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In this note we consider the Fourier transform® of the Gaussian.
The Gaussian function, g(z), is defined as,
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where [*_g(x)dz =1 (i.c., normalized). The Fourier transform of the Gaussian function is given
by:
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Proof:
We begin with differentiating the Gaussian function:
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Next, applying the Fourier transform to both sides of (5) yields,
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Integrating both sides of (7) yields,
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Since the Gaussian is normalized, the DC component G(0) = 0, thus (9) can be rewritten as,
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Finally, applying the exponent to each side yields,
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as desired.
IThe Fourier transform pair is given by:
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where i denotes the complex unit.



