Fourier Transform of the Gaussian

Konstantinos G. Derpanis

October 20, 2005

In this note we consider the Fourier transform ${ }^{1}$ of the Gaussian.
The Gaussian function, $g(x)$, is defined as,

$$
\begin{equation*}
g(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-x^{2}}{2 \sigma^{2}}} \tag{3}
\end{equation*}
$$

where $\int_{-\infty}^{\infty} g(x) d x=1$ (i.e., normalized). The Fourier transform of the Gaussian function is given by:

$$
\begin{equation*}
G(\omega)=e^{-\frac{\omega^{2} \sigma^{2}}{2}} . \tag{4}
\end{equation*}
$$

Proof:
We begin with differentiating the Gaussian function:

$$
\begin{equation*}
\frac{d g(x)}{d x}=-\frac{x}{\sigma^{2}} g(x) \tag{5}
\end{equation*}
$$

Next, applying the Fourier transform to both sides of (5) yields,

$$
\begin{align*}
i \omega G(\omega) & =\frac{1}{i \sigma^{2}} \frac{d G(\omega)}{d \omega} \tag{6}\\
\frac{\frac{d G(\omega)}{d \omega}}{G(\omega)} & =-\omega \sigma^{2} \tag{7}
\end{align*}
$$

Integrating both sides of (7) yields,

$$
\begin{align*}
\int_{0}^{\omega} \frac{\frac{d G\left(\omega^{\prime}\right)}{d \omega^{\prime}}}{G\left(\omega^{\prime}\right)} d \omega^{\prime} & =-\int_{0}^{\omega} \omega^{\prime} \sigma^{2} d \omega^{\prime} \tag{8}\\
\ln G(\omega)-\ln G(0) & =\frac{\sigma^{2} \omega^{2}}{2} . \tag{9}
\end{align*}
$$

Since the Gaussian is normalized, the DC component $G(0)=0$, thus (9) can be rewritten as,

$$
\begin{equation*}
\ln G(\omega)=-\frac{\sigma^{2} \omega^{2}}{2} \tag{10}
\end{equation*}
$$

Finally, applying the exponent to each side yields,

$$
\begin{align*}
e^{\ln G(\omega)} & =e^{-\frac{\sigma^{2} \omega^{2}}{2}} \tag{11}\\
G(\omega) & =e^{-\frac{\sigma^{2} \omega^{2}}{2}} \tag{12}
\end{align*}
$$

as desired.
${ }^{1}$ The Fourier transform pair is given by:

$$
\begin{align*}
& F(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \tag{1}\\
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega x} d \omega \tag{2}
\end{align*}
$$

where i denotes the complex unit.

