Curvature of Isophotes in an Image

Konstantinos G. Derpanis
York University
Department of Computer Science and Engineering
kosta@cs.yorku.ca
Version 1.0

October 18, 2005

This note summarizes the measurement of curvature along isophotes in a luminance image as presented in [1].

For a luminance image $L(x, y)$ where x, y are the Cartesian coordinates in the image plane, the equation of the boundary of the isophote (referred to as a blob by the authors [1]) is defined as $L(x, y)=L_{0}$ (see Fig. 1). The curvature of this boundary is found by implicitly differentiating the definition of the isophote twice with respect to the x coordinate. This yields two equation, specifically the first and second derivatives of y with respect to x which can be combined to explicitly solve for $d^{2} y / d x^{2}$, yielding,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{-L_{y}^{2} L_{x x}+2 L_{x} L_{y} L_{x y}-L_{x}^{2} L_{y y}}{L_{y}^{3}} \tag{1}
\end{equation*}
$$

The desired curvature κ is defined in the special case where the x-axis is tangent to the isophote. This is done by reexpressing the local structure in terms of a local coordinate system defined by the local structure of the image itself, specifically the first-order gauge coordinates ${ }^{1}$. In this case $L_{x}=0$ and the solution reduces to,

$$
\begin{equation*}
\kappa=-\frac{L_{x x}}{L_{y}} . \tag{2}
\end{equation*}
$$

Next the derivation of Eq. (1) is summarized. To reiterate, the defining equation of the isophote is given as,

$$
\begin{equation*}
L(x, y)=L_{0} . \tag{3}
\end{equation*}
$$

[^0]

Figure 1: Image isophote.

The first derivative of y with respect to x is arrived at by implicit differentiation of the isophote (3),

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{L_{x}}{L_{y}}=-L_{x} L_{y}^{-1} . \tag{4}
\end{equation*}
$$

Differentiating (4) once again with respect to x, yields,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=-L_{y}^{-1} L_{x x}-L_{y}^{-1} L_{x y} \frac{d y}{d x}+L_{x} L_{y}^{-2} L_{y x}+L_{x} L_{y}^{-2} L_{y y} \frac{d y}{d x} \tag{5}
\end{equation*}
$$

Substituting (4) into (5), yields,

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =-L_{y}^{-1} L_{x x}+L_{y}^{-1} L_{x y} L_{x} L_{y}^{-1}+L_{x} L_{y}^{-2} L_{y x}+L_{x} L_{y}^{-2} L_{y y} L_{x} L_{y}^{-1} \tag{6}\\
& =-L_{y}^{-1} L_{x x}+L_{y}^{-2} L_{x y} L_{x}+L_{x} L_{y}^{-2} L_{y x}-L_{x} L_{y}^{-3} L_{y y} L_{x} \tag{7}\\
& =-\frac{L_{y}^{2} L_{x} x}{L_{y}^{3}}+2 L_{x} L_{x y} L_{y}^{-2}-\frac{L_{x}^{2} L_{y y}}{L_{y}^{3}} \tag{8}\\
& =\frac{-L_{y}^{2} L_{x x}+2 L_{x} L_{y} L_{x y}-L_{x}^{2} L_{y y}}{L_{y}^{3}} \tag{9}
\end{align*}
$$

References

[1] J.J. Koenderink and W. Richards. Two-dimensional curvature operators. Optical Society of America - A, 1988.

[^0]: ${ }^{1}$ The first-order gauge coordinates are defined by the gradient direction and its perpendicular direction.

