
COSC 1020

Yves Lesp érance

Lecture Notes

Week 2 — Computer Software

Recommended Readings:
Horstmann: Ch. 1 Sec. 4 to 10, Ch. 3 Sec. 2, 4, 6 &

Ch. 10 Sec. 1
Lewis & Loftus: Ch. 1 Sec. 3 & 4, Ch. 10 Sec. 0 &

Ch. 2 Sec. 3 to 5

The Software Development Process

Often taken to have 5 phases:

� Analysis: decide what system should do;
! requirements document.

� Design: create “blueprint” for system;
OO design ! description of classes, methods, &
relationships, API.

� Implementation: write code & compile;
! working program.

� Testing: run tests to verify that program works;
! report on test results.

� Deployment: program is installed & used.

Waterfall model: 5 phases in sequence.

But need to iterate phases. Development Process
Models.

Software Life Cycle = Development + Maintenance.

1

Compiling a Program

A computer can only execute machine instructions,
e.g. “load integer at memory address 40”). Before
a program in a high-level language can be executed it
must be translated into machine code. This is called
compiling the program. In languages such as C, C++,
Pascal, etc. this works as follows:

&%
'$

&%
'$

.

�
�
�

�
���

H
H
H
H
HHj

? ?

?

?

?

?

- �

� - CompilerCompiler

source program

for Pentium for SPARC

Pentium

Output

SPARC
Sun

Output

Input Input

machine code machine code
for Pentium for SPARC

Libraries

Since the machine code for different types of comput-
ers (Pentium, Sun SPARC, Mac) is different, you need
as many different compiled versions of the program
as types of computers you want to handle — not very
portable.

2

Compilation and Execution in Java

Java uses a different approach. A Java program is
compiled into machine instructions (bytecode) for the
Java virtual machine, an idealized CPU. The byte-
codes are then executed by an interpreter that sim-
ulates the virtual machine on the specific type of com-
puter used.

&%
'$

&%
'$

?

?

�
�

�
�

�
�
�

�
���

H
H
H
H
H
H
H
H
HHj

? ?

?

H
H
HHj ?

�
�
���
iPPq1��)

Java

Compiler

Java bytecode file
myProg.class

Sun

OutputOutput

LibrariesInput InputLibraries

SPARC

Java source program
myProg.java

Pentium

Java
Interpreter

for Pentium
Interpreter
for SPARC

Java

This is more portable and more secure.

3



Steps in Implementing a Program

1. Type the program into a file using an editor such as
nedit — see Lab #1 for details. Save it into a file
whose name ends in .java , e.g. Hello.java .

2. Run the Java compiler on this source code file, e.g.

javac Hello.java

If the compiler produces error messages, go back
to 1 and fix them. Otherwise, the compiler pro-
duces a bytecode file(s), e.g. Hello.class .

3. Execute the program by running the Java interpreter
on the bytecode file, e.g.

java Hello

Test the program by providing input data as re-
quired. If the program ends with a run-time error
message or does not produce the expected re-
sults, figure out what the error (bug) is, go back to
1, and fix it.

4

Compilation and Execution E.g.

Script started on Wed Sep 18 18:56:22 2002

blue 301 % more Hello.java

import type.lang.*;

public class Hello

{ public static void main(String[] args)

{ IO.println("Hello, World!");

}

}

blue 302 % javac Hello.java

blue 303 %

blue 303 % java Hello

Hello, World!

blue 304 %

blue 304 % exit

exit

script done on Wed Sep 18 18:57:24 2002

5

Compilation/Syntax Error E.g.

Script started on Wed Sep 18 18:59:42 2002

blue 301 % more Hello.java

import type.lang.*;

public class Hello

{ public static void main(String[] args)

{ IO.printl("Hello, World!");

}

}

blue 302 % javac Hello.java

Hello.java:4: cannot resolve symbol

symbol : method printl (java.lang.String)

location: class type.lang.IO

{ IO.printl("Hello, World!");

ˆ

1 error

blue 303 % exit

exit

script done on Wed Sep 18 19:00:27 2002

6

Types of Errors

� Syntax/Compilation errors: program violates rules
of syntax of programming language; detected dur-
ing compilation.

� Run-time errors: abnormal conditions detected
during program execution, e.g. division by 0; can
cause execution to be aborted, but can also be
caught as exceptions and handled.

� Logic errors: program appears to work but does
not do what it is supposed to do. Hardest to detect
and fix.

Fixing errors/bugs is called debugging.

Debugging tools, tracing.

7



Assigning a Value to a Variable

The most common way of putting a value into a vari-
able is with an assignment statement. E.g.

int age1, age2;

age1 = 11;

age2 = age1;

age1 = age1 + age2 + 5;

The left-hand-side should be a variable, because vari-
ables are things that can hold a value.

The right-hand-side may be a literal, a variable, or an
expression. Its type must be one that is compatible
with that of the variable as specified in the declara-
tion (either the same or one that is automatically pro-
moted). So for example: “age1 = "XYZ"; ” is an er-
ror.

8

Arithmetic Expressions

Arithmetic expressions are written much like you’d ex-
pect (* is used for multiplication), e.g.

2 * x * x + 3 * x - 5

(5.0 / 9.0) * (degF - 32)

One peculiarity is with the division operator / . It does
an integer division (discarding the remainder) when
both its arguments have a whole number type, other-
wise it does a real division, e.g.

13 / 5 evaluates to 2

13.0 / 5 evaluates to 2.6

The % operator is used to find the remainder in an
integer division, e.g.

13 % 5evaluates to 3

9

The normal rules of precedence are used in interpret-
ing arithmetic expressions:

operators precedence
unary - high
* / % medium

+ binary - low

Operators in the same precedence class are evalu-
ated left to right.

You can of course get a different order of evaluation
by adding ()s. E.g.

Expression Value
14 - 8 / 2 + 1

(14 - 8) / 2 + 1

(14 - 8) / (2 + 1)

10 - 5 - 3

10

Many other useful mathematical operations are pro-
vided as static methods of the Math class, e.g.
Math.sqrt(x), Math.sin(x) , etc.

Note that arithmetic operations on floating-point num-
bers are rarely exact. E.g.

1.0 / 3.0 + 2.0 / 3.0

will produce a value that is slightly less than than 1.0 .

Even expressions (e.g. 0.5 + 0.35 ) that look like
they should produce the exact result don’t because
numbers are represented in binary (0.35 is
0.01 0110 0110 . . . ).

One must be content with an approximate result. It is
often possible to calculate a bound on the error.

11



Type Promotion and Casting

In general, a value can only be assigned to a variable
if its type is the same as that of the variable. As well,
an operator or method can only be applied to the type
of data it is defined on.

However Java will automatically promote a value from
a smaller numerical type (e.g. int ) to a larger nu-
merical type (e.g. double ). For e.g. in evaluating the
arithmetic expression

2.5 + 3

the integer 3 will be promoted to the double 3.0 .

This also applies to the use of methods; if you call
a method taking an argument of type double on an
int argument, it will be promoted to double auto-
matically.

12

And this also applies to assignments, e.g. in

double x = 3;

the 3 will automatically be promoted to 3.0 before be-
ing assigned to x .

However, a value of a larger type is never automat-
ically converted to a value of a smaller type. If you
want to avoid a type mismatch error, you must use a
type cast, e.g.

double x = 3.5;

int n = (int) x;

Here, the value 3.5 will be truncated to 3 (i.e. the
fraction part discarded) before being assigned to n.

If the value being converted cannot be represented
as a value of the smaller type, an error (exception) will
occur.

13

In many cases, you will want to round up the value
being converted to an integer, e.g.

int n = (int)(x + 0.5);

or

int n = (int)Math.round(x);

A type cast can also be used perform a real division,
e.g. (double) 5 / 2 returns 2.5 .

14

An Example Application
Calculating Change

// in file MkChange.java

import type.lang.*;

public class MkChange
{ public static void main(String[] args)

{ final int QUARTER_VALUE = 25;
final int DIME_VALUE = 10;
final int NICKEL_VALUE = 5;
IO.print("Enter the amount in cents: ");
int amount = IO.readInt();
int nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
int nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
int nNickels = amount / NICKEL_VALUE;
int nPennies = amount % NICKEL_VALUE;
IO.print("Change is ");
IO.print(nQuarters + " quarters, ");
IO.print(nDimes + " dimes, ");
IO.print(nNickels + " nickels, and ");
IO.println(nPennies + " pennies.");

}
}

15



A sample run:

Script started on Wed Sep 18 19:06:08 2002
blue 301 % javac MkChange.java
blue 302 % java MkChange
Enter the amount in cents: 97
Change is 3 quarters, 2 dimes, 0 nickels, and 2 pennies.
blue 303 % java MkChange
Enter the amount in cents: 68
Change is 2 quarters, 1 dimes, 1 nickels, and 3 pennies.
blue 304 % exit
exit

script done on Wed Sep 18 19:06:57 2002

16

Applications

MkChange is an example of an application (app), a
class that is meant to be run by the java interpreter to
provide a service to an end user.

An app is a class that contains one and only one main
method and typically has the following form:
public class AppClassName
{ public static void main(String[] args)

{ // variable and constant declarations
// input some values
// perform some calculations
// output some values

}//end main method

//possibly other static methods used by main

}//end class AppClassName

The main method is the one that runs first when the
app starts executing.

An app generally uses methods from classes defined
by other programmers, e.g. MkChange uses IO.println .
But an app does not provide anything that can be used
by other programmers.

17


