
COSC 1020

Yves Lesp érance

Lecture Notes

Week 6 — Java Strings

Recommended Readings:
Horstmann: Ch. 3 Sec. 7 & Ch. 5 Sec. 2.3
Lewis & Loftus: Ch. 2 Sec. 6 & Ch. 3 Sec. 4

Character Strings

A character string is a sequence of 0 or more charac-
ters. A string can contain a word, a sentence, or any
amount of text.

In Java, character strings are objects that are instances
of the predefined class String . So String is not a
primitive data type like int (the syntax can be mis-
leading).

String literals are written between double-quotes,
e.g. "Hi there!" , "R2d2" , " " , "" .

When the + operator is used with String arguments,
it returns the string obtained by joining together its two
arguments; this is called concatenation, e.g.

String greeting = "Hello! Today is ";
String date = "Sept. 15";
String openingMsg = greeting + date;
IO.println(openingMsg);
date = "Sept. 22";
openingMsg = greeting + date;
IO.println(openingMsg);

1

As soon as one argument of + is a string, it will auto-
matically convert the other argument into a string and
concatenate the result, e.g.

int day = 15;
String date = "Sept. " + day;

The String class provides a number of methods for
operating on string objects.

charAt(i) returns the i th character of the string;
characters are numbered starting from 0, e.g.

String greeting = "Hello! Today is ";
char c = greeting.charAt(4);
// sets c to ’o’

length() returns the length of the string, e.g.

greeting.length() returns 16

substring(i,j) returns the substring from the i th
character up to and excluding the j th character, e.g.

IO.println(greeting.substring(7,12));
// prints "Today"

2

substring(i) just returns the substring between the
i th character and the end of the string, e.g.

IO.println(greeting.substring(7));

// prints "Today is "

The String class provides many other methods, e.g.
toUpperCase() , toLowerCase() , trim() , etc. See
the Java API for details.

To convert a number into a string, you can do

int dateNum = 15;

String dateStr = "" + dateNum;

or

String dateStr = Integer.toString(dateNum);

and similarly for Double , etc.

3

To convert a string containing a number into an int :

String dateStr = "19";

int dateNum = Integer.parseInt(dateStr);

and similarly for double with Double.parseDouble(s) .

Stings are immutable, i.e., once a string has been cre-
ated, it can’t be modified. The + operator creates a
new string each time it is called, and similarly for other
methods. This can be inefficient. Java also supplies
the class StringBuffer for cases where we want to
repeatedly modify a string.

4

Comparing Strings and Other Objects

You cannot use the relational operators to compare
strings and other objects. o1 == o2 is true only if o1

and o2 refer to the same object.

For strings, we use the following methods:

equals(s) returns true iff the string object is iden-
tical to the string argument s, i.e. same length and
same characters in corresponding positions; e.g.

String s1 = "abc";

s1.equals("abc") returns true ,
s1.equals("abc ") returns false ,
s1.equals("aBc") returns false ,
s1.equalsIgnoreCase("aBc") returns true .

5

compareTo(s) returns 0 if the object is identical to
the string argument s, a negative integer if the ob-
ject comes before s in the lexicographic ordering, and
a positive integer if the object comes after s; lexico-
graphic ordering is similar to dictionary ordering but
Unicode values are used to compare each character,
e.g. "abc" < "acc" , "abc" < "abcd" , "Zoo" <

"at" ; e.g.

s1.compareTo("abc") == 0 returns true ,
s1.compareTo("acc") < 0 returns true .

In general, s1.compareTo(s2) op 0 returns true

iff s1 op s2 .

For other object types, see if the class provides an
equality testing method.

6

String Search

indexOf(s2,p) searches for string s2 within this

string object starting at position p; if a match is found,
the method returns the starting position of the match,
otherwise -1 is returned.

indexOf(s2) works as indexOf(s2,0) .

E.g.

String s1 = "abracadabra";
String s2 = "br";
int pm = s1.indexOf(s2);
IO.println(pm); // prints 1
pm = s1.indexOf(s2,pm+s2.length());
IO.println(pm); // prints 8
pm = s1.indexOf(s2,pm+s2.length());
IO.println(pm); // no match, prints -1

Also lastIndexOf which searches from the right end
of the string.

7

E.g. Date Conversion

Convert a long form date to a short form, e.g.

zebra 355 % java ShortenDate
Enter long date: September 5, 2002
Short form is : 05/09/02

import type.lang.*;
public class ShortenDate
{ public static void main(String[] args)

{ IO.print("Enter long date: ");
String longDate = IO.readLine();
int pSep1 = longDate.indexOf(" ");
int pSep2 = longDate.indexOf(",");
String month = longDate.substring(0,pSep1);
month = month.toLowerCase();
final String monthTbl = "01january02february"

+ "03march04april05may06june07july08august"
+ "09september10october11november12december";

int pTbl = monthTbl.indexOf(month);
month = monthTbl.substring(pTbl-2,pTbl);
String day = longDate.substring(pSep1+1,pSep2);
day = day.trim();
if(day.length() < 2)
{ day = "0" + day;
}

8

String year = longDate.substring(pSep2+1)
year = year.trim();
year = year.substring(year.length()-2,

year.length());
String shortDate = day+"/"+month+"/"+year;
IO.println("Short form i s : " + shortDate);

}
}

9

E.g. Replace All Occurrences

Replace all occurrences of string pat in string s by
string rep, e.g.

zebra 354 % java ReplaceAll
Enter original string...
abracadabra
Enter substring to be replaced...
br
Enter replacement string...
brr
Modified string is...
abrracadabrra

10

import type.lang.*;
public class ReplaceAll
{ public static void main(String[] args)

{ IO.println("Enter original string...");
String s = IO.readLine();
IO.println("Enter substring to be replaced...");
String pat = IO.readLine();
IO.println("Enter replacement string...");
String rep = IO.readLine();
int patl = pat.length();
int repl = rep.length();
int pos = 0;
boolean done = false;
for(; !done ;)
{ pos = s.indexOf(pat,pos);

if(pos >= 0)
{ s = s.substring(0,pos) + rep

+ s.substring(pos+patl);
pos = pos + repl;

}
else
{ done = true;
}

}
IO.println("Modified string is...");
IO.println(s);

}
}

11

Conditional Loops

In many cases, you don’t know in advance how many
repetitions are required and you want to repeat the
operations as long as some condition holds. Java pro-
vides several constructs for this.

E.g. Determine how many months it takes to pay
back a loan given the loan amount, monthly payment
amount, and interest rate.

Solution Algorithm

1. Initialize months required to 0.

2. Repeat (a), (b), and (c) while amount owed is
greater than 0:
(a) Add monthly interest to amount owed.
(b) Subtract monthly payment from

amount owed.
(c) Increment months required by 1.

3. Report months required as the answer.

12

Java code

IO.print("Enter loan amount: ");
double amountOwed = IO.readDouble();
IO.print("Enter monthly payment: ");
double monthlyPayment = IO.readDouble();
IO.print("Enter interest rate: ");
double interestRate = IO.readDouble();
int monthsRequired = 0;
while (amountOwed > 0)
{ amountOwed = amountOwed +

amountOwed * interestRate;
amountOwed = amountOwed - monthlyPayment;
monthsRequired++;

}
IO.println("It will take " + monthsRequired +

" months to pay the loan.");

Depending on the application, you may need to check
the loop condition at the beginning of the loop body,
at the end, or in the middle. For each of these, you
use different control structures.

13

while Loops

Often, we want the condition to be tested at the begin-
ning of each cycle. For this, Java provides the while

structure:

while (condition)

statement

The body of the loop is repeatedly executed, as long
as the condition remains true. The condition is tested
at the beginning of every cycle. If the condition is false
initially, the body is never executed. If the condition
becomes false during a loop cycle, the cycle is com-
pleted nonetheless.

14

do Loops

In other cases, the condition must be tested at the end
of each cycle. For this, Java provides the do structure:

do

statement
while (condition) ;

The body of the loop is always executed at least once.

E.g. a program to compute a total:

IO.println(
"This program adds up the amounts you enter.");

double total = 0;
double amount;
String response;
do
{ IO.print("Enter an amount to add: ");

amount = IO.readDouble();
total = total + amount;
IO.print("Continue adding amounts (y/n)? ");
response = IO.readLine();

} while (response.charAt(0) == ’y’);
IO.println("Total is $" + total);

15

Exiting in the Middle of the Cycle

In many cases, the natural place to test the loop con-
dition is somewhere in the middle of the cycle.

E.g. suppose we want to modify the program to add
amounts so that it exits when a negative amount is
entered; here’s an algorithm in pseudocode:

Initialize total to 0.
loop

Read an amount.
if amount < 0 then exit the loop .
Add amount to total.

endLoop

Print total.

16

A natural way to code this in Java is:

double total = 0;

double amount;

while (true)

{ IO.print("Enter an amount: ");

amount = IO.readDouble();

if (amount < 0) break;

total = total + amount;

}

IO.println("Total is $" + total);

break exits immediately from nearest enclosing while

(or switch , for , or do). It is easy to write code that
is hard to understand with break . It should only be
used as above and in switch (another selection con-
struct).

17

Another way to write a loop that exits from the middle
is to use a boolean variable:

double total = 0;

double amount;

boolean done = false;

while (!done)

{ IO.print("Enter an amount: ");

amount = IO.readDouble();

if (amount < 0)

done = true;

else

total = total + amount;

}

IO.println("Total is $" + total);

18

import type.lang.*;
public class ReplaceAll2
{ public static void main(String[] args)

{ IO.println("Enter original string...");
String s = IO.readLine();
IO.println("Enter substring to be replaced...");
String pat = IO.readLine();
IO.println("Enter replacement string...");
String rep = IO.readLine();
int patl = pat.length();
int repl = rep.length();
int pos = 0;
while(true)
{ pos = s.indexOf(pat,pos);

if(pos < 0)
break;

s = s.substring(0,pos)
+ rep + s.substring(pos+patl);

pos = pos + repl;
}
IO.println("Modified string is...");
IO.println(s);

}
}

19

Note that

for (init; test; step)

statement

is equivalent to

{ init;
while (test)
{ statement

step;

}

}

20

Which Looping Construct to Use?

If number of iterations is known before loop starts use
for (counted loop).

If repeating as long as a conditon holds (conditional
loop):

� test at beginning use while(condition){...} ,

� test at end use do{...}while(condition) ,

� test in the middle use
while(true){...if(condition)break;...} .

If iterating over a collection or set of input records, can
use for .

21

Don’t use for for weird iteration constructs such as:

for(a = a/2; count < ITERATIONS; IO.println(xnew))

Instead write

a = a / 2;
while(count < ITERATIONS)
{ ...

IO.println(xnew);
}

22

Infinite Loops

You have to make sure that a loop eventually exits,
otherwise you have an infinite loop! E.g. 1:

double total = 0;

double amount;

while (true)

{ // input left out

if (amount < 0) break;

total = total + amount;

}

E.g. 2, a poorly written countdown program:

int count = IO.readInt();

while (count != -1)

{ IO.println(count);

count--;

}

23

