque 98, Reiter 01].

12

IndiGolog Constructs

α, primitive action
φ?, test/wait for a condition
(δ1; δ2), sequence
if φ then δ1 else δ2 endIf , conditional
while φ do δ endWhile , loop
proc β(~x) δ endProc , procedure definition
β(~t), procedure call
(δ1 | δ2), nondeterministic choice of action
π ~x [δ], nondet. choice of arguments
δ∗, nondeterministic iteration

(δ1 ‖ δ2), concurrent execution
(δ1 〉〉 δ2), concurrency with priorities
δ||, concurrent iteration
〈 ~x : φ → δ〉, interrupt

Σ(δ), search block

13

Semantics

Based on transition systems.

Trans(δ, s, δ′, s′) means that can make a transition

(δ, s) → (δ′, s′)

by executing a single primitive action or test.

Final(δ, s) means that in configuration (δ, s), computation can termi-
nate.

Defined by axioms, e.g.:

Trans(α, s, δ, s′) ≡
Poss(α, s) ∧ δ = nil ∧ s′ = do(α, s)

Trans([δ1; δ2], s, δ, s
′) ≡

Final(δ1, s) ∧ Trans(δ2, s, δ, s′) ∨
∃δ′.δ = (δ′; δ2) ∧ Trans(δ1, s, δ′, s′)

14

Semantics (cont.)

Do(δ, s, s′) means there is an execution of program δ that starts in
situation s and terminates in s′. Formally:

Do(p, s, s′)
def
= ∃p′.T rans∗(p, s, p′, s′) ∧ Final(p′, s′),

where Trans∗ is the reflexive transitive closure of Trans.

An offline execution of program p from situation s is sequence of ac-
tions a1, . . . , an such that:

Axioms |= Do(p, s, do(a1, . . . , do(an, s)))

Offline executor similar to compiler; no access to sensing results!

15

Epistemically Accurate Theories

Theories where what is known accurately reflects what the theory says
about the system, essentially:

• Initial situation characterized by an axiom of the form Know (φ0, S0)

where φ0 is an objective formula.

• Accessibility relation K is reflexive in all situations.

• Finite set of action types.

• No functional fluents, standard names for objects, and theory de-
cides all equality sentences that don’t involve program terms.

16

Epistemically Accurate Theories (cont.)

For epistemically accurate theories we have:

Theorem 1 For any objective sentence about situation s, φ(s),
Axioms ∪ {Sensed[σ]} |= φ(end[σ]) if and only if
Axioms ∪ {Sensed[σ]} |= Know (φ, end[σ]).

So if some objective property of the system is entailed, then it is also
known and vice-versa.

17

Epistemically Feasible Deterministic Programs

Programs that are deterministic and for which executor always has
enough information to continue the execution, always knows what next
step is. Formally:

EFDP(dp, s)
def
= ∀dp′, s′.T rans∗(dp, s, dp′, s′) ⊃ LEFDP(dp′, s′).

i.e., a program is an EFDP in a situation if all reachable configurations
involve a locally epistemically feasible deterministic program (LEFDP).

18

Epistemically Feasible Deterministic Programs (cont.)

Locally epistemically feasible deterministic programs:

LEFDP(dp, s)
def
=

Know (Final(dp, now) ∧ ¬∃dp′, s′.T rans(dp, now, dp′, s′), s) ∨
∃dp′.Know (¬Final(dp, now) ∧ UTrans(dp, now, dp′, now), s) ∨
∃dp′, a.Know (¬Final(dp, now) ∧ UTrans(dp, now, dp′, do(a, now)), s)

UTrans(dp, s, dp′, s′)
def
= Trans(dp, s, dp′, s′) ∧

∀dp′′, s′′.T rans(dp, s, dp′′, s′′) ⊃ dp′′ = dp′ ∧ s′′ = s′

i.e., a program is a LEFDP in a situation if the agent knows that it is
currently Final or knows what unique transition it can perform next.

19

Epistemically Feasible Det. Programs — Examples

Our original detailed plan to get on a flight is an EFDP :

go(Airport);

check departures;

if Parked(Flight123, GateA) then
go(GateA); board plane(Fligth123)

else
go(GateB); board plane(Fligth123)

endIf

But if delete the check departures sensing action, no longer an EFDP .
Agent does not know what to do next at the test.

20

Online Execution

Plans that do sensing are meant to be executed online, with sensing
results being added to the domain theory.

E.g. for “get on flight 123” program:

-

-

-

J
J
J

J
J
J

J
JĴ

�

-

-

Ax

go(Airport)...

Ax

checkDep...

if ...

Ax U FlAtB

if ...

Ax U FlAtA Ax U FlAtA

Ax U FlAtB

Ax U FlAtA

Ax U FlAtB

0

1

go(GateA)

go(GateB)

board

board

21

Formalizing Online Executions

A history describes a run with actions and their sensing results, e.g.:

(go(Airport),1) · (check departures, 0) · (go(GateB), 1).

end[σ] stands for the end situation of history σ, e.g.:

do(go(GateB), do(check departures, do(go(Airport), S0))).

Sensed[σ] stands for formula specifying the sensing results of history,
e.g.:

SF(go(Airport), S0) ∧
¬SF(check departures, do(go(Airport), S0)) ∧
SF(go(GateB), do(check departures, do(go(Airport), S0)))

22

Formalizing Online Executions (cont.)

An online execution of a program p starting from a history σ wrt a
model M of Axioms ∪ {Sensed[σ] is a sequence (p0 = p, σ0 =

σ), . . . such that for i = 0, . . .:

Axioms ∪ {Sensed[σi]} |= Trans(pi, end[σi], pi+1, end[σi+1])

σi+1 =

σi if end[σi+1] = end[σi]
σi · (a, µ) if end[σi+1] = do(a, end[σi]) and

µ = 1 if M |= SF(a, end[σn]) else µ = 0

Successfully terminates if sequence is finite, ending with (pn, σn), and

Axioms ∪ {Sensed[σn]} |= Final(pn, end[σn]).

23

Epistemically Feasible Det. Programs — Properties

An EFDP need not always terminate.

But if it is entailed that an EFDP will terminate, then it can be success-
fully executed online whatever the sensing outcomes may be:

Theorem 2
Let dp be such that Axioms ∪ {Sensed[σ]} |= EFDP(dp, end[σ]).
Then, Axioms ∪ {Sensed[σ]} |= ∃sf .Do(dp, end[σ], sf) if and only
if for each model M of Axioms ∪ {Sensed[σ]}, the complete online
execution of dp from σ wrt M successfully terminates.

24

New Search Operator — Semantics

Trans(∆e(p), s, dp′, s′) ≡
∃dp.EFDP(dp, s) ∧

∃sf .T rans(dp, s, dp′, s′) ∧ Do(dp′, s′, sf) ∧ Do(p, s, sf).

F inal(∆e(p), s) ≡ Final(p, s).

Thus Axioms ∪ {Sensed[σ]} |= Trans(∆e(p), s, dp′, s′) iff axioms
entail that there is some EFDP dp that reaches a Final situation of
the original program p no matter how sensing turns out (i.e., in every
model).

Note: commits to the selected EFDP .

25

New Search Operator — Properties

Theorem 3 If Axioms∪{Sensed[σ]} |= Trans(∆e(p), end[σ], p′, s′),
then

1. Axioms ∪ {Sensed[σ]} |= ∃sf .Do(p, end[σ], sf),
i.e., program in search block reaches a Final situation in every model,

2. Axioms ∪ {Sensed[σ]} |= ∃sf .Do(∆e(p), end[σ], sf),
i.e., so does ∆e(p), and

3. For each model M of Axioms ∪ {Sensed[σ]}, all online execu-
tions from (∆e(p), σ) wrt M successfully terminate,
i.e., ∆e(p) can be successfully executed online whatever the sensing
results are.

26

Syntax-Based Accounts of Deliberation

In general, search/deliberation is very hard; amounts to planning where
class of potential plans is very general.

Two interesting restricted classes:

• programs that do not perform sensing, i.e., conformant plans, and

• programs that are guaranteed to terminate in a bounded number
of steps, i.e., conditional plans.

Have shown that for these 2 classes, one can restrict attention to sim-
ple syntactically-defined classes of programs without loss of generality.

27

Tree Programs

Class of (sense-branch) tree programs TREE defined by:

dpt ::= nil | False? | a; dpt1 | True?; dpt1 |
senseφ; if φ then dpt1 else dpt2

where a is non-sensing action, and dpt1, dpt2 ∈ TREE .

Includes conditional programs where tests only involve conditions that
have just been sensed (or trivial tests).

28

Tree Programs — Properties

Whenever such a tree program is executable, it is also epistemically
feasible — agent will always know what to do next:

Theorem 4 Let dpt be a tree program, i.e., dpt ∈ TREE . Then, for
all histories σ, if Axioms ∪ {Sensed[σ]} |= ∃sf .Do(dpt, end[σ], sf)

then Axioms ∪ {Sensed[σ]} |= EFDP(dpt, end[σ]).

Also, by Theorem 2, under the conditions above, all online executions
of (dpt, σ) are terminating.

Finding a tree program that yields an execution of a program in a
search block is our analogue of conditional planning (under incomplete
information).

29

Tree Programs Can Express Any Bounded Strategy

Can show that tree programs are sufficient to express any strategy
where there is a known bound on the number of steps it needs to
terminate.

For any EFDP for which this condition holds, there is a tree program
that produces the same executions:

30

Tree Programs Can Express Bounded Strategy (cont.)

Theorem 5 For any program dp that is

1. an epistemically feasible deterministic program, i.e.,
Axioms ∪ {Sensed[σ]} |= EFDP(dp, end[σ]) and

2. such that there is a known bound on the number of steps it needs
to terminate, i.e., where there is an n such that Axioms∪{Sensed[σ]} |=

∃p′, s′, k.k ≤ n ∧ Transk(dp, end[σ], p′, s′) ∧ Final(p′, s′),

there exists a tree program dpt ∈ TREE such that for each model M

of Axioms∪{Sensed[σ]} the complete execution of dpt from σ wrt M

successfully terminates in the same history as dp from σ wrt M .

31

Tree Programs Can Express Bounded Strategy (cont.)

So if restrict attention to EFDPs that terminate in bounded number of
steps, then can further restrict attention to programs of very specific
syntactic form, without any loss in generality.

Could be used to simplify implementation of deliberation.

32

Linear Programs

Define class of linear programs LINE by:

dpl ::= nil | a; dpl1 | True?; dpl1

where a is non-sensing action, and dpl1 ∈ LINE .

Only includes sequences of actions or trivial tests.

So whenever such a plan is executable, then it is also epistemically
feasible — agent always knows what to do next:

Theorem 6 Let dpl be a linear program, i.e., dpl ∈ LINE . Then, for
all histories σ, if Axioms ∪ {Sensed[σ]} |= ∃sf .Do(dpl, end[σ], sf)

then Axioms ∪ {Sensed[σ]} |= EFDP(dpl, end[σ]).

By Theorem 2, under these conditions, all online executions of (dpl, σ)

are terminating.

33

Linear Programs Can Express Any Strategy With No
Sensing

For any EFDP not performing sensing, there is a linear program that
produces the same execution:

Theorem 7 For any dp that does not include sensing actions, such
that Axioms ∪ {Sensed[σ]} |= EFDP(dp, end[σ]), there exists a lin-
ear program dpl such that for each model M of Axioms∪{Sensed[σ]}

the complete execution of dpt from σ wrt M successfully terminates in
the same history as dp from σ wrt M .

If domain has no sensing actions, then linear programs are sufficient
to express every strategy.

34

E.g. Implementation:
Search Operator Looking for Tree Program

trans(search_t(P),H,DPT1,H1):-
buildTree(P,DPT,H), trans(DPT,H,DPT1,H1).

buildTree(P,[],H):- final(P,H).
buildTree(P,[(true)?|DPT],H):-

trans(P,H,P1,H), buildTree(P1,DPT,H).
buildTree(P,[A,if(F,DPT1,DPT2)]):-

trans(P,H,P1,[(A,_)|H]), senses(A,F),
buildTree(P1,DPT1,[(A,1)|H]),
buildTree(P1,DPT2,[(A,0)|H]).

buildTree(P,[A|DPT],H):-
trans(P,H,P1,[(A,_)|H]), not senses(A,_),
buildTree(P1,DPT,[(A,1)|H]).

buildTree(P,(false)?,H):- inconsistent(H).

Sound, but not complete.

35

Dealing with Non-Binary Sensing Actions

Our account handles sensing actions with non-binary, but finitely many
outcomes. What about the general case?

Even for finite number of sensing outcomes, conditional planning is
impractical without advice from programmer as to what conditions the
plan should branch on.

[Sardina 01] develops an implementation of search in IndiGolog that
uses such information.

36

Execution Monitoring

∆e commits to a particular EFDP . Bad idea if exogenous actions can
make the selected EFDP impossible to execute.

Should define a search operator that monitors the execution of the
selected EFDP and replans when necessary as in [De Giacomo et al
98][Lespérance & Ng 00].

37

Execution Monitoring (cont.)

Can define a search operator that monitors the execution of the se-
lected EFDP and replans when necessary:

Trans(∆em(p), s, p′, s′) ≡
∃dp, dp′.p′ = mnt (dp′, s′, p, s) ∧ EFDP(dp, s) ∧

∃sf .T rans(dp, s, dp′, s′) ∧ Do(dp′, s′, sf) ∧ Do(p, s, sf)

Final(∆em(p), s) ≡ Final(p, s)

mnt is new monitoring construct.

38

Execution Monitoring (cont.)

ptb (mnt (dp, se, pi, si), s) ≡
se 6= s ∧ ¬∃sf [Do(dp, s, sf) ∧ Do(pi‖Pexo), si, sf)]

dp has been perturbed in s if expected sit se is different and we can
no longer execute dp to a final situation of original program pi; Pexo is
(πa.Exo(a)?; a)∗.

rcv (mnt (dp, sepi, si), s, dpr) ≡
∃p′i, sf .T rans∗((pi‖Pexo), si, (p

′
i‖Pexo), s) ∧

EFDP(dpr, s) ∧ ∃sf .Do(dpr, s, sf) ∧ Do(p′i, s, sf)

A recovered plan dpr is an EFDP that can solve the original program
pi while accounting for every action executed so far.

39

Execution Monitoring (cont.)

Trans(mnt (dp, se, pi, si), s, p
′, s′) ≡

¬ptb (mnt (dp, se, pi, si), s) ∧
∃dp′.p′ = mnt (dp′, s′, pi, si) ∧ Trans(dp, s, dp′, s′) ∨

ptb (mnt (dp, se, pi, si), s) ∧ ∃dpr.rcv (mnt (dp, se, pi, si), s, dpr) ∧
∃dp′.T rans(dpr, s, dp′, s′) ∧ p′ = mnt (dp′, s′, pi, si)

Can do transition by continuing if unperturbed, otherwise need to find
a recovered plan dpr and do a step of it.

Final(mnt (dp, se, pi, si), s) ≡
¬ptb (mnt (dp, se, pi, si), s) ∧ Final(dp, s) ∨
ptb (mnt (dp, se, pi, si), s) ∧ Do(pi‖Pexo), si, s)

Can terminate if plan is unperturbed and Final or otherwise if original
program pi can terminate.

Caveat: indefinite postponement.

40

Related Work: Epistemic Feasibility of Plans in MAS
Specifications [Lesp érance 01]

Use extended version of ConGolog to specify MAS, e.g.:

Subj(Rob, ∃c Know (Rob, comb(Safe1) = c)?;
dial(Rob, comb(Safe1), Safe1)) ‖

Subj(Smart, informRef(Smart, Rob, comb(Safe1)))

Specification is from 3rd person point of view.

Define constructs for capturing subjective execution with and without
lookahead.

Formalize epistemic feasibility of plans for agents in MAS. Handles:

• complex (concurrent) programs,

• multiple no-lookahead agents.

Case of multiple agents that do lookahead still open.

41

Conclusion

New formal account of planning/deliberation with incomplete informa-
tion; abstract and semantic-based.

Deliberator must produce epistemically feasible deterministic program,
program for which agent, given initial knowkedge and subsequent sens-
ing, always knows what step to take next.

Characterized search in IndiGolog in terms of this notion.

Shown that for certain classes of problems — conformant planning and
conditional planning — search for epistemically feasible programs can
be limited to programs of a simple syntactic form.

Much earlier work on epistemic feasibility. Ours is first to deal with
expressive agent programming language and integrate with transition
semantics.

42

Further Research

Relating 1st and 3rd person accounts of deliberation; compositional
development of MAS.

Implementation of search/planning with non-binary sensing actions.

Representing and reasoning with incomplete knowledge.

More general accounts of sensing and knowledge change.

Multiagent planning.

Etc.

43

