Lecture Outline

Part 1: Syntax, Informal Semantics, Examples

Part 2: Formal Semantics

Part 3: Implementation
High-level Programming in the Situation Calculus — The Approach

Plan synthesis can be very hard; but often we can sketch what a good plan might look like.

Instead of planning, agent’s task is *executing a high-level plan/program*.

But allow *nondeterministic* programs.

Then, can direct interpreter to *search* for a way to execute the program.

The Approach (cont.)

Can still do planning/deliberation.

Can also completely script agent behaviors when appropriate.

Can control nondeterminism/amount of search done.

Related to work on planning with domain specific search control information.
The Approach (cont.)

Programs are *high-level*.

Use primitive actions and test conditions that are *domain dependent*.

Programmer specifies preconditions and effects of primitive actions and what is known about initial situation in a logical theory, a *basic action theory* in the situation calculus.

Interpreter uses this in search/lookahead and in updating world model.

Golog [LRLLS97]

AIGOI in LOGic

Constructs:

- α, primitive action
- $\phi?$, test a condition
- $(\delta_1; \delta_2)$, sequence
- **if** ϕ **then** δ_1 **else** δ_2 **endif**, conditional
- **while** ϕ **do** δ **endWhile**, loop
- **proc** $\beta(\vec{x})$ δ **endProc**, procedure definition
- $\beta(\vec{t})$, procedure call
- $(\delta_1 \mid \delta_2)$, nondeterministic choice of action
- $\pi\, \vec{x} \,[\delta]$, nondeterministic choice of arguments
- δ^*, nondeterministic iteration
Golog Semantics

High-level program execution task is a special case of planning:

Program Execution: Given domain theory \(D \) and program \(\delta \), the execution task is to find a sequence of actions \(\bar{a} \) such that:

\[
D \models Do(\delta, S_0, do(\bar{a}, S_0))
\]

where \(Do(\delta, s, s') \) means that program \(\delta \) when executed starting in situation \(s \) has \(s' \) as a legal terminating situation.

Since Golog programs can be nondeterministic, may be several terminating situations \(s' \).

Will see how \(Do \) can be defined later.

Nondeterminism

A nondeterministic program may have several possible executions. E.g.:

\[
ndp_1 = (a | b); c
\]

Assuming actions are always possible, we have:

\[
Do(ndp_1, S_0, s) \equiv s = do([a, c], S_0) \lor s = do([b, c], S_0)
\]

Above uses abbreviation \(do([a_1, a_2, \ldots, a_{n-1}, a_n], s) \) meaning \(do(a_n, do(a_{n-1}, \ldots, do(a_2, do(a_1, s)))) \).

Interpreter searches all the way to a final situation of the program, and only then starts executing corresponding sequence of actions.
Nondeterminism (cont.)

When condition of a test action or action precondition is false, backtrack and try different nondeterministic choices. E.g.:

\[ndp_2 = (a \mid b); c; P? \]

If \(P \) is true initially, but becomes false iff \(a \) is performed, then

\[\text{Do}(ndp_2, S_0, s) \equiv s = \text{do}([b, c], S_0) \]

and interpreter will find it by backtracking.

Using Nondeterminism: A Simple Example

A program to clear blocks from table:

\[(\pi b [OnTable(b)?; putAway(b)])^*; \neg\exists b OnTable(b)? \]

Interpreter will find way to unstack all blocks (\(putAway(b) \) is only possible if \(b \) is clear).
Example: Controlling an Elevator

Primitive actions: up(n), down(n), turnoff(n), open, close.

Fluents: floor(s) = n, on(n, s).

Fluent abbreviation: next_floor(n, s).

Action Precondition Axioms:

Poss(up(n), s) ≡ floor(s) < n.
Poss(down(n), s) ≡ floor(s) > n.
Poss(open, s) ≡ True.
Poss(close, s) ≡ True.
Poss(turnoff(n), s) ≡ on(n, s).
Poss(no_op, s) ≡ True.

Elevator Example (cont.)

Successor State Axioms:

floor(do(a, s)) = m ≡
 a = up(m) ∨ a = down(m) ∨
 floor(s) = m ∧ ¬∃n a = up(n) ∧ ¬∃n a = down(n).

on(m, do(a, s)) ≡
 a = push(m) ∨ on(m, s) ∧ a ≠ turnoff(m).

Fluent abbreviation:

next_floor(n, s) def ≡ on(n, s) ∧
 ∀m.on(m, s) ⊃ |m - floor(s)| ≥ |n - floor(s)|.
Elevator Example (cont.)

Golog Procedures:

\[\text{proc } serve(n)\]
\[\text{go_floor}(n);\text{turnoff}(n);\text{open};\text{close}\]
\[\text{endProc}\]

\[\text{proc } go_floor(n)\]
\[\text{[current_floor} = n? | \text{up}(n) | \text{down}(n)]\]
\[\text{endProc}\]

\[\text{proc } serve_a_floor\]
\[\pi n [\text{next}_floor(n)?; serve(n)]\]
\[\text{endProc}\]

Elevator Example (cont.)

Golog Procedures (cont.):

\[\text{proc } control\]
\[\text{while } \exists n \text{ on}(n) \text{ do serve_a_floor endWhile; }\]
\[\text{park}\]
\[\text{endProc}\]

\[\text{proc } park\]
\[\text{if } \text{current_floor} = 0 \text{ then open}\]
\[\text{else } \text{down}(0); \text{open}\]
\[\text{endIf}\]
\[\text{endProc}\]

12
Elevator Example (cont.)

Initial situation:

\[\text{current_floor}(S_0) = 4, \ \text{on}(5, S_0), \ \text{on}(3, S_0). \]

Querying the theory:

\[\text{Axioms} \models \exists s \text{Do}(\text{control}, S_0, s). \]

Successful proof might return

\[s = \text{do(open)} \text{do(down}(0)), \text{do(close, do(open, do(turnoff(5)), do(up(5)), do(close, do(open, do(turnoff(3)), do(down(3), S_0))))))). \]

Using Nondeterminism to Do Planning:
A Mail Delivery Example

This control program searches to find a schedule/route that serves all clients and minimizes distance traveled:

\[
\begin{array}{l}
\textproc{control} \\
\text{search(minimize_distance}(0)) \end{array}
\]

\[
\begin{array}{l}
\textproc{minimize_distance(distance)} \\
\text{serve_all_clients_within(distance)} \mid \% \text{or} \\
\text{minimize_distance(distance + Increment)} \\
\end{array}
\]

\[\text{minimize_distance} \] does iterative deepening search.
A Control Program that Plans (cont.)

proc serve_all_clients_within(distance)
 \neg \exists c \ Client_toserve(c)? \ % if no clients to serve, we’re done
 | \ % or
 \pi c, d [((Client_toserve(c) \ \ % choose a client
 d = distance_to(c) \ \ % serve him
 go_to(c); \ % and serve him
 serve_client(c);
 serve_all_clients_within(distance − d)]
endProc

Concurrent Processes and ConGolog: Motivation

A key limitation of Golog is its lack of support for concurrent processes.

Can’t program several agents within a single Golog program.

Can’t specify an agent’s behavior using concurrent processes. Inconvenient when you want to program reactive or event-driven behaviors.
ConGolog Motivation (cont.)

Address this by developing ConGolog (Concurrent Golog) which handles:

- concurrent processes with possibly different priorities,
- high-level interrupts,
- arbitrary exogenous actions.

Concurrency

We model concurrent processes as *interleavings* of the primitive actions in the component processes. E.g.:

\[cp_1 = (a; b) \parallel c \]

Assuming actions are always possible, we have:

\[
Do(cp_1, S_0, s) \equiv \\
\quad s = do([a, b, c], S_0) \lor s = do([a, c, b], S_0) \lor s = do([c, a, b], S_0)
\]
Concurrency (cont.)

Important notion: process becoming blocked. Happens when a process \(\delta \) reaches a primitive action whose pre-conditions are false or a test action \(\phi \) and \(\phi \) is false.

Then execution need not fail as in Golog. May continue provided another process executes next. The process is blocked. E.g.:

\[
cp_2 = (a; P?; b) \parallel c
\]

If \(a \) makes \(P \) false, \(b \) does not affect it, and \(c \) makes it true, then we have

\[
Do(cp_2, S_0, s) \equiv s = do([a, c, b], S_0).
\]

Concurrency (cont.)

If no other process can execute, then backtrack. Interpreter still searches all the way to a final situation of the program before executing any actions.
New ConGolog Constructs

$$(\delta_1 \parallel \delta_2),$$ concurrent execution

$$(\delta_1 \triangleright \delta_2),$$ concurrent execution with different priorities

$$\delta\|,$$ concurrent iteration

$$<\phi \rightarrow \delta>,$$ interrupt.

In $(\delta_1 \triangleright \delta_2)$, δ_1 has higher priority than δ_2. δ_2 executes only when δ_1 is done or blocked.

$\delta\|$ is like nondeterministic iteration δ^*, but the instances of δ are executed concurrently rather than in sequence.

ConGolog Constructs (cont.)

An interrupt $<\phi \rightarrow \delta>$ has trigger condition ϕ and body δ. If interrupt gets control from higher priority processes and condition ϕ is true, it triggers and body is executed. Once body completes execution, may trigger again.
ConGolog Constructs (cont.)

In Golog:

\[
\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endif } \triangleq (\phi?; \delta_1)|(-\phi?; \delta_2)
\]

In ConGolog:

\[
\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endif, synchronized conditional}
\]

\[
\text{while } \phi \text{ do } \delta \text{ endwhile, synchronized loop.}
\]

\[
\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endif} \text{ differs from } (\phi?; \delta_1)|(-\phi?; \delta_2) \text{ in that no action (or test) from an other process can occur between the test and the first action (or test) in the if branch selected } (\delta_1 \text{ or } \delta_2).
\]

Similarly for \textit{while}.

Exogenous Actions

One may also specify \textit{exogenous actions} that can occur at random. This is useful for simulation. It is done by defining the \textit{Exo} predicate:

\[
\text{Exo}(a) \equiv a = a_1 \lor \ldots \lor a = a_n
\]

Executing a program \(\delta\) with the above amounts to executing

\[
\delta \parallel a_1^* \parallel \ldots \parallel a_n^*
\]

The current implementation also allows the programmer to specify probability distributions.
E.g. Two Robots Lifting a Table

- **Objects:**
 - Two agents: $\forall r \text{Robot}(r) \equiv r = \text{Rob}_1 \lor r = \text{Rob}_2$.
 - Two table ends: $\forall e \text{TableEnd}(e) \equiv e = \text{End}_1 \lor e = \text{End}_2$.

- **Primitive actions:**
 - grab(rob, end)
 - release(rob, end)
 - vmove(rob, z) (move robot arm up or down by z units).

- **Primitive fluents:**
 - Holding(rob, end)
 - vpos(rob, z) (height of the table end)

- **Initial state:**
 - $\forall r \forall e \neg \text{Holding}(r, e, S_0)$
 - $\forall e \text{vpos}(e, S_0) = 0$

- **Preconditions:**
 - $\text{Poss(grab(r, e), s)} \equiv \forall r^* \neg \text{Holding}(r^*, e, s) \land \forall e^* \neg \text{Holding}(r, e^*, s)$
 - $\text{Poss(release(r, e), s)} \equiv \text{Holding}(r, e, s)$
 - $\text{Poss(vmove(r, z), s)} \equiv \text{True}$

E.g. 2 Robots Lifting Table (cont.)

- **Successor state axioms:**
 - $\text{Holding(r, e, do(a, s))) \equiv a = \text{grab(r, e)} \lor}$
 - $\text{Holding(r, e, s) \land a \neq \text{release(r, e)}}$
 - $\text{vpos(e, do(a, s)) = p} \equiv$
 - $\exists r, z(a = \text{vmove(r, z)} \land \text{Holding(r, e, s)} \land p = \text{vpos(e, s)} + z) \lor$
 - $\exists r a = \text{release(r, e)} \land p = 0 \lor$
 - $p = \text{vpos(e, s)} \land \forall r a \neq \text{release(r, e)} \land$
 - $\neg(\exists r, z a = \text{vmove(r, z)} \land \text{Holding(r, e, s)}))$
E.g. 2 Robots Lifting Table (cont.)

Goal is to get the table up, but keep it sufficiently level so that nothing falls off.

\[TableUp(s) \overset{\text{def}}{=} \text{vpos(End}_1,s) \geq H \land \text{vpos(End}_2,s) \geq H \]
(both ends of table are higher than some threshold \(H \))

\[Level(s) \overset{\text{def}}{=} |\text{vpos(End}_1,s) - \text{vpos(End}_2,s)| \leq T \]
(both ends are at same height to within a tolerance \(T \))

\[Goal(s) \overset{\text{def}}{=} TableUp(s) \land \forall s^* \leq s Level(s^*) \]

E.g. 2 Robots Lifting Table (cont.)

Goal can be achieved by having \(Rob_1 \) and \(Rob_2 \) execute the same procedure \(ctrl(r) \):

\begin{verbatim}
proc ctrl(r)
 \pi e [TableEnd(e)?; grab(r, e)];
 while ¬TableUp do
 SafeToLift(r)?; vmove(r, A)
 endwhile
endProc
\end{verbatim}

where \(A \) is some constant such that \(0 < A < T \) and

\[SafeToLift(r, s) \overset{\text{def}}{=} \exists e, e' \neq e' \land TableEnd(e) \land TableEnd(e') \land Holding(r, e, s) \land vpos(e) \leq vpos(e') + T - A \]

Proposition

\[Ax \models \forall s. Do(ctrl(Rob_1) \parallel ctrl(Rob_2), S_0, s) \supset Goal(s) \]
E.g. A Reactive Elevator Controller

- ordinary primitive actions:
 \(\text{goDown}(e) \) move elevator down one floor
 \(\text{goUp}(e) \) move elevator up one floor
 \(\text{buttonReset}(n) \) turn off call button of floor \(n \)
 \(\text{toggleFan}(e) \) change the state of elevator fan
 \(\text{ringAlarm} \) ring the smoke alarm

- exogenous primitive actions:
 \(\text{reqElevator}(n) \) call button on floor \(n \) is pushed
 \(\text{changeTemp}(e) \) the elevator temperature changes
 \(\text{detectSmoke} \) the smoke detector first senses smoke
 \(\text{resetAlarm} \) the smoke alarm is reset

- primitive fluents:
 \(\text{floor}(e,s) = n \) the elevator is on floor \(n, 1 \leq n \leq 6 \)
 \(\text{temp}(e,s) = t \) the elevator temperature is \(t \)
 \(\text{FanOn}(e,s) \) the elevator fan is on
 \(\text{ButtonOn}(n,s) \) call button on floor \(n \) is on
 \(\text{Smoke}(s) \) smoke has been detected

E.g. Reactive Elevator (cont.)

- defined fluents:
 \(\text{TooHot}(e,s) \overset{\text{df}}{=} \text{temp}(e,s) > 3 \)
 \(\text{TooCold}(e,s) \overset{\text{df}}{=} \text{temp}(e,s) < -3 \)

- initial state:
 \(\text{floor}(e,S_0) = 1 \) ~\(\neg \text{FanOn}(e,S_0) \) ~\(\text{temp}(e,S_0) = 0 \)
 \(\text{ButtonOn}(3,S_0) \) \(\text{ButtonOn}(6,S_0) \)

- exogenous actions:
 \(\forall a. \text{Exo}(a) \equiv a = \text{detectSmoke} \lor a = \text{resetAlarm} \lor \)
 \(\exists e a = \text{changeTemp}(e) \lor \exists n a = \text{reqElevator}(n) \)

- precondition axioms:
 \(\text{Poss}(\text{goDown}(e),s) \equiv \text{floor}(e,s) \neq 1 \)
 \(\text{Poss}(\text{goUp}(e),s) \equiv \text{floor}(e,s) \neq 6 \)
 \(\text{Poss}(\text{buttonReset}(n),s) \equiv \text{True}, \text{Poss}(\text{toggleFan}(e),s) \equiv \text{True} \)
 \(\text{Poss}(\text{reqElevator}(n),s) \equiv (1 \leq n \leq 6) \land \neg \text{ButtonOn}(n,s) \)
 \(\text{Poss}(\text{ringAlarm}) \equiv \text{True}, \text{Poss}(\text{changeTemp},s) \equiv \text{True} \)
 \(\text{Poss}(\text{detectSmoke},s) \equiv \neg \text{Smoke}(s), \text{Poss}(\text{resetAlarm},s) \equiv \text{Smoke}(s) \)
E.g. Reactive Elevator (cont.)

- successor state axioms:
 \[
 \text{floor}(e, \text{do}(a,s)) = n \equiv \\
 (a = \text{goDown}(e) \land n = \text{floor}(e, s) - 1) \lor \\
 (a = \text{goUp}(e) \land n = \text{floor}(e, s) + 1) \lor \\
 (n = \text{floor}(e, s) \land a \neq \text{goDown}(e) \land a \neq \text{goUp}(e))
 \]
 \[
 \text{temp}(e, \text{do}(a,s)) = t \equiv \\
 (a = \text{changeTemp}(e) \land \text{FanOn}(e, s) \land t = \text{temp}(e, s) - 1) \lor \\
 (a = \text{changeTemp}(e) \land \neg \text{FanOn}(e, s) \land t = \text{temp}(e, s) + 1) \lor \\
 (t = \text{temp}(e, s) \land a \neq \text{changeTemp}(e))
 \]
 \[
 \text{FanOn}(e, \text{do}(a,s)) \equiv \\
 (a = \text{toggleFan}(e) \land \neg \text{FanOn}(e, s)) \lor \\
 (a \neq \text{toggleFan}(e) \land \text{FanOn}(e, s))
 \]
 \[
 \text{ButtonOn}(n, \text{do}(a,s)) \equiv \\
 a = \text{reqElevator}(n) \lor \text{ButtonOn}(n, s) \land a \neq \text{buttonReset}(n)
 \]
 \[
 \text{Smoke}(\text{do}(a,s)) \equiv \\
 a = \text{detectSmoke} \lor \text{Smoke}(s) \land a \neq \text{resetAlarm}
 \]

E.g. Reactive Elevator (cont.)

In Golog, might write elevator controller as follows:

\[
\text{proc controlG}(e) \\
\text{while } \exists n.\text{ButtonOn}(n) \text{ do} \\
\quad \pi n [\text{BestButton}(n)?; \text{serveFloor}(e, n)];
\text{endWhile} \\
\text{while } \text{floor}(e) \neq 1 \text{ do } \text{goDown}(e) \text{ endWhile} \\
\text{endProc}
\]

\[
\text{proc serveFloor}(e, n) \\
\text{while } \text{floor}(e) < n \text{ do } \text{goUp}(e) \text{ endWhile;} \\
\text{while } \text{floor}(e) > n \text{ do } \text{goDown}(e) \text{ endWhile;} \\
\text{buttonReset}(n)
\text{endProc}
\]
E.g. Reactive Elevator (cont.)

Using this controller, get execution traces like:

\[Ax \models \text{Do}(controlG(e), S_0, \text{do}([u, u, r_3, u, u, r_6, d, d, d, d], S_0)) \]

where \(u = \text{goUp}(e), \ d = \text{goDown}(e), \ r_n = \text{buttonReset}(n) \)
(no exogenous actions in this run).

Problem with this: at end, elevator goes to ground floor and stops even if buttons are pushed.

E.g. Reactive Elevator (cont.)

Better solution in ConGolog, use interrupts:

\[\langle \exists n \text{ButtonOn}(n) \rightarrow \pi, n [\text{BestButton}(n)\triangledown; \text{serveFloor}(e, n)] \rangle \]
\[\langle \text{floor}(e) \neq 1 \rightarrow \text{goDown}(e) \rangle \]

Easy to extend to handle emergency requests. Add following at higher priority:

\[\langle \exists n \text{EButtonOn}(n) \rightarrow \pi n [\text{EButtonOn}(n)\triangledown; \text{serveEFloor}(e, n)] \rangle \]
E.g. Reactive Elevator (cont.)

If we also want to control the fan, as well as ring the alarm and only serve emergency requests when there is smoke, we write:

\[
\text{proc control}(e) \\
(\langle \text{TooHot}(e) \land \neg \text{FanOn}(e) \rightarrow \text{toggleFan}(e) > \parallel) \\
(\langle \text{TooCold}(e) \land \text{FanOn}(e) \rightarrow \text{toggleFan}(e) > \rangle) \\
(\langle \exists n \text{EButtonOn}(n) \rightarrow \\
\pi n [\text{EButtonOn}(n)?; \text{serveEFloor}(e, n)] > \rangle) \\
(\langle \text{Smoke} \rightarrow \text{ringAlarm} > \rangle) \\
(\langle \exists n \text{ButtonOn}(n) \rightarrow \\
\pi n [\text{BestButton}(n)?; \text{serveFloor}(e, n)] > \rangle) \\
(\langle \text{floor}(e) \neq 1 \rightarrow \text{goDown}(e) > \rangle)
\]

endProc

E.g. Reactive Elevator (cont.)

To control a single elevator \(E_1\), we write \(\text{control}(E_1)\).

To control \(n\) elevators, we can simply write:

\[\text{control}(E_1) \parallel \ldots \parallel \text{control}(E_n)\]

Note that priority ordering over processes is only a partial order.

In some cases, want unbounded number of instances of a process running in parallel. E.g. FTP server with a manager process for each active FTP session. Can be programmed using concurrent iteration \(\delta\).
An Evaluation Semantics for Golog

In [LRLLS97], \(Do(\delta, s, s') \) is simply viewed as an abbreviation for a formula of the sit. calc.; defined inductively as follows:

\[
\begin{align*}
Do(a, s, s') &\overset{\text{def}}{=} Poss(a[s], s) \land s' = do(a[s], s) \\
Do(\phi?, s, s') &\overset{\text{def}}{=} \phi[s] \land s = s' \\
Do(\delta_1; \delta_2, s, s') &\overset{\text{def}}{=} \exists s'' . Do(\delta_1, s, s'') \land Do(\delta_2, s'', s') \\
Do(\delta_1 | \delta_2, s, s') &\overset{\text{def}}{=} Do(\delta_1, s, s') \lor Do(\delta_2, s, s') \\
Do(\pi x, \delta(x), s, s') &\overset{\text{def}}{=} \exists x . Do(\delta(x), s, s')
\end{align*}
\]

Golog Evaluation Semantics (cont.)

\[
\begin{align*}
Do(\delta^*, s, s') &\overset{\text{def}}{=} \forall P. \{ \forall s_1 . P(s_1, s_1) \land \\
&\forall s_1, s_2, s_3 \{ P(s_1, s_2) \land Do(\delta, s_2, s_3) \supset P(s_1, s_3) \} \} \\
&\supset P(s, s').
\end{align*}
\]

i.e., doing action \(\delta \) zero or more times takes you from \(s \) to \(s' \) iff \((s, s') \) is in every set (and thus, the smallest set) s.t.:

1. \((s_1, s_1) \) is in the set for all situations \(s_1 \).

2. Whenever \((s_1, s_2) \) is in the set, and doing \(\delta \) in situation \(s_2 \) takes you to situation \(s_3 \), then \((s_1, s_3) \) is in the set.
Golog Evaluation Semantics (cont.)

The above is the standard 2nd-order way of expressing this set. Must use 2nd-order logic because transitive closure is not 1st-order definable.

For procedures (more complex) see [LRLLS97].

A Transition Semantics for ConGolog

Can develop Golog-style semantics for ConGolog with \(Do(\delta, s, s') \) as a macro, but makes handling prioritized concurrency difficult.

So define a computational semantics based on transition systems, a fairly standard approach in the theory of programming languages [NN92]. First define relations \(Trans \) and \(Final \).

\(Trans(\delta, s, \delta', s') \) means that

\[
(\delta, s) \rightarrow (\delta', s')
\]

by executing a single primitive action or wait action.

\(Final(\delta, s) \) means that in configuration \((\delta, s)\), the computation may be considered completed.
ConGolog Transition Semantics (cont.)

\[
\text{Trans}(\text{nil}, s, \delta, s') \equiv \text{False} \\
\text{Trans}(\alpha, s, \delta, s') \equiv \\
\quad \text{Poss}(\alpha[s], s) \land \delta = \text{nil} \land s' = \text{do}(\alpha[s], s) \\
\text{Trans}(\phi?, s, \delta, s') \equiv \phi[s] \land \delta = \text{nil} \land s' = s \\
\text{Trans}([\delta_1; \delta_2], s, \delta, s') \equiv \\
\quad \text{Final}(\delta_1, s) \land \text{Trans}(\delta_2, s, \delta, s') \lor \\
\quad \exists \delta'.\delta = (\delta'; \delta_2) \land \text{Trans}(\delta_1, s, \delta', s') \\
\text{Trans}([\delta_1 | \delta_2], s, \delta, s') \equiv \\
\quad \text{Trans}(\delta_1, s, \delta, s') \lor \text{Trans}(\delta_2, s, \delta, s') \\
\text{Trans}(\pi x \delta, s, \delta, s') \equiv \exists x.\text{Trans}(\delta, s, \delta, s')
\]

ConGolog Transition Semantics (cont.)

Here, \text{Trans} and \text{Final} are predicates that take programs as arguments. So need to introduce terms that denote programs (reify programs). In 3rd axiom, \phi is term that denotes formula; \phi[s] stands for Holds(\phi, s), which is true iff formula denoted by \phi is true in s. Details in [DLL00].
ConGolog Transition Semantics (cont.)

\[\text{Final}(\delta^*, s, \delta, s') \equiv \exists \delta'. \delta = (\delta'; \delta^*) \land \text{Trans}(\delta, s, \delta', s') \]
\[\text{Final}(\mathbf{if} \ \phi \ \mathbf{then} \ \delta_1 \ \mathbf{else} \ \delta_2 \ \mathbf{endIf}, s, \delta, s') \equiv \]
\[\phi(s) \land \text{Trans}(\delta_1, s, \delta, s') \lor \neg \phi(s) \land \text{Trans}(\delta_2, s, \delta, s') \]
\[\text{Trans}(\mathbf{while} \ \phi \ \mathbf{do} \ \delta \ \mathbf{endWhile}, s, \delta', s') \equiv \phi(s) \land \]
\[\exists \delta''. \delta' = (\delta''; \mathbf{while} \ \phi \ \mathbf{do} \ \delta \ \mathbf{endWhile}) \land \text{Trans}(\delta, s, \delta'', s') \]
\[\text{Trans}([\delta_1 \parallel \delta_2], s, \delta, s') \equiv \exists \delta'. \]
\[\delta = (\delta' \parallel \delta_2) \land \text{Trans}(\delta_1, s, \delta', s') \lor \]
\[\delta = (\delta_1 \parallel \delta') \land \text{Trans}(\delta_2, s, \delta', s') \]
\[\text{Trans}([\delta_1 \Rightarrow \delta_2], s, \delta, s') \equiv \exists \delta'. \]
\[\delta = (\delta' \Rightarrow \delta_2) \land \text{Trans}(\delta_1, s, \delta', s') \lor \]
\[\delta = (\delta_1 \Rightarrow \delta') \land \text{Trans}(\delta_2, s, \delta', s') \land \]
\[\neg \exists \delta'''. \delta'' = (\delta'''; \mathbf{endWhile}) \land \text{Trans}(\delta_1, s, \delta'', s''') \]
\[\text{Trans}(\delta_1, s, \delta', s') \equiv \]
\[\exists \delta''. \delta' = (\delta''; \parallel \delta_1) \land \text{Trans}(\delta, s, \delta'', s') \]
ConGolog Transition Semantics (cont.)

Then, define relation $Do(\delta, s, s')$ meaning that process δ, when executed starting in situation s, has s' as a legal terminating situation:

$$Do(\delta, s, s') \overset{\text{def}}{=} \exists \delta'. Trans^*(\delta, s, \delta', s') \land Final(\delta', s')$$

where $Trans^*$ is the transitive closure of $Trans$.

That is, $Do(\delta, s, s')$ holds iff the starting configuration (δ, s) can evolve into a configuration (δ, s') by doing a finite number of transitions and $Final(\delta, s')$.

ConGolog Transition Semantics (cont.)

$$Trans^*(\delta, s, \delta', s') \overset{\text{def}}{=} \forall T[\ldots \supset T(\delta, s, \delta', s')]$$

where the ellipsis stands for:

$$\forall s. T(\delta, s, \delta, s) \land \forall s, \delta', s', \delta'', s''. \ T(\delta, s, \delta', s') \land Trans(\delta', s', \delta'', s'') \supset T(\delta, s, \delta'', s'').$$
Interrupts

Interrupts can be defined in terms of other constructs:

\[<\phi \rightarrow \delta> \overset{def}{=} \text{while Interrupts_running do if } \phi \text{ then } \delta \text{ else False? endIf endWhile} \]

Uses special fluent Interrupts_running.

To execute a program \(\delta \) containing interrupts, actually execute:

\[\text{start_interrupts;} (\delta \triangleright) \text{ stop_interrupts} \]

This stops blocked interrupt loops in \(\delta \) at lowest priority, i.e., when there are no more actions in \(\delta \) that can be executed.

Implementation in Prolog

\begin{verbatim}
trans(act(A),S,nil,do(AS,S)) :- sub(now,S,A,AS), poss(AS,S).
trans(test(C),S,nil,S) :- holds(C,S).
trans(seq(P1,P2),S,P2r,Sr) :- final(P1,S), trans(P2,P2r,Sr).
trans(seq(P1,P2),S,seq(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).
trans(choice(P1,P2),S,Pr,Sr) :- trans(P1,S,Pr,Sr) ; trans(P2,S,Pr,Sr).
trans(conc(P1,P2),S,conc(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).
trans(conc(P1,P2),S,conc(P1,P2r),Sr) :- trans(P2,S,P2r,Sr).
...
final(seq(P1,P2),S) :- final(P1,S), final(P2,S).
...
do(P,S,Sr) :- trans*(P,S,Pr,Sr), final(Pr,Sr).
\end{verbatim}
Prolog Implementation (cont.)

holds(and(F1,F2),S) :- holds(F1,S), holds(F2,S).
holds(or(F1,F2),S) :- holds(F1,S); holds(F2,S).
holds(neg(and(F1,F2)),S) :- holds(or(neg(F1),neg(F2)),S).
holds(neg(or(F1,F2)),S) :- holds(and(neg(F1),neg(F2)),S).
holds(some(V,F),S) :- sub(V,_,F,Fr), holds(Fr,S).
holds(neg(some(V,F)),S) :- not holds(some(V,F),S). /* Negation as failure */
...

holds(P_Xs,S) :-
P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),P_Xs\=all(_,_),P_Xs\=some(_,_),
sub(now,S,P_Xs,P_XsS), P_XsS.
holds(neg(P_Xs),S) :-
P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),P_Xs\=all(_,_),P_Xs\=some(_,_),
sub(now,S,P_Xs,P_XsS), not P_XsS. /* Negation as failure */

Note: makes closed-world assumption; must have complete knowledge!

Implemented E.g. 2 Robots Lifting Table

/* Precondition axioms */
poss(grab(Rob,E),S) :- not holding(_,E,S), not holding(Rob,_,S).
poss(release(Rob,E),S) :- holding(Rob,E,S).
poss(vmove(Rob,Amount),S) :- true.

/* Successor state axioms */
val(vpos(E,do(A,S)),V) :-
(A=vmove(Rob,AmtdV), holding(Rob,E,S), val(vpos(E,S),V1), V is V1+AmtdV);
(A=release(Rob,E), V=0);
(val(vpos(E,S),V), not((A=vmove(Rob,AmtdV), holding(Rob,E,S))),
A\=release(Rob,E)).

holding(Rob,E,do(A,S)) :-
A=\=grab(Rob,E); (holding(Rob,E,S), A\=release(Rob,E)).
Implemented E.g. 2 Robots (cont.)

/* Defined Fluents */

```
tableUp(S) :- val(vpos(end1,S),V1), V1 >= 3, val(vpos(end2,S),V2), V2 >= 3.
safeToLift(Rob,Amount,Tol,S) :-
    tableEnd(E1), tableEnd(E2), E2\=E1, holding(Rob,E1,S),
    val(vpos(E1,S),V1), val(vpos(E2,S),V2), V1 =< V2+Tol\-Amount.
```

/* Initial state */

```
val(vpos(end1,s0),0). /* plus by CWA: */
val(vpos(end2,s0),0). /* */
tableEnd(end1). /* not holding(rob1,_,s0) */
tableEnd(end2). /* not holding(rob2,_,s0) */
```

Implemented E.g. 2 Robots (cont.)

/* Control procedures */

```
proc(ctrl(Rob,Amount,Tol),
    seq(pick(e,seq(test(tableEnd(e)),act(grab(Rob,e)))),
    while(neg(tableUp(now))),
    seq(test(safeToLift(Rob,Amount,Tol,now)),
        act(vmove(Rob,Amount))))).
```

```
proc(jointLiftTable,
    conc(pcall(ctrl(rob1,1,2)), pcall(ctrl(rob2,1,2)))).
```
Running 2 Robots E.g.

?- do(pcall(jointLiftTable), s0, S).

S = do(vmove(rob2, 1), do(vmove(rob1, 1), do(vmove(rob2, 1), do(vmove(rob1, 1), do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(rob1, 1), do(vmove(rob1, 1), do(grab(rob1, end1), s0))))))));

S = do(vmove(rob2, 1), do(vmove(rob1, 1), do(vmove(rob2, 1), do(vmove(rob1, 1), do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(rob1, 1), do(vmove(rob1, 1), do(grab(rob1, end1), s0))))))));

S = do(vmove(rob1, 1), do(vmove(rob2, 1), do(vmove(rob2, 1), do(vmove(rob1, 1), do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(rob1, 1), do(vmove(rob1, 1), do(grab(rob1, end1), s0))))))));

Yes

References

