
COSC 1020

Yves Lesp érance

Lecture Notes

Week 11 — Implementing Classes I

Recommended Readings:
Horstmann: Ch. 2
Lewis & Loftus: Ch. 4 Sec. 0 to 6

Defining a Class — A Very Simple E.g.
// file Person.java

public class Person
{

// constructor methods

public Person()
{

name = "UNKNOWN";
age = 0;

}

public Person(String n, int a)
{

name = n;
age = a;

}

// instance methods

public void setNameAndAge(String n, int a)
{

name = n;
age = a;

}

public void setName(String name)
{

this.name = name;
}

1

public void setAge(int n)
{

age = n;
}

public void incrementAge()
{

age = age + 1;
}

public String getName()
{

return name;
}

public int getAge()
{

return age;
}

// instance variables/attributes

private String name;
private int age;

}// end class Person

2

// file TestPerson.java

import type.lang.*;

public class TestPerson
{ public static void main(String[] args)

{
Person p1 = new Person("John", 21);
IO.println("p1’s name is : " + p1.getName());
IO.println("p1’s age is: " + p1.getAge());
p1.incrementAge();
IO.println("p1’s age is: " + p1.getAge());
p1.setAge(18);
IO.println("p1’s age is: " + p1.getAge());

}
}

zebra 43 % java TestPerson
p1’s name is: John
p1’s age is: 21
p1’s age is: 22
p1’s age is: 18
zebra 44 %

3



Elements of a Class Definition

A class definition may include the following:

� instance methods,

� constructors,

� instance variables/attributes/fields,

� class/static methods,

� class/static variables/constants.

4

Defining Methods

When you define a method, you take the steps re-
quired to solve a subproblem and give them a name.
Afterwards, the method can be called without know-
ing how it is implemented. This is called procedural
abstraction.

A method definition specifies:

� the name of the method,

� the name and types of parameters it takes,

� the type of result it returns,

� its visibility, i.e. public , private , etc.

� whether it is an instance or class (static ) method,

� the steps required to execute it — the body of the
method.

In programming languages that are not object-oriented,
methods are often called subprograms.

5

Instance Variables/Attributes

For each piece of information that needs to be main-
tained about the instances of a class, you need to
define an instance variable/attribute/field in the class,
e.g.

public class Person
{

// methods
...

// instance variables/attributes

private String name;
private int age;

}// end class Person

If an attribute is public , users can access and change
its value directly. But if the attribute is private , users
can only access it indirectly by calling methods. E.g.

6

public class Car
{

...

private String model;
public int mileage;

}

...

Car aCar = new Car();
aCar.mileage = 23000; // ok
IO.println(aCar.mileage); // ok
aCar.model = "VW Beetle"; // error
IO.println(aCar.model); // error

These access restrictions only apply to code outside
the class. The methods of the class always have ac-
cess to the class’s attributes, e.g. setAge can change
the value of the age attribute in a Person even though
it is private .

Instance attributes are usually private . In this way,
the class designer retains the right to change the way
the data in the attributes is represented.

7



Returning Results from Methods

A method’s header specifies whether or not it returns
a result, and if it does, what the result’s type is. When
no result is returned, the method’s result type is de-
clared to be void .

After a method has been called and its body has fin-
ished executing, the execution of the program contin-
ues from the point where the method was called. If a
method is to return a value to the place where it was
called, it must terminate by executing the statement
“return expression;”, e.g. return age; .

Then, the expression is evaluated and its value is passed
back to the point of the call as the method terminates.

Methods that return a value are often called functions
and methods that do not are often called procedures.

8

Parameters

When we call a method, we often want to pass some
data to it; the method can then use the data, save it
in an attribute, or examine it to decide what actions to
take. We do this by having the method take param-
eters. E.g. we need to pass the person’s age to the
setAge method; the age can be any value we want;
the method uses the parameter n for this.

Parameters are declared in the header of the method
definition. Both the parameter name and type are
given, e.g.

public void setAge(int n)

{

age = n;

}

public void setNameAndAge(String n, int a)

{...}

9

When you call a method, you supply an argument or
actual parameter for each formal parameter in the
method definition header. Arguments are associated
to parameters by the order in which they appear. The
number and type of arguments must match that of the
parameters. E.g.

Person p1 = new Person();

int uAge = 44;

p1.setAge(uAge);

p1.setNameAndAge("Yves",44);

When a method is called, first the parameters are
passed, and then the body of the method is executed.

10

Constructors

Constructors have the same name as their class. Their
job is adequately initializing the new object’s attributes.

A class can have several constructor methods. This is
an example of “overloading”, i.e. having several meth-
ods with the same name in one class. The overloaded
methods must have a different number or types of ar-
guments. For e.g., the class Person has 2 construc-
tors:

1. a 2 arguments constructor that initializes the name
and age of the new object to the values supplied,
e.g.

Person p1 = new Person("Yves", 44);

2. a 0 arguments constructor that initializes the at-
tributes to default values, e.g.

Person p1 = new Person();

11



In defining constructors, the result type need not be
specified as it is always the constructor’s class.

If you don’t define any constructors, a 0 arguments
constructor is automatically provided; it initializes the
numeric attributes to 0, booleans to false , and ob-
jects to null .

12

About this

Within a class definition, this without parentheses
always refers to the current instance of the class. It
can be used to refer to the instance’s attributes in
a method that has a variable or parameter with the
same name, e.g.

public class Person
{

...
public void setName(String name)
{

this.name = name;
}
...
private String name;
private int age;

}// end class Person

Here the parameter namedefined in the method hides
the attribute name defined in the class; but you can
refer to the latter using this.name .

this(...) is a call to the class’s constructor; see
Horstmann p. 69.

13

E.g. Implementing the CreditCard Class
// file CreditCard.java
import type.lang.*;
public class CreditCard
{

// constructors

public CreditCard(int no, String aName, double aLimit)
{ SE.require(0 < no && no <= 999999 && aLimit > 0);

number = IO.format(no, "6z") + "-";
int digitSum = 0;
while(no > 0)
{ digitSum = digitSum + no % 10;

no = no / 10;
}
number = number + (MOD - digitSum % MOD);
name = aName;
limit = aLimit;

}

public CreditCard(int no, String aName)
{ this(no, aName, DEFAULT_LIMIT);
}

// instance methods - accessors

public double getBalance()
{ return balance;
}

public double getLimit()
{ return limit;
}

14

public String getName()
{ return name;
}

public String getNumber()
{ return number;
}

// mutators

public boolean setLimit(double newLimit)
{ if(newLimit >= 0 && newLimit >= balance)

{ limit = newLimit;
return true;

}
else
{ return false;
}

}

// specialized methods

public boolean charge(double amount)
{ SE.require(amount >= 0);

if(balance+amount > limit)
{ return false;
}
else
{ balance = balance + amount;

return true;
}

}

public void credit(double amount)
{ SE.require(amount >= 0);

balance = balance - amount;

15



}

public void pay(double amount)
{ SE.require(amount >= 0);

balance = balance - amount;
}

// standard methods

public boolean equals(Object anObject)
{ return (anObject instanceof CreditCard &&

number.equals(((CreditCard)anObject).number));
}

public String toString()
{ String res = "CARD [";

res = res + "NO=" + number;
res = res + ", BALANCE=";
res = res + IO.format(balance, ".2") + "]";
return res;

}

// instance variables/attributes/fields

private String number;
private String name;
private double limit;
private double balance;

// class/static variables/attributes/fields

public static double DEFAULT_LIMIT = 1000.0;
public static int MIN_NAME_LENGTH = 3;
public static int MOD = 9;
public static int SEQUENCE_NUMBER_LENGTH = 6;

}// end class CreditCard

16

Parameter Passing — The Details

As we saw earlier, parameter passing proceeds as fol-
lows:

1. the arguments are evaluated,

2. parameter variables are created,

3. the values of the arguments are copied into the
parameter variables.

E.g. in the method call c1.charge(amt) , the value
of the argument amt , say 20.0 is first obtained, then
a new formal parameter variable amount is created,
and then the value of the amt argument, 20.0 , is
copied into this parameter variable. After this has
been done, the body of the charge method is exe-
cuted.

Same when the argument is an expression, e.g.
c1.charge(c1.getLimit() - c1.getBalance())

17

If method has several parameters, they are all passed
in this way, e.g.
CreditCard c1 = new CreditCard(703,"John",5000.0) .

Since the method is working with a copy of the argu-
ment, any changes made to the parameter variable
don’t affect the argument. So you cannot use param-
eters of primitive types to return values in Java. E.g.

public class App
{ public static void main(String[] args)

{ int n = 99;
IO.println("in main n = " + n);
EgCl e = new EgCl();
e.increment(n);
IO.println("in main n = " + n);

}
}

public class EgCl
{ public void increment(int m)

{ IO.println("in increment m = " + m);
m = m + 1;
IO.println("in increment m = " + m);

}
}

18

The mode of parameter passing used by Java is named
call by value because it is the value of the argument
which is passed to the formal parameter.

When the type of a parameter is an object type, only
the reference in the argument gets copied in the pa-
rameter, and both the argument and parameter refer
to the same object. So the method is working on the
original object, and any change to its attributes per-
sists when the method returns. E.g.

public class App
{ public static void main(String[] args)

{ CreditCard c = new CreditCard(703,"John");
IO.println("in main c = " + c.toString());
EgCl e = new EgCl();
e.increment(c);
IO.println("in main c = " + c.toString());

}
}

public class EgCl
{ public void increment(CreditCard ci)

{ IO.println("in increment ci = " + ci.toString());
ci.charge(100.0);
IO.println("in increment ci = " + ci.toString());

}
}

19



So, object parameters can be used by a method to
send results back to the caller just as well as to re-
ceive data from the caller.

In languages like C++ and Pascal, there is a parame-
ter passing mode named call by reference where the
parameter receives a reference to the argument. The
fact that object-type variables always contain refer-
ences in Java makes object parameters behave some-
what as if they had been passed using call by refer-
ence.

20

But unlike true call by reference, changing which ob-
ject the parameter is referring to does not change which
object the argument is referring to. E.g.

public class App
{ public static void main(String[] args)

{ CreditCard c = new CreditCard(703,"John");
IO.println("in main c = " + c.toString());
EgCl e = new EgCl();
e.makeNewCard(c);
IO.println("in main c = " + c.toString());

}
}

public class EgCl
{ public void makeNewCard(CreditCard cm)

{ cm = new CreditCard(704,"Mary");
IO.println("in makeNewCard cm = " + cm.toString());

}
}

21

Control Flow and the Execution Stack
public class App
{ public static void main(String[] args)

{ int n = 1;
EgCl e = new EgCl();
e.m1(n);

}

}

public class EgCl
public void m1(int n1)
{ n1 = n1 + 1;

m2(n1);
}

private void m2(int n2)
{ n2 = n2 + 1;

IO.println(n2);
}

}

When a method, say main , calls a method m1 (on
e), the execution of main is suspended and m1starts
executing. Only when the execution of m1 terminates
will the execution of main resume. If m1 calls a third
method m2, m1 is also suspended until m2terminates.
The chain of method calls can get arbitrarily long.

22

Since the first method to be called is always the last
to resume, the Java interpreter uses a stack to keep
track of control flow in a program — the execution
stack. We will see that this is important when en-
counter methods that call themselves, i.e. recursion.
The stack is also used to store a method’s local vari-
ables.

23



Scope of Variables

The scope of a variable is the part of the program
where it is visible, where it can be accessed. The
variables declared inside a method, as well as its pa-
rameters, are said to be local to the method. One can
only refer to them in the method or code block where
they are declared. E.g.
public class Eg
{ public int meth1(int v2)

{ int v3 = 3;
IO.println(v3); // ok
IO.println(v2); // ok
IO.println(v1); // ok
meth2(v3);

}
private void meth2(int v4)
{ int v5 = 5;

IO.println(v5); // ok
IO.println(v4); // ok
IO.println(v1); // ok
IO.println(v3); // error
IO.println(v2); // error
while(...)
{ int v6 = 6;

IO.println(v6); // ok
...

}
IO.println(v6); // error

}
private int v1 = 1;

}

24

Access Control Revisited

For attributes and methods, one specifies where they
are visible using access control modifiers such as public

and private .

public means that the attribute or method is acces-
sible everywhere. Normally we use this only for meth-
ods and class constants that are made available to
users of the class.

private means that the attribute or method is only
accessible inside the class where it is declared. Nor-
mally we use this for all attributes and for methods
that are defined by the implementor for his own use
and are not provided to users of the class.

Besides these, there are other access control modi-
fiers such as protected (accessible in subclasses
and other classes in the same package) and the de-
fault/no modifier (accessible other classes in the same
package), which you will learn about in COSC 1030.

25

Why Define a Class?

There are two cases where defining a class is useful.

1. Your program needs to work with some kind of data,
e.g. Persons. You want to group together the data and
the operations that manipulate it.

You also want to hide the details of how the data is
represented and how the operations are implemented
from users of the class. The class will make some op-
erations public, i.e. available to the users, and provide
information on how to use them. This is the class’s
interface. The rest of the class’s definition is private
and hidden from users.

Sometimes, one says that the class defines an ab-
stract data type. It is abstract because it you don’t
have to know the details to use it.

26

2. You want to group together a set of related opera-
tions in a module, e.g. the Math class. In this case,
class users won’t create instances of the class. The
methods are associated with the class itself. In Java,
they are labeled static .

Here too, the class supplies some public operations
to users and provides information on how to use them
in its interface. The rest of its definition is private.

In both cases, we say that the class encapsulates, i.e.
hides, the details of its definition.

27


