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The Cramer-Rao bound establishes the lower limit on how much “information” about an unknown
probability distribution parameter a set of measurements carries. More specifically, the inequality
establishes the minimum variance for an unbiased estimator of the underlying parameter, θ, of a
probability distribution, p(x; θ). Three important points must be kept in mind about the Cramer-
Rao bound: 1) the bound pertains only to unbiased estimators, biased estimators may violate the
lower bound 2) the bound may be unreachable in practice, and 3) maximum likelihood estimators
achieve the lower bound as the size of the measurement set tends to infinity. The following note
outlines the proof of the Cramer-Rao bound for a single parameter (adapted from (Gershenfeld,
1999)).

Before proving the Cramer-Rao bound, let’s first establish several key components of the proof.
The score, S is defined as,

S =
∂

∂θ
log p(x; θ) (1)

=
∂p(x; θ)

∂θ

1
p(x; θ)

. (2)

The expected value of the score, E{S}, is

E{S} =

∞∫
−∞

(
∂p(x; θ)

∂θ

1
p(x; θ)

)
p(x; θ)dx (3)

= 0. (4)

The variance of the score, Var{S}, is termed the Fisher information (denoted I(θ)).
The score for a set of N independent identically-distributed (i.i.d.) variables is the sum of the

respective scores,

S(x1, x2, . . . , xN ) =
∂

∂θ
log p(x1, x2, . . . , xN ) (5)

=
∂

∂θ
log

(
p(x1)p(x2) · · · p(xN )

)
(6)

=
N∑

i=1

∂

∂θ
log p(xi; θ) (7)

=
N∑

i=1

S(xi). (8)

Similarly, it can be shown that the Fisher information for the set is NI(θ).
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Theorem: The mean square error of an unbiased estimator, g, of a probability distribution para-
meter, θ, is lower bounded by the reciprocal of the Fisher information, I(θ), formally,

Var(g) ≥ 1
I(θ)

. (9)

This lower bound is known as the Cramer-Rao bound.

Proof: Without loss of generality, the proof considers the bound related to a single measurement.
The general case of a set of i.i.d. measurements follows in a straightforward manner. By the Cauchy-
Schwarz inequality1 ,(

E

{
(S − E{S})(g − E{g})

})2

≤ E

{
(S − E{S})2

}
E

{
(g − E{g})2

}
. (10)

Further expansion of (10) yields,(
E

{
Sg − E{S}g − SE{g}+ E{S}E{g}

})2

≤ E

{
S2 − 2SE{S}+ E{S}2

}
Var{g}. (11)

Since the expected value of the score is zero, E{S} = 0, (11) simplifies as follows,(
E

{
Sg − SE{g}

})2

≤ E{S2}Var{g} (12)(
E{Sg} − E

{
SE{g}

})2

≤ I(θ)Var{g} (13)(
E{Sg} − E{S}E{g}

)2

≤ I(θ)Var{g} (14)(
E{Sg}

)2

≤ I(θ)Var{g} (15)

( ∞∫
−∞

(
∂p(x; θ)

∂θ

1
p(x; θ)

)
g(x)p(x; θ)dx

)2

≤ I(θ)Var{g} (16)

(
∂

∂θ

∞∫
−∞

g(x)p(x; θ)dx

)2

≤ I(θ)Var{g} (17)

(
∂

∂θ
E{g}

)2

≤ I(θ)Var{g}. (18)

Since g is an unbiased estimator (i.e., E{g} = θ), (18) becomes,(
∂

∂θ
θ

)2

≤ I(θ)Var{g} (19)

1 ≤ I(θ)Var{g}. (20)

Thus,

Var(g) ≥ 1
I(θ)

, (21)

as desired.
1Cauchy-Schwarz inequality: E{XY }2 ≤ E{X}E{Y }
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