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1. Introduction

In recent years there has been an increased interest in priority scheduling. It is seen by many as the
method of choice for designing real-time systems, and has been adopted or recommended by many
government agencies for some very important projects. For example, it has been reported to be adopted
by NASA, FAA, the U.S. Navy, the European Space Agency, among others.

Many of the intended applications are safety-critical, and there can be very serious consequences
if timing constraints are not satisfied. Because of the importance of these projects, the characteristics
of the priority scheduling approach needs to be carefully examined, to determine whether priority
scheduling is the best possible choice.

Several papers have been published that express the view that the priority scheduling approach is
better than alternative approaches, e.g., (Locke, 1992). This paper offers another view. A debate
on this issue should help real-time system designers to make informed choices on which scheduling
method they should use.

Some readers will find some of the observations made in this paper about the strengths and weak-
nesses of certain techniques to be obvious. However, (1) these issues are never discussed explicitly in
other papers, and (2) people build systems in apparent ignorance of the points made in this paper. An
explicit discussion of these issues will be of value to many developers of real-time systems.

� cKluwer Academic Publishers, Boston. This work was supported in part by Natural Sciences and Engineering
Research Council of Canada grants to J. Xu and D. L. Parnas. This paper was presented at the 23rd IFAC/IFIP
Workshop on Real-Time Programming, Shantou, June 23-25, 1998.
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Throughout this paper, it is assumed that the hard-real-time system includes a relatively large num-
ber of processes that have stringent timing constraints, that the processes have different timing char-
acteristics and interdependencies, and that the processor utilization factor is not very low, i.e., there is
not much spare CPU capacity available. The U.S. Navy’s A-7E aircraft operational flight program is
a well documented example (Heninger, Kallander, Parnas, and Shore, 1978, Faulk and Parnas, 1988).

2. Processes and Schedules

As explained in Xu and Parnas (1993), in order to provide predictability in a complex hard-real-time
system, the major characteristics of the processes must be known, or bounded, in advance, otherwise
it would be impossible to guarantee a priori that all timing constraints will be met.

2.1. Periodic Processes

A periodic process consists of a computation that is executed repeatedly, once in each fixed period of
time. A typical use of periodic processes is to read sensor data and update the current state of internal
variables and outputs.

A periodic process p can be described by a quadruple (rp;cp;dp; prdp). prdp is the period. cp is
the worse case computation time required by process p. dp is the deadline, i.e., the duration of the
time interval between the beginning of a period and the time by which an execution of process p must
be completed in each period. rp is the release time, i.e., the duration of the time interval between the
beginning of a period and the earliest time that an execution of process p can be started in each period.
We assume that rp, cp, dp, prdp as well as any other parameters expressed in time have integer values.
A periodic process p can have an infinite number of periodic process executions p0, p1, p2, ..., with
one process execution for each period. For the ith process execution pi corresponding to the ith period,
pi’s release time is rpi = rp + prdp � (i�1); and pi’s deadline is dpi = dp + prdp � (i�1).

2.2. Asynchronous Processes

An asynchronous process consists of a computation that responds to internal or external events. A
typical use of an asynchronous process is to respond to operator requests. Although the precise request
times for executions of an asynchronous process a are not known in advance, usually the minimum
amount of time between two consecutive requests mina is known in advance. An asynchronous process
a can be described by a triple (ca;da;mina). ca is the worse case computation time required by process
a. da is the deadline, i.e., the duration of the time interval between the time when a request is made
for process a and the time by which an execution of process a must be completed. An asynchronous
process a can have an infinite number of asynchronous process executions a0, a1, a2, ..., with one
process execution for each asynchronous request. For the ith asynchronous process execu-
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tion ai which corresponds to the ith request, if ai’s request time is rai , then ai’s deadline is dai = rai + da.

2.3. Schedules

We introduce the notions process execution unit and processor time unit. If a periodic process p or an
asynchronous process a has a computation time of cp or ca, then we assume that that process execution
pi or ai is composed of cp or ca process execution units. Each processor is associated with a processor
time axis starting from 0 and is divided into a sequence of processor time units.

A schedule is a mapping from a possibly infinite set of process execution units to a possibly infinite
set of processor time units on one or more processor time axes. The number of processor time units
between 0 and the processor time unit that is mapped to by the first unit in a process execution is
called the start time of that process execution. The number of time units between 0 and the time unit
subsequent to the processor time unit mapped to by the last unit in a process execution is called the
completion time of that process execution. A feasible schedule is a schedule in which the start time
of every process execution is greater than or equal to that process execution’s release time or request
time, and its completion time is less than or equal to that process execution’s deadline.

2.4. Process Segments

Each process p may consist of a finite sequence of segments1 p[0]; p[1]; :::; p[n[p]], where p[0] is the
first segment and p[n[p]] is the last segment in process p. Given the release time rp, deadline dp of
process p and the computation time of each segment p[i] in process p, one can easily compute the
release time and deadline for each segment (Xu and Parnas, 1993).

2.5. Precedence and Exclusion Relations

Various types of relations such as precedence relations and exclusion relations may exist between or-
dered pairs of processes segments. A process segment i is said to precede another process segment
j if j can only start execution after i has completed its computation. Precedence relations may exist
between process segments when some process segments require information that is produced by other
process segments. A process segment i is said to exclude another process segment j if no execution of
j can occur between the time that i starts its computation and the time that i completes its computation.
Exclusion relations may exist between process segments when some process segments must prevent
simultaneous access to shared resources such as data and I/O devices by other process segments.
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3. Introduction to Priority Scheduling and Pre-Run-Time Scheduling

In the following, brief descriptions of the priority scheduling and pre-run-time scheduling approaches
are provided.

3.1. The Priority Scheduling Approach

Most priority scheduling approaches share two basic assumptions: a) the scheduling is performed at
run-time; b) processes are assigned fixed priorities and whenever two processes compete for a pro-
cessor, the process with the higher priority wins.

Rate Monotonic Scheduling (Liu and Layland, 1973) is now the best known representive of the
priority scheduling approach. It assumes that all processes are periodic, and that the major character-
istics of the processes are known before run-time, that is, the worst case execution times and periods
are known in advance. Fixed priorities are assigned to processes according to their periods, — the
shorter the period, the higher the priority. At any time, the process with the highest priority among
all processes ready to run, is assigned the processor. A schedulability analysis is performed before
run-time based on the known process characteristics. If certain equations are satisfied, the actual
scheduling is performed during run-time, and it can be assumed that all the deadlines will be met at
run-time.

The Priority Ceiling Protocol (Sha, Rajkumar, and Lehoczky, 1990), makes the same assumptions
as Rate Monotonic Scheduling, except that in addition, processes may have critical sections guarded
by semaphores, and a protocol is provided for handling them. Each semaphore is assigned a priority
ceiling, which is equal to the priority of the highest priority process that may use this semaphore. The
process that has the highest priority among the processes ready to run, is assigned the processor. Be-
fore any process p enters its critical section, it must first obtain the lock on the semaphore S guarding
the critical section. If the priority of process p is not higher than the priority ceiling of the semaphore
with the highest priority ceiling of all semaphores currently locked by processes other than p, then
process p will be blocked and the lock on S denied. When a process p blocks higher priority pro-
cesses, p inherits the highest priority of the processes blocked by p. When p exits a critical section,
it resumes the priority it had at the point of entry into the critical section. A process p, when it does
not attempt to enter a critical section, can preeempt another process pi if its priority is higher than the
priority, inherited or assigned, at which process pi is executing.

A set of n periodic processes using the Priority Ceiling Protocol can be scheduled (i.e., all dead-
lines will be met) by Rate-Monotonic Scheduling (the shorter the period, the higher the priority) if the
following conditions are satisfied:

8i;1 � i� n : C1
T1
+ C2

T2
+ :::+ Ci

Ti
+Bi=Ti � i(2

1
i �1)

where Ci is the execution time, Ti is the period, Bi is the worst case blocking time of pi due to any
lower priority process (Sha, Rajkumar, and Lehoczky, 1990).
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3.2. Pre-Run-Time Scheduling Approaches

With pre-run-time scheduling, the schedule for processes is computed off-line; this approach requires
that the major characteristics of the processes in the system be known in advance. It is possible to use
pre-run-time scheduling to schedule periodic processes. This consists of computing off-line a schedule
for the entire set of periodic processes occurring within a time period that is equal to the least common
multiple of the periods of the given set of processes, then at run-time executing the periodic processes
in accordance with the previously computed schedule (Xu and Parnas, 1993).

In pre-run-time scheduling, several alternative schedules may be computed off-line for a given time
period; each such schedule corresponding to a different “mode” of operation. A small run-time sched-
uler can be used to select among the alternative schedules in response to external or internal events.
This run-time scheduler can also be used to allocate resources for a small number of asynchronous
processes that have very short deadlines (Xu and Lam, 1998).

It is possible to translate an asynchronous process into an equivalent periodic process, if the mini-
mum time between two consecutive requests is known in advance, and the deadline is not very short.
Thus it is also possible to schedule such asynchronous processes using pre-run-time scheduling (Mok,
1984, Xu and Lam, 1998).

4. A Comparison of Pre-Run-Time Scheduling and Priority Scheduling

Below, the drawbacks of the priority scheduling approach will be briefly described and illustrated. We
show how the priority scheduling approach, either Rate Montonic Scheduling or the Priority Ceiling
Protocol, may fail to provide a feasible solution to a problem that could otherwise be solved with an
optimal algorithm2, using the pre-run-time scheduling approach. These drawbacks are direct conse-
quences of the basic assumptions inherent in fixed priority scheduling, and not just peculiarities of
one particular algorithm or formula based on the approach. Consequently, these drawbacks are not
amenable to some ingenious quick fix.

4.1. It is Difficult to Use the Priority Scheduling Approach to Handle Complex Application Constraints

The schedulability analysis given in (Sha, Rajkumar, and Lehoczky, 1990) assumed that all tasks are
independent tasks, that there are no precedence relations, that their release times are equal to the begin-
ning of their periods. It is difficult to extend the schedulability analysis for priority scheduling to take
into account application constraints that frequently exist in real-time applications, such as precedence
constraints, release times that are not equal to the beginning of their periods, low jitter requirements3,
etc.

There are two main reasons for this difficulty:

(a) Additional application constraints are likely to conflict with the priorities that are assigned to
processes. It is not generally possible to map the many different execution
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orderings of processes that are required by the different application constraints in a large complex
system onto a fixed hierarchy of priorities.

Attempts to reconcile additional application constraints with process priorities can result in subtle
errors. For example, some authors have suggested using process priorities to enforce precedence
constraints. But the priority assignment needed for the precedence constraints may conflict with a
priority assignment determined by other criteria, e.g., the lengths of the periods of the processes.
Even if there is no conflict, using priorities alone is inadequate for controlling the execution order of
processes. Suppose that it is required that process A precede process B. If B happens to arrive and
request execution before A, and B is the only process to request execution at that time, then B will be
executed before A, even if A had been assigned a priority that is higher than the priority of B.

In contrast, with a pre-run-time scheduling approach, the schedule is computed before run-time,
and it is relatively easy to take into account many kinds of additional constraints, such as arbitrary
release times and deadlines, and precedence constraints, and it is possible to avoid using sophisticated
run-time synchronization mechanisms by directly defining precedence relations and exclusion rela-
tions (Belpaire and Wilmotte, 1973) on pairs of process segments to achieve process synchronization
and prevent simultaneous access to shared resources (Xu and Parnas, 1990, Xu and Parnas, 1992, Xu
and Parnas, 1993, Xu, 1993). For example, the precedence relation A precedes B, can be enforced
simply by ordering A before B in the pre-run-time schedule, thus guaranteeing that A will always be
executed before B.

(b) Additional application constraints increase the computational complexity of scheduling prob-
lems, which already have high computational complexity whenever processes contain critical sections.
Significant amounts of time are required by the scheduler to find good solutions for problems with
high computational complexity. With the priority scheduling approach, scheduling is performed at
run-time, and the scheduler does not have the time necessary to find good solutions.

In contrast, with pre-run-time scheduling, schedules are computed off-line and time efficiency of the
scheduling algorithm is not a critical concern. thus one is free to use optimal scheduling algorithms
or any algorithm (Xu and Parnas, 1993), to schedule processes, which would in most cases provide a
better chance4, of satisfying all the timing and resource constraints.

Because of the inherent constraints built into the fixed priority scheduling model, (e.g. fixed pri-
orities) and because scheduling is performed at run-time, attempts to take into account additional
constraints typically result in suggestions that either are only applicable to a few very special cases, or
make drastically simplifying assumptions, which significantly reduce schedulability, or are extremely
complicated, making the run-time behavior of the system very difficult to analyze and predict.

4.2. In General, the Priority Scheduling Approach Achieves Lower Processor Utilization Than the
Pre-Run-Time Scheduling Approach

4.2.1. Scheduling strategies that are based on priorities, are heuristics that have less chance of finding
a feasible schedule than optimal pre-run-time scheduling algorithms.
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(a) Even if all processes are completely preemptable — an unlikely situation in a complex hard real-
time system, scheduling processes according to priorities, is still not optimal. In Example 1 below,
the Rate Monotonic Scheduling algorithm fails to meet the deadlines of two completely preemptable
processes A, and B, but these two processes could be successfully scheduled by an algorithm that is
optimal for scheduling completely preemptable processes, such as the earliest-deadline-first (EDF)
algorithm (Liu and Layland, 1973).

Example 1. Process A: release time rA = 0; computation time cA = 3; deadline dA = 6; period prdA =
6; priorityA = 0.
Process B: release time rB = 0; computation time cB = 4; deadline dB = 8; period prdB = 8; priorityB

= 1.
Schedule generated by the Rate Monotonic Scheduling algorithm: B misses its first deadline.

| A | B | A | B | A | B | A | B |
0 3 6 9 12 15 18 21 24

Schedule generated by an optimal algorithm, such as EDF: all deadlines are met.

| A | B | A |B | A |B | A | B |
0 3 7 10 12 15 18 21 24

2

(b) When some processes are not preemptable, scheduling processes according to priorities is even
less likely to meet deadlines. For example, in such cases there are situations where, in order to satisfy
all given timing constraints, it is necessary to let the processor be idle for an interval, even though
there are processes that are ready for execution. An example is shown below:

Example 2. Process A: release time rA = 0; computation time cA = 10; deadline dA = 12.
Process B: release time rB = 1; computation time cB = 1; deadline dB = 2. B is not allowed to preempt
A.

A priority scheduling algorithm will give the following schedule, in which B misses its deadline:

| A |B|
0 10 11

In contrast an optimal algorithm, such as the algorithm in (Xu and Parnas, 1990), would be able to
find the following feasible schedule in which all processes meet their deadlines:

|B| A |
1 2 12

The timing constraints require that the processor must be left idle between time 0 and 1, even though
A’s release time is 0; if A starts it would cause B to miss its deadline.
2

In most real situations, there will be process segments that cannot be preempted because a criti-
cal section has been entered. Thus, this example illustrates a very common situation. Priority-driven
schemes are not capable of dealing properly with such situations.
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The priority scheduling approach has a much smaller chance of satisfying timing constraints, be-
cause priority-driven schemes are only capable of producing a very limited subset of the possible
schedules for a given set of processes. This severely restricts the capability of priority-driven schemes
to satisfy timing and resource sharing constraints at run-time.

In general, the smaller the set of schedules that can be produced by a scheduling algorithm, the
smaller the chances are of finding a feasible schedule, and, the lower the level of processor utilization
that can be achieved by that algorithm. For example, if one insists on using a priority-driven scheme
to schedule the set of processes given in Example 2 given above, then one would have to increase
the processor capacity by a ratio of (cA + cB)/dB = 11/2, and would achieve a much lower processor
utilization than with an optimal scheduling scheme capable of producing the feasible schedule shown
in Example 2. By using optimal algorithms that compute the schedule off-line, it is possible to achieve
higher levels of resource utilization than those achievable by priority-driven schemes. Hence, using
priority-driven schemes may increase the cost of a system to non-competitive levels.

4.2.2. When processes are scheduled at run-time, the scheduling strategy must avoid deadlocks. In
general, deadlock avoidance at run-time requires that the run-time synchronization mechanism be
conservative, resulting in situations where a process is blocked by the run-time synchronization mech-
anism, even though it could have proceeded without causing deadlock. When combined with the use
of priorities, this reduces further the level of processor utilization. In Example 3, an example is shown
where the Priority Ceiling Protocol (Sha, Rajkumar, and Lehoczky, 1990) blocks a process from exe-
cuting and causing it to miss its deadline, even though that process could have proceeded and met its
deadline without actually causing a deadlock.

Example 3. Process A: becomes ready at t1, the whole process is one critical section guarded by
semaphore s0; computation time cA = t2� t1; priorityA = 0.
Process B: becomes ready at t3, the whole process is one critical section guarded by semaphore s1;
computation time cB = t5� t4; deadline is t3 + cB; priorityB = 1;
Process C: becomes ready at t2; the whole process is one critical section guarded by semaphore s0;
computation time cC = t4� t2; deadline is t5; priorityC = 2.
Priority Ceiling of s0 is 0; Priority Ceiling of s1 is 1.

According to the Priority Ceiling Protocol, because both A and C use critical sections guarded by
the same semaphore s0, when C enters its critical section at time t2, it executes at priority 0, and blocks
B at time t3, causing B to miss its deadline:

|A | C |B |
t1 t2 t3 t4 t5

But B could have preempted C and met its deadline without actually causing a deadlock:

|A |C | B | C |
t1 t2 t3 t5

2
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In the example above, the extremely conservative strategy of requiring a process to execute a critical
section at the highest priority of any process that has a critical section guarded by the same semaphore,
is necessary in order to avoid potential deadlocks when processes are scheduled at run-time.

In contrast, when a pre-run-time scheduling approach is used, the scheduling algorithm can look at
all possible ways of constructing a deadlock-free, feasible schedule.

Note that the ratio:
processor utilization o f the Priority Ceiling Protocol

processor utilization o f an optimal scheduling algorithm

can be arbitrarily low! (In Example 3, this ratio can be made arbitrarily low by increasing cC.)

4.2.3. When using the priority scheduling approach, the amount of system overhead, that is, the
amount of time spent on activities that are not part of the real-time application, is much greater than
when a pre-run-time scheduling approach is used.

(a) The priority scheduler needs run-time resources to compute the schedule, that is, calculate at
which moment which process should be executed. With a pre-run-time scheduling approach, the
schedule is determined in advance.

(b) Since the priority scheduler does not know the schedule before run-time, it has to assume the
worst case and save/restore complete contexts each time a process is preempted by another process.
With a pre-run-time scheduling approach, one can determine in advance the minimum amount of
information that needs to be saved and restored, and thus significantly reduce the time required for
context switching.

(c) The priority scheduler also consumes significant run-time resources in order to perform various
process management functions, such as suspending and activating processes, manipulating process
queues, etc (Burns, Tindell, and Wellings, 1995). In comparison, with a pre-run-time scheduling ap-
proach, automatic code optimization is possible; one can switch processor execution from one process
to another process through very simple mechanisms such as procedure calls, or simply by catenating
code when no context needs to be saved or restored, which greatly reduces the amount of run-time
overhead.

When the process periods are relatively prime, the Least Common Multiple (LCM) of the process
periods and the length of the pre-run-time schedule may become inconveniently long. However, in
practice, one can adjust the period lengths in order to obtain a satisfactory length of the LCM of the
process periods. While this may result in some reduction in the processor utilization, the reduction
should be insignificant when compared to the decrease in processor utilization with priority schedul-
ing.

With the priority scheduling approach, when there are many different process periods, many priority
levels are normally required; this would greatly increase the run-time scheduling overhead. Compro-
mises that reduce the number of priority levels, by assigning identical priorities to subsets of processes
with different periods, have the effect of increasing the response times of processes, and further reduc-
ing both schedulability and processor utilization (Sha, Klein, and Goodenough, 1991).
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4.3. The Run-Time Behavior of the System is Much More Difficult to Analyze and Predict With the
Priority Scheduling Approach Than With the Pre-Run-Time Scheduling Approach

The priority scheduling approach requires the use of complex run-time mechanisms in order to achieve
process synchronization and prevent simultaneous access to shared resources. The run-time behavior
of the scheduler can be very difficult to analyze and predict accurately. For example, in one study fixed
priority scheduling was implemented using priority queues, where tasks were moved between queues
by a scheduler that was ran at regular intervals by a timer interrupt. It has been observed that, because
the clock interrupt handler had a priority greater than any application task, even a high priority task
could suffer long delays while lower priority tasks were moved from one queue to another. Accurately
predicting the scheduler overhead proved to be a very complicated task, and the estimated scheduler
overhead was substantial, even though it was assumed that the system had a total of only 20 tasks,
tasks do not have critical sections, and priorities do not change (Burns, Tindell, and Wellings, 1995).

In contrast, with a pre-run-time scheduling approach, it is possible to avoid using sophisticated run-
time synchronization mechanisms by directly defining precedence relations and exclusion relations
on pairs of process segments to achieve process synchronization and prevent simultaneous access to
shared resources (Xu and Parnas, 1993). As mentioned above, one can switch processor execution
from one process to another process through very simple mechanisms such as procedure calls, or sim-
ply by catenating code when no context needs to be saved or restored, which not only greatly reduces
the amount of run-time overhead, but also makes it much easier to analyze and predict the run-time
behavior of the system. Compared with the complex schedulability analysis required when run-time
synchronization mechanisms are used, it is straightforward to verify that all processes will meet their
deadlines in an off-line computed schedule.

It was reported that during the July, 1997 Mars Pathfinder mission, the spacecraft experienced re-
peated total system resets, resulting in losses of data. The problem was reported to be caused by
“priority inversion” when the priority inheritence mechanism was turned off in the VxWorks real-time
systems kernel that used priority scheduling. It is noted that such problems would never have hap-
pened if a pre-run-time scheduler had been used by the Mars Pathfinder (Wilner, 1997).

4.4. The Priority Scheduling Approach Provides Less Flexibility in Designing and Modifying the
System to Meet Changing Application Requirements Compared With the Pre-Run-Time Scheduling
Approach

The priority scheduling approach provides less flexibility than the pre-run-time scheduling approach,
because the execution orderings of processes are constrained by the rigid hierarchy of priorities that
are imposed on processes, whereas with the pre-run-time scheduling approach, there is no such con-
straint — the system designer can switch from any pre-run-time schedule to any other pre-run-time
schedule in any stage of the software’s development. Here are a few examples.
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(a) It has been frequently claimed that the priority scheduling approach has superior “stability”
compared with other approaches, because “essential” processes can be assigned high priorities in or-
der to ensure that they meet their deadlines in transient system overload situations (Locke, 1992). The
Rate Monotonic Scheduling approach assigns higher priorities to processes with shorter periods, be-
cause it has been proved that, if processes with longer periods are assigned higher priorities, then the
schedulability of the whole system will be severely reduced. However, essential processes may not
have short periods. While suggestions like cutting essential processes into smaller processes that are
treated as processes with short periods have been made5, these suggestions not only increase run-time
overhead, but also add new artificial constraints to the problem, which increase the complexity and re-
duce the schedulability of the whole system. In real-time applications, under different circumstances,
different sequences of process execution may be required, and sometimes different sets of processes
become “essential.” This is a problem which cannot easily be solved by assigning a rigid hierarchy of
priorities to processes.

A pre-run-time scheduling approach can guarantee essential processes just as well, or better, than a
priority scheduling approach. When using the pre-run-time scheduling approach, in the case of system
overload, an alternative pre-run-time schedule which only includes the set of processes that are con-
sidered to be essential under the particular circumstances can be executed. As pre-run-time schedules
can be carefully designed before run-time, the designer has the flexibility to take into account many
different possible scenarios in overload situations, and tailor different strategies in alternative sched-
ules to deal with each of them.

(b) A frequently mentioned example of the “flexibility” of the priority scheduling approach, is the
fact that there exists a schedulability analysis for the priority scheduling approach that is based only
on knowledge of the total processor utilization of the task set. This is claimed to provide more flex-
ibility because “determining the schedulability of a system when an additional task is added requires
recomputing only the total schedulability bound and determining whether the new utilization caused
by the additional functionality causes the new bound to be exceeded (Locke, 1992).”

What is perhaps less well known about processor utilization based schedulability analyses, is the
fact that the use of such analyses may cause the system designer to under-utilize the system’s capacity.
Processor utilization based analyses are invariably pessimistic; they give sufficient but not necessary
conditions for schedulability. In other words, if one were to rely on the schedulability analysis, one
may be forced to conclude that the fixed priority scheduling algorithm cannot be used, and take mea-
sures that further reduce the processor utilization in order to meet the processor utilization conditions
provided by the schedulability analysis, even in simple cases where the fixed priority scheduling algo-
rithm may have been able to schedule the processes under the original conditions.

Example 4.

Suppose that the system consists of 20 processes p1; p2; :::; p20 all having an execution time of 1,
and a period of 28.

The Rate Monotonic Scheduling schedulability analysis would not be able to guarantee that this set
of processes is schedulable, because the total processor utilization is 20*(1/28) = 0.71 which is greater
than the processor utilization limit of 20� (2

1
20 �1)
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required by the schedulability analysis (Liu and Layland, 1973).

In this case, this set of processes would be rejected as the schedulability analysis would not be able
to guarantee that they are schedulable, even though actually the Rate Montonic Scheduling algorithm
would have been able to meet their deadlines:
|p1 |p2 | ... |p20| | ... | |
0 1 2 19 20 21 27 28

2

Note that when all processes are completely preemptable, the processor utilization based schedula-
bility analysis of the Priority Ceiling Protocol is identical to that of Rate Monotonic Scheduling. Thus
this example applies equally well to the Priority Ceiling Protocol.

Worst-case response time schedulability analyses for static priority scheduling, e.g., (Burns, Tin-
dell, and Wellings, 1995), provide slightly more relaxed conditions for schedulability, compared with
processor utilization based schedulability analyses. However, worst-case response time schedulability
analyses for static priority scheduling share the same fundamental weakness with processor utilization
based schedulability analyses. That is, they also only give sufficient but not necessary conditions for
schedulability. Although worst-case response time schedulability analyses for static priority schedul-
ing can guarantee the schedulability of the very simple set of processes in Example 4, they would
reject the sets of processes in the examples shown earlier as not schedulable, even though those sets
of processes can be scheduled when a pre-run-time scheduling approach is used.

It has also been claimed that, with a pre-run-time scheduling approach, it is more difficult to han-
dle asynchronous processes when compared with using priority scheduling schemes. In the paper by
Locke (Locke, 1992), where a particularly rigid version of a pre-run-time scheduling approach, the
cyclic executive, was applied to an example problem, in order to show the difficulties in applying the
cyclic executive, the author did not illustrate how the fixed priority executive could solve the same
example scheduling problem. The fixed priority executive would have an equal or even greater diffi-
culty in handling that same example problem. In another paper (Audsley, Tindell, and Burns, 1993)
which attempts to show that a priority scheduling approach can solve an example problem that was
given (Xu and Parnas, 1990), the example problem parameters were changed. If the original problem
parameters in our paper are used, the proposed solution fails. In addition, the proposed solution used
offsets but no algorithm to systematically compute those offsets was given.

In the following, we will provide an example in which the reverse is true. This example shows that,
with a pre-run-time scheduling approach, once the pre-run-time schedule has been determined for all
the periodic processes, the run-time scheduler can use this knowledge to achieve higher schedulability
by scheduling asynchronous processes more efficiently, e.g., it would be possible to completely avoid
blocking of a periodic process with a shorter deadline by an asynchronous process with a longer dead-
line.

Example 5.

Asynchronous process A: computation time cA = 3; deadline dA = 15; minimum time between two
consecutive requests minA = 15.
Process B: release time rB = 0; computation time cB = 3; deadline dB = 3; period prdB = 8; B is not
allowed to preempt A.
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Priority scheduling schemes are not able to guarantee that A and B will always be able to meet their
deadlines. B misses its deadline, no matter what priority scheduling scheme is used.

Suppose that A arrives at time 7. A priority scheduling scheme will put A into execution immediately
at time 7, thus A will block the second instance of B causing B to miss its deadline.

| B | | A | B |
0 3 7 10 13

When a priority scheduling scheme is used, no matter whether the schedulability analysis is based
on the total processor utilization, or the worst-case response time, the processes A and B will be re-
jected as unschedulable.

In contrast, when using a pre-run-time scheduling approach, there are at least two possible ways of
scheduling the above processes.
(a) Convert asynchronous process A into a new periodic process newA (Mok, 1984, Xu and Parnas,
1993, Xu and Lam, 1998): release time rnewA = 0; computation time cnewA = 3; deadline dnewA = 8;
period prdnewA = 8. Then the following pre-run-time schedule can be constructed using the algorithm
in (Xu and Parnas, 1990), in which periodic process newA serves asynchronous process A in a manner
similar to polling, will guarantee that both A and B’s deadlines will never be missed.

| B | newA | |
0 3 6 8

(b) Another possible solution is to use an approach described in (Xu and Lam, 1998), in which
a pre-run-time schedule is constructed for all the periodic proceses using the algorithm in (Xu and
Parnas, 1990). In this case the following pre-run-time schedule will be constructed for B.

| B | |
0 3 8

In this approach a run-time scheduler can use the information about the pre-run-time schedule to
schedule asynchronous processes. In this case, A can be scheduled in the following way: at any time
t, whenever there is a possibility that the immediate execution of A will cause B to miss its deadline,
that is, whenever the end of the time slot reserved for B in the pre-run-time schedule minus t is less
than the sum of the computation times of A and B; or whenever a periodic process with a deadline that
is smaller or equal to A’s deadline, in this example B, is currently executing, then delay A until B is
completed. By using the information in the pre-run-time schedule, one should be able to construct a
table of “safe start time intervals” for asynchronous processes. For A, the safe start time interval is [3,
5], and the deadlines of A and B can be guaranteed by only allowing A to start its execution within
that interval in each repetition of the pre-run-time schedule at run-time. The worst-case response time
for each asynchronous process can be computed before run-time using the information about the pre-
run-time schedule. In this case, A’s worst-case response time happens when A arrives at time 6, and is
delayed until B has completed, and A
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completes its execution at time 14. So A’s worst-case response time is 14 - 6 = 8, which is less than
its original deadline dA = 15. If B is always executed within its reserved time slot in the pre-run-time
schedule, then both A and B will be guaranteed to always meet their deadlines.
2

If one compares the potential run-time overhead of using a method similar to (b) in the example
above that integrates run-time scheduling of a subset of the asynchronous processes with pre-run-time
scheduling of periodic processes; with the overhead of priority scheduling schemes that schedule all
the tasks at run-time:

(1) With the integration approach, the number of processes that the asynchronous process scheduler
needs to handle, should be very small. This is because, in most real-time systems, the bulk of the
computation is performed by periodic processes, while the number of asynchronous processes with
hard deadlines is usually very small (Xu and Parnas, 1993). In addition a significant portion of the
asynchronous processes can be transformed into periodic processes when using this approach. (One
can determine which asynchronous processes should be converted into new periodic processes, and
which should remain asynchronous, based on the reserved processor capacity required by each method
(Xu and Lam, 1998).)

(2) A significant portion of the parameters used by the asynchronous process scheduler to make
scheduling decisions, are known before run-time, so one can pre-compute major portions of the con-
ditions that are used for decision making, hence the amount of computation that needs to be performed
for scheduling purposes at run-time can be minimized. For example, one may create before run-time, a
table of “safe start time intervals” for asynchronous processes, similar to the interval [3, 5] for process
A in Example 5 (b) above, and substantially reduce run-time overhead by allowing the asynchronous
processes to be scheduled by simple table lookup.

(3) Most of the important scheduling decisions have already been made before run-time. In partic-
ular, the relative ordering of periodic processes that usually form the bulk of the computation in most
real-time applications, was determined before run-time when the pre-run-time schedule was computed.

When the system designer uses the priority scheduling approach, no matter whether the schedula-
bility analysis is based on the total processor utilization, or the worst-case response time, the designer
has less, not more, flexibility in adding new functionality to the system, because the schedulability
analysis is more likely to reject a new set of processes as unschedulable.

In contrast, real-time system designers using the pre-run-time scheduling approach have the free-
dom to use any optimal scheduling algorithm to construct new pre-run-time schedules that include
new processes and add new functionality to the system. Performing modifications to the system on-
line is also not difficult. One can easily insert code in pre-run-time schedules that, when activated
by an external signal, will cause processor execution to switch from a previously designed pre-run-
time schedule to a newly designed pre-run-time schedule during run-time. The system designer is not
constrained to use a rigid hierarchy of process priorities, and has more flexibility in designing new
pre-run-time schedules to meet changing requirements.
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From the discussion above, one may observe that with the priority scheduling approach, the system
designer has very few options at his/her disposal for meeting application requirements. Priorities are
used for too many purposes in the priority scheduling approach. It has been suggested that higher
priorities be assigned to processes with:

i) shorter periods;

ii) higher criticality;

iii) lower jitter requirements;

iv) precedence constraints, etc.

Consequently, the system designer is faced with the impossible task of trying to simultaneously satisfy
many different application constraints with one rigid hierarchy of priorities.

5. Conclusions

This paper explains and illustrates the following facts.

(1) Compared with the pre-run-time scheduling approach, the priority scheduling approach:

— does not handle complex application constraints well;

— results in lower processor utilization;

— has much greater system overhead;

— makes it significantly more difficult to analyze and predict the run-time behavior of the system.

(2) In contrast, with a pre-run-time scheduling approach:

— it is much easier to verify that all the deadline and other constraints will be satisfied;

— one can use better algorithms that can take into account a great variety of application constraints
and provide the best chance of finding a feasible schedule;

— the run-time overhead required for scheduling and context switching can be greatly reduced.

(3) The main reasons for these differences are:

— the execution orderings of processes are constrained by the rigid hierarchy of priorities when using
the priority scheduling approach, thus priority schemes are only capable of producing a very limited
subset of the possible schedules;

— schedules are computed off-line when using the pre-run-time scheduling approach, but computed
on-line when using the priority scheduling approach.
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One may combine both techniques and use a small run-time scheduler to schedule a small number
of asynchronous processes when they have (a) long inter-arrival times, (b) short deadlines and com-
putation times, or (c) deadlines that are long compared with most periodic processes. Although the
pre-run-time scheduling approach has many advantages over the priority scheduling approach, there
are situations where a ”pure” pre-run-time scheduling approach is not practical because the deadlines
for rarely invoked asynchronous processes are very short. In such situations, translating an asyn-
chronous process to a periodic process (using a worst-case approach) may require too much processor
capacity. The strategies used in the Priority Ceiling Protocol for preventing ”priority inversion” and
deadlocks can be adapted for scheduling any asynchronous processes that could not be translated into
periodic processes. The run-time scheduling should be integrated with the pre-run-time scheduling so
that one can take advantage of the known process characteristics. The known characteristics should
be used to determine which asynchronous processes are to be scheduled at run-time, and to reserve
processor capacity methodically for asynchronous processes so that they can interrupt other processes
in time to meet their deadlines (Xu and Lam, 1998).

� As only a small number of asynchronous processes with hard deadlines are scheduled at run-time,
the amount of run-time resources required for scheduling and context switching is minimized.

� As the majority of processes are scheduled before run-time, this allows one to use better algorithms
to handle more complex constraints, and achieve higher schedulability.

� As the run-time scheduler is aware of the future start times of the processes in the pre-run-time
schedule, the run-time scheduler can make more informed decisions at run-time. This will reduce
system overhead and maximize processor utilization, and consequently increase the chances that one
can guarantee satisfaction of all constraints before run-time.

Notes

1. Parallel computations can be represented by several processes, with various types of relations defined be-
tween individual segments belonging to different processes, and processes can be executed concurrently; thus
requiring each process to be a sequence of segments does not pose any significant restrictions on the amount of
parallelism that can be expressed.
2. When scheduling algorithms are discussed, a distinction between optimal algorithms and heuristics will
be made. An optimal scheduling algorithm is capable of finding a feasible schedule for a given mathematical
scheduling problem if one exists. In contrast, for a given mathematical scheduling problem, a heuristic may not
find one even if one exists.
3. Jitter refers to the variation in time a computed result is output to the external environment from cycle to
cycle.
4. If there exists no other algorithm that has a better chance of finding a feasible schedule than an algorithm
that uses priorities — an unlikely situation, one may still use the pre-run-time scheduling approach in combi-
nation with an algorithm that uses priorities as a last resort to find a pre-run-time schedule. Priority scheduling
approaches assume that scheduling is done at run-time, and do not consider pre-run-time schedules at all.
5. A similar suggestion is described in (Locke, 1992) that suggests assigning high priorities to processes with
low-jitter requirements. The difficulty is similar: processes with low jitter requirements may not have short
periods.
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