Integral image-based representations

Konstantinos G. Derpanis
Department of Computer Science and Engineering
York University

kosta@cs.yorku.ca

Last Updated: July 14, 2007

In this note the integral image representation (Viola & Jones, 2001) (Section
1) and its three-dimensional generalization, the integral video (Ke, Sukthankar &
Hebert, 2005) (Section 2), are reviewed. These representations admit very fast multi-
scale feature recovery. In Section 3, the use of integral representation for scale-
space analysis is briefly discussed. More generally, the integral image-based approach
described here can be cast into a more general framework of understanding. The
integral image within this framework represents space variant image filtering with
the zero-order B-spline. If an image is pre-integrated n times, space variant filtering
with higher-order B-splines can be achieved. For further details on the higher-order
generalization, see (Derpanis, Leung & Sizintzev, 2007).

1 Integral image representation

Rectangular two-dimensional image features can be computed rapidly using an in-
termediate representation called the integral image (c.f. summed area tables used
in graphics (Crow, 1984)). The integral image, denoted ii(z,y), at location (z,y)
contains the sum of the pixel values above and to the left of (z,y) (see Fig. 1(a)),
formally,
ii(l‘,y) = Z z'(:c’,y’), (1>
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where i(x,y) is the input image. The integral image can be computed in one-pass
over the image using the following recurrence relation:

s(z,y) = s(z,y — 1) +i(z,y) (2)
iz, y) = iz — 1,y) + s(z,y), (3)



Figure 1: Integral image representation. (a) integral image and (b) region A can be
computed using the following four array references: L4+ Ly — (Lg + L3).

Figure 2: The set of rectangular filters used by Viola and Jones (Viola & Jones,
2001). Each filter is composed of several rectangular regions, where the white and
grey regions within the features are associated with 1 and -1, respectively.

where s(z,y) denotes the cumulative row sum and s(z, —1) = ii(—1,y) = 0.

Given the integral image, the sum of pixel values within a rectangular region of the
image aligned with the coordinate axes can be computed with four array references
(i.e., constant time). For example, to compute the sum of region A in Fig. 1(b),
the following four references are required: L4 + L; — (Lg + L3). Viola and Jones
(Viola & Jones, 2001) propose a set of five rectangular filters to extract features for
object detection (see Fig. 2). Given the integral image, each of these features can be
computed in constant time.

For 45° oriented rectangular features, Lienhart and Maydt (Lienhart & Maydt,
2002) proposed an adaption of the integral image representation, they termed the
rotated summed area table, denoted rsat(z,y). The rsat data structure yields the
sum of pixels of the rectangle rotated by 45° with the rightmost corner located at
(x,y) and extending to the image boundaries (see Fig. 3(a)):

rsat(z,y) = > i, y). (4)
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Figure 3: Rotated summed area table representation. (a) rotated summed area table
and (b) region A can be computed using the following four array references: L, +
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Figure 4: A subset of the oriented rectangular filters used by Lienhart and Maydt
(Lienhart & Maydt, 2002). Each filter is composed of several 45° oriented rectangular
regions, where the white and grey regions within the features are associated with 1
and -1, respectively.

rsat(z,y) can be computed efficiently with two passes of the image. Rotated rectan-
gles can be computed, like the integral image, with four table lookups. For example,
to compute the sum of region A in Fig. 3(b), the following four references are required:
Ly+ Ly — (Ly+ L3). Figure 4 depicts several oriented rectangular feature prototypes
used in (Lienhart & Maydt, 2002).

2 Integral volume representation

The integral video represents the three-dimensional generalization of the integral im-
age. The integral video, denoted iv(z,y,t), at spatial location (z,y) and time ¢
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Figure 5: Integral video feature computation. Volume A can be computed using the
following 8 array references: Ls — Ly — Lg — L7 + Lo + L3 + Lg — Ly.

contains the sum of pixel values less than or equal to (z,y,t), formally,

i, y,y) = > iy, 1), (5)
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where i(z,y,t) is the input image sequence. The integral video can be computed
rapidly in one pass over the image sequence using the following recurrence relation,

si(z,y,t) = si(z,y — 1,1) + iz, y,1) (6)
s2(, 4, 1) = so(w — 1,y,t) + s1(2,y, 1) (7)
w(x,y,t) =iw(z,y,t —1) + sa(z,y,1), (8)
where s (z,—1,t) = so(—1,y,t) = iv(z,y,—1) = 0. In order to compute the sum

within any rectangular volume aligned with the coordinate axes only eight array
references to the integral video are necessary. For example, the volume of box A
depicted in Fig. 5 can be computed by the following eight references to the integral
video: Ls — Ly — Lg — L7+ Ly + L3 + Lg — Ly. Ke et al. (Ke, Sukthankar & Hebert,
2005) propose a set of four cuboid filters to extract features for action detection (see
Fig. 6). As with the case of integral images, each of these volumetric features can be
computed in constant time.

3 Integral-based scale-space approximations

The Gaussian kernel and its partial derivatives can be shown to provide the unique set
of operators for the construction of (linear) scale-space under certain conditions (ax-
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Figure 6: The set of cuboid filters used by Ke et al. (Ke, Sukthankar & Hebert, 2005).

Each filter is composed of cuboid volumes, where the white and black volumes within
the features are associated with 1 and -1, respectively.

ioms) (Koenderink, 1984). However, in practice the Gaussian needs to be discretized
and cropped. Thus, the use of the Gaussian kernel in practice is of an approximative
nature. Grabner et. al (Grabner, Grabner & Bischof, 2006) and Bay et. al (Bay,
Tuytelaars & Van Gool, 2006) push the approximation even further with box filters
for the purpose of rapidly computing approximations of Lowe’s SIFT features (Lowe,
2004). These box filter-based approximations are constructed through the use of inte-
gral images. The respective papers report comparable performance to the discretized
and cropped Gaussian.
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