
On Inspection and Verification of Software
with Timing Requirements

Jia Xu

Abstract—Software with hard timing requirements should be designed using a systematic approach to make its timing properties

easier to inspect and verify; otherwise, it may be practically impossible to determine whether the software satisfies the timing

requirements. Preruntime scheduling provides such an approach by placing restrictions on software structures to reduce complexity. A

major benefit of using a preruntime scheduling approach is that it makes it easier to systematically inspect and verify the timing

properties of the actual software code, not just various high-level abstractions of the code.

Index Terms—Real-time, software, code, inspection, verification, timing requirements, current practices, complexity, restrictions,

software structures, preruntime scheduling, predictability.

æ

1 INTRODUCTION

MORE and more infrastructure of the world is becoming
dependent on computer systems that have timing

requirements. Communications, transportation, medicine,
energy, finance, and defense are all increasingly involving
processes and activities that require precise observance of
timing constraints. Real-time software is often required to
handle the coordination and synchronization of many
different processes and activities. As a result, real-time
and embedded software that must observe timing con-
straints is experiencing explosive growth.

In contrast, there is a conspicious lack of effective

methods and tools for verifying timing properties of

software, despite an increasingly pressing need for such

methods and tools.
Examples of proposed formal methods for real-time

systems, include, among others, timed and hybrid automata

[2], [1]; timed transition systems/temporal logic [33], [23],

[41], [29], [7]; timed Petri-nets [26]; theorem proving

techniques using PVS to analyze real-time protocols and

algorithms [21]. The most industrialized of the formal

methods is model checking [22], [44], [11]. While formal

methods have been used successfully for verifying hard-

ware designs, the use of formal methods to verify actual

software code is rare [13], [20], [27], [17], [42], [31] and the

use of formal methods for verifying timing properties of

actual large scale real-time software implementations (as

opposed to simplified high-level abstractions of code such

as specifications/models/algorithms/protocols which are

only approximations of the actual software and which do

not take into account all the implementation details that

may affect timing) is practically nonexistent.

What is the main reason for this apparent difficulty in
developing effective methods and tools for verifying timing
properties of software? The problem is the complexity of
software, especially nonterminating concurrent software,
and the complexity of such software’s possible timing
behaviors.

Timing requirements and constraints in concurrent, real-
time software pose special problems for software inspection
and verification. The basic premise of any software
inspection or verification method is that it should be able
to cover all the possible cases of the software’s behavior.
Taking into account timing parameters and constraints adds
a whole new dimension to the solution space. The number
of different possible interleaving and/or concurrent execu-
tion sequences of multiple threads of software processes
and activities that need to be considered when timing
constraints are included may increase exponentially as a
function of the size of the software and may result in an
explosion of the number of different cases that needs to be
examined. This may make it exceedingly difficult to use
verification and inspection techniques that systematically
examine all the possible cases of software behavior.

The next section provides further discussion on why
timing properties of software are difficult to inspect and
verify. Section 3 examines current practices in the design
of real-time software that make it difficult to inspect and
verify timing properties. Section 4 describes a preruntime
scheduling approach for structuring real-time software
that will help simplify inspection and verification of
timing through a detailed example. Section 5 discusses
how the preruntime scheduling approach may help to
alleviate the theoretical limitations and practical difficul-
ties in verifying timing properties in software. Conclusions
are presented in Section 6.

2 WHY IS VERIFYING TIMING PROPERTIES OF

SOFTWARE DIFFICULT?

In the following, we discuss why verifying timing proper-
ties of software in general is difficult.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003 705

. The author is with the Department of Computer Science, York University,
4700 Keele St., North York, Ontario M3J 1P3, Canada.
E-mail: jxu@cs.yorku.ca.

Manuscript received 8 Sept. 2002; revised 20 Feb. 2003; accepted 27 Mar.
2003.
Recommended for acceptance by D. Parnas and M. Lawford.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 118511.

0098-5589/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

2.1 Fundamental Theoretical Limitations

Fundamental theoretical limitations in verifying timing
properties of software include the following:

1. Even without considering timing properties, the
problem of program verification (i.e., is a given
program correct with respect to a given specifica-
tion) is in general undecidable. Many of the proposed
logics and models of real-time are undecidable [7],
[30]. The ability to express timing properties in
general increases the complexity of a logical theory.
For example, first-order (discrete time) temporal
logic is undecidable in the general case mainly due
to the quantification of time-dependent variables [3].
Even restricted computable versions of the problem
(e.g., finite state, discrete time domain, and prohibit-
ing quantification on time variables) are of high
complexity, being at least PSPACE-complete and,
more often, EXPSPACE-complete [4]. Methods and
tools based on these logics and models are in general
subject to the state space explosion problem, i.e., the
state space size grows exponentially with the size of
the program description.

For example, the most successful of the formal
methods, model checking, exhaustively enumerates
the state space. Because the size of the state space in
general grows exponentially with the size of the
description of the model, despite the use of
symbolic model checking methods [37]1 and other
special techniques, model checking has mainly been
limited to checking properties of hardware circuits.
Attempts to use symbolic model checking to check
timing properties have been restricted to high-level
algorithms/protocols [9], which are much less
complex than software. Most of the success of
model checking is not so much in the formal
verification of specifications, but in the finding of
bugs not found by other informal methods, such as
testing and simulation, through exploring only part
of the state space [17].

2. When verifying software with timing requirements,
it is difficult to separate timing correctness and
logical correctness. Timing correctness depends on
logical correctness because logical errors can cause
timing errors. For example, deadlocks, stack/buffer
overflows, starvation of processes, divide-by-zero
exceptions, priority inversion, infinite loops, erro-
neous memory references, etc., may cause unex-
pected time delays. Logical correctness can also
depend on timing correctness because timing errors
can cause logical errors. For example, a process that

unexpectedly fails to complete some time-critical
function due to a timing error, may leave the system
in an unexpected erroneous state. Because program
logical correctness is undecidable and timing cor-
rectness depends on logical correctness, this is one of
the reasons that program timing correctness in
general is also undecidable.

3. Because program verification is undecidable, pro-

gram verification methods are all partial or incom-

plete. In order to cope with undecidability or

complexity, all program verification methods use

some form of approximation. The approximation may

take many different forms. In model checking and

other verification methods, often the model only

preserves selected characteristics of the implementa-
tion while abstracting away complex details. When

abstraction is used to approximate the program

behavior, it becomes necessary to prove that the

abstraction is sound, i.e., the questions about the

program can be answered correctly with the abstrac-

tion despite the loss of information. But, the

discovery and proof of soundness of the required

abstraction is logically equivalent to a direct correct-
ness proof of the program itself [16]. So far,

techniques for discovering and proving the sound-

ness of required abstractions for the verification of

timing properties of software in general are not

available. Most of the work related to verification of

timing properties only studies simplified high-level

abstractions of algorithms/protocols which are only

approximations of the actual software and which do
not take into account all the implementation details

that may affect timing.

2.2 Practical Difficulties

Practical difficulties in verifying timing properties of soft-
ware include the following:

1. External events in the environment and internal
events in a computer system may happen nonde-
terministically at any time. Thus, asynchronous
processes that respond to those events may request
execution nondeterministically at any time, and the
control structure of the software may allow those
processes to execute nondeterministically at any
point in time and interrupt/preempt other processes
nondeterministically at any point in time and at any
point in the logical control flow. When the software
exhibits nondeterministic behavior, the complexity
of the logical and timing behaviors of the system
increases significantly.

For example, the developers of TAXYS, a state-of-
the-art tool which uses the formal model of timed

automata [2] and uses the KRONOS model checker
[18] for verifying timing properties of real-time
embedded systems, reported experimental results
in which the tool was forced to abort when the

number of symbolic states explored by KRONOS
increased exponentially with the “degree” of non-
determinism, even though the system being verified

706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

1. With symbolic model checking, transition relations and sets of states
are represented symbolically using Boolean functions called Ordered Binary
Decision Diagrams (BDDs). Hardware circuits are often regular and
hierarchical, thus, in many practical situations, the space requirements for
the Boolean functions representing the hardware circuits are much smaller
than for explicit represention, alleviating the space explosion problem in
those situations. However, as explained in [12], practical experiments show
that the performance of symbolic methods is highly unpredictable, which
can be partially explained by complexity theoretical results which state that
BDD representation does not improve worst-case complexity; in fact,
representing a decision problem in terms of exponentially smaller BDDs
usually increases its worst-case complexity exponentially.

contained only two strictly periodic, independent
tasks and one aperiodic (asynchronous) task [14].

2. Unless information about the runtime resource
usage pattern can be known before runtime with
sufficient accuracy and is taken into account,
assertions about the timing properties that can be
verified will often be overly pessimistic.

For example, currently, many modern processors
use technologies such as pipelines and cache
hierarchies to increase average-case performance,
but such technologies that increase the average-case
performance may increase the worst-case execution
times. Without more accurate information about the
runtime execution sequences of machine instruc-
tions known before runtime, it would be difficult to
more accurately predict the worst-case execution
times of the runtime execution sequences and avoid
overly pessimistic predictions when such technolo-
gies are used.

3. The more detailed the hardware/software character-
istics that are taken into account, the higher the
precision with which timing properties can be
verified. When it is necessary to verify timing
properties with high precision, e.g., when time
bounds are tight, it is necessary to verify timing
properties at a low level. It may even be necessary to
verify timing properties at the implementation
machine code/assembler level in order to achieve
sufficient precision. If the software has a high
complexity, then this may increase the size of the
state space that needs to be examined to the extent
that it is impossible to do so within practical time/
memory limitations.

3 CURRENT PRACTICES IN THE DESIGN OF

REAL-TIME SOFTWARE THAT MAKE IT DIFFICULT

TO INSPECT AND VERIFY TIMING PROPERTIES

In the following, we mention current practices in the design
of real-time nonterminating and concurrent software that
make it more difficult to verify and inspect timing proper-
ties, very much like the unrestricted use of “goto”
statements destroy the structures of regular programs and
make it more difficult to inspect and verify their properties.

1. Complex synchronization mechanisms are used in
order to prevent simultaneous access to shared
resources. These synchronization mechanisms often
use queuing constructs where queuing policies such
as FIFO and blocking can make the timing behavior
unpredictable.

2. Real-time processes not only execute at random
times, they are often allowed to preempt other
processes at random points in time. Not only the
context switch times vary, but it also results in a
huge increase in the number of different possible
execution interleaving sequences, many of which
may have unpredictable effects on timing.

3. The execution of runtime schedulers and other
operating system processes such as interrupt hand-
ling routines with complex behaviors (and often

with the highest priorities [34]) interleave with the
execution of real-time application processes, affect-
ing the timing of the application processes in subtle
and unpredictable ways.

4. When many additional constraints are required by
the application, such as precedence constraints,
release times that are not equal to the beginning of
their periods, low jitter requirements,2 etc., current
runtime scheduling algorithms and mechanisms are
unable to solve problems that include these addi-
tional constraints, practitioners use ad hoc runtime
methods to try to satisfy the additional constraints.
These ad hoc runtime methods tend to affect timing
in highly unpredictable ways.

5. Fixed priorities are used to try to deal with every
kind of requirement [34]. The fixed priority assign-
ments often conflict with other application require-
ments. In practice, task priorities are rarely
application requirements, but are used instead as
the primary means for trying to meet timing
constraints. These priorities frequently change,
which greatly complicates the timing analysis.

6. Task blocking is used to handle concurrent resource
contention, which, in addition to making the timing
unpredictable, may result in deadlocks.

Even in fairly simple systems in which a few of the above
practices are used, inspecting software with timing con-
straints can still be a very daunting task. For example, in
one study, fixed priority scheduling was implemented
using priority queues, where tasks were moved between
queues by a scheduler that was run at regular intervals by a
timer interrupt. It had been observed that, because the clock
interrupt handler had a priority greater than any applica-
tion task, even a high-priority task could suffer long delays
while lower priority tasks were moved from one queue to
another. Accurately predicting the scheduler overhead
proved to be an extraordinarily complicated task, even
though the system was very simple, with a total of only
20 tasks, where tasks do not have critical sections, priorities
do not change, and the authors of the study are considered
to be among the world’s foremost authorities on fixed
priority scheduling [8].

When the above current practices are used in combina-
tion with each other, the high complexity of the interactions
between the different entities and the sheer number of
different possible combinations of those interactions sig-
nificantly increase the chances that some important cases
will be overlooked in the inspection and verification
process.

The fundamental theoretical limitations discussed in the
previous section tell us that, for a given collection of
software and a given set of timing requirements, if the
software and its timing behaviors are overly complex, then
it may be practically impossible to determine whether the
software satisfies the timing requirements.

Imposing restrictions on software structures to reduce
complexity seems to be the key to constructing software so
that timing properties can be easily inspected and verified.

XU: ON INSPECTION AND VERIFICATION OF SOFTWARE WITH TIMING REQUIREMENTS 707

2. Jitter refers to the variation in time a computed result is output to the
external environment from cycle to cycle.

Software with hard timing requirements should be de-
signed using a systematic approach to make their timing
properties verifiable and easy to inspect. There will
probably never exist a general method or tool that can
verify the timing properties of any arbitrary piece of
software, just like it is unlikely that general methods or
tools will prove effective in verifying properties of a badly
structured program consisting of “spaghetti” code woven
together with “goto” statements.

4 A PRERUNTIME SCHEDULING APPROACH FOR

STRUCTURING REAL-TIME SOFTWARE THAT WILL

SIMPLIFY INSPECTION AND VERIFICATION OF

TIMING

Below, we describe a preruntime scheduling approach for
structuring real-time software which will simplify inspec-
tion and verification of timing because the approach
imposes strong restrictions on the structure of the software
to reduce its complexity.

Without loss of generality, suppose that the software we
wish to inspect for timing consists of a set of sequential
programs. Some of the programs are to be executed
periodically, once in each period of time. Some of the
programs are to be executed in response to asynchronous
events. Assume also that, for each periodic program p, we
are given the earliest time that it can start its computation,
called its release time rp, the deadline dp by which it must
finish its computation, its worst-case computation time cp, and
its period prdp. For each asynchronous program, we are
given its worst-case computation time ca, its deadline da, and
the minimum time between two consecutive requests mina.
Furthermore, suppose there may exist some sections of
some programs that are required to precede a given set of
sections in other programs. There also may exist some
sections of some programs that exclude a given set of
sections of other programs. Also, suppose that we know the
computation time and start time of each program section
relative to the beginning of the program containing that
section. It is assumed that the worst-case computation time
and the logical correctness of each program has been
independently verified.3

The preruntime scheduling approach consists of the
following steps:

1. Organize the sequential programs as a set of
cooperating sequential processes to be scheduled
before runtime.

2. Identify all critical sections, i.e., sections of programs
that access shared resources, as well as any sections
of a program that must be executed before some
sections of other programs, such as when a
producer-consumer type of relation exists between
sections of programs.

Divide each process into process segments such
that appropriate exclusion and precedence relations
can be defined on pairs of sequences of the process
segments to prevent simultaneous access to shared
resources and ensure proper execution order.

3. Convert asynchronous processes into periodic pro-
cesses.4 For each asynchronous process a with
computation time ca, deadline da, and a minimum
time between two consecutive requests mina, con-
vert it into a new periodic process p with release
time rp, computation time cp, deadline dp, and period
prdp that satisfies the following set of general
conditions [39], [40].

. cp ¼ ca.

. da � dp � ca.

. prdp � minðda ÿ dp þ 1;minaÞ.
Note that the above general conditions provide a

range of possible values, instead of one unique
value, for dp and prdp, respectively.

The following set of conditions heuristically
selects one of the possible values, for dp and prdp,
respectively:5 Suppose that the existing set of
periods of periodic processes is P .

a. rp ¼ 0.
b. cp ¼ ca.
c. prdp is equal to the largest member of P such

that 2� prdp ÿ 1 � da and prdp � mina.
d. dp is equal to the largest integer such that dp +

prdp ÿ 1 � da and dp � prdp.
e. dp � ca.

4. Calculate the release time and deadline for each
process segment.

For each process p with release time rp, deadline
dp, and consisting of a sequence of process
segments p0; p1; . . . ; pi; . . . ; pn, with computation
times cp0

; cp1
; . . . ; cpi ; . . . ; cpn , respectively, the release

time rpi and deadline dpi of each segment pi can be
calculated as follows:

rpi ¼ rp þ
Xiÿ1

j¼0

cpj dpi ¼ dp ÿ
Xn
j¼iþ1

cpj

5. Compute a schedule offline, called a preruntime
schedule, for all instances of the entire set of periodic
segments, including new periodic segments con-
verted from asynchronous segments, occurring

708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

3. Here, we use the principle of “separation of concerns” [19]. By
organizing the software as a set of cooperating sequential processes, thus
eliminating concurrency within each process, we reduce the complexity of
the software by making it both easier to independently verify the worst-case
execution time and logical correctness of each process and easier to verify
the correctness of the timing and logical correctness of all the possible
interactions between the processes. This is further discussed briefly in
Section 6.

4. If some asynchronous process cannot be converted into a correspond-
ing periodic process using the heuristic given here, i.e., no corresponding
periodic process exists that satisfies the set of conditions given here, then
one may try using the procedure for converting asynchronous processes
into periodic processes that is described in [53]. For asynchronous processes
with very short deadlines, it may be necessary to let such asynchronous
processes remain asynchronous and use an algorithm such as that in [53]
that integrates runtime scheduling with preruntime scheduling to schedule
the unconverted asynchronous processes at runtime.

5. The set of conditions given here includes elements of the heuristics
described in [39] and [40]. The heuristic described in [39] is likely to
produce new periodic processes for which the deadline exceeds the period,
while the heuristic in [40] may result in a deadline that is too short and may
conflict with other processes. The set of conditions in this heuristic were
chosen to address such concerns. One should note that no single heuristic
for converting a given set of asynchronous processes into periodic processes
is optimal for the schedulability of an arbitrary set of processes.

within a time period that is equal to the least
common multiple6 of all periodic segments, which
satisfies all the release time, deadline, precedence,
and exclusion relations [51], [53], [54], [55], [56].

6. At runtime, execute all the periodic segments in
accordance with the previously computed schedule.

The following is just one of the many possible
ways of executing process segments in accordance
with the preruntime schedule.

The system includes a timer, an interrupt me-
chanism, and a preruntime schedule dispatcher.

a. Data structures include:

. a Preruntime Schedule Table, each entry
containing information about the start time
of each segment/subsegment in the pre-
runtime schedule, a pointer to a function
containing the code of the segment/subseg-
ment, a pointer to the next segment/
subsegment in the schedule, etc.

. a set of global variables containing informa-
tion about where to find the Preruntime
Schedule Table, length of the preruntime
schedule, the time that the preruntime
schedule was first started, pointers pointing
to entries in the Preruntime Schedule Table
to indicate which segment/subsegment is
currently executing and which segment/
subsegment is to be executed next, etc.

b. If a process/segment is to be preempted

according to the preruntime schedule, then,

prior to runtime, in the case of a preempted

segment, the segment is divided into separate
subsegments according to the preruntime sche-

dule, and information about each subsegment is

entered into the Preruntime Schedule Table

mentioned above; context saving code is ap-

pended to the end of the subsegment or the end

of the segment in a preempted process that

immediately precedes the preemption point;

context restoring code is inserted at the begin-
ning of the subsegment or the segment that

should resume from the preemption point. At

runtime, a resume time of a subsegment can

then be treated the same way as a start time of a

segment for dispatching purposes, allowing

subsegments to be dispatched in a way that is

essentially similar to segments.
c. Code that transfers control to the dispatcher is

appended to the end of each segment/subseg-
ment prior to runtime.

d. In general, the timer is always programmed to
interrupt at the next starting time or resume

time of a segment/subsegment according to the
information in the Preruntime Schedule Table.

e. At each timer interrupt, control is transferred to
the dispatcher, which first checks whether the
previously executing segment/subsegment has
completed its computation or not; in case a
segment/subsegment has not completed, it will
perform error handling and recovery; otherwise,
it will use the data structures in Step 6.a to
determine which segment should be executed
next. Before transferring control to that segment,
the dispatcher reprograms the timer to interrupt
at the next starting time or resume time of a
segment according to the information in the
Preruntime Schedule Table. The dispatcher will
execute a segment that corresponds to a con-
verted asynchronous process only if an asyn-
chronous request has been made for the
execution of that process.

f. If a segment/subsegment completes its compu-
tation before the end of the time slot allocated to
it in the preruntime schedule (which would be
the normal case since the time slot lengths
correspond to the worst-case computation
times), control would be transferred back to
the dispatcher through the code mentioned in
Step 6.c. In this case, the dispatcher may use the
unused time in the current time slot to execute
other processes that are not time critical or idle
the processor if there are no such processes.

(The non-time-critical processes will transfer
control back to the dispatcher on completion
through code similar to that mentioned in Step 6.b,
or will be interrupted by a timer interrupt before the
next start time or resume time of a segment. General
context saving and restoring when non-time-critical
tasks are preempted can be performed by the timer
interrupt handler or dispatcher. The timer should be
programmed to interrupt noncritical tasks earlier
than the start times of segments so that there is
sufficient time to perform context saving for non-
critical tasks and so that the running of non-time-
critical tasks will not interfere with the timely
execution of time-critical segments.)

The worst-case overhead required by the inter-
rupt handler, dispatcher, context saving/restoring
code, and code for transferring control back to the
dispatcher described above, etc., should be included
in the worst-case computation times of the pro-
cesses/segments prior to Step 3 in the preruntime
scheduling approach.

The above scheme will guarantee that every
segment/subsegment will be executed strictly with-
in the time slot that was allocated to it in the
preruntime schedule.

It is noted here that there are many alternative ways of
executing segments in accordance with a preruntime
schedule. For example, instead of appending context
saving/restoring code to segments/subsegments at pre-
emption points, one can store the context saving/restoring

XU: ON INSPECTION AND VERIFICATION OF SOFTWARE WITH TIMING REQUIREMENTS 709

6. When the process periods are relatively prime, the Least Common
Multiple (LCM) of the process periods and the length of the preruntime
schedule may become inconveniently long. However, in practice, one often
has the flexibility to adjust the period lengths in order to obtain a
satisfactory length of the LCM of the process periods. While this may result
in some reduction in the processor utilization, the reduction should be
insignificant when compared to the decrease in processor utilization with
fixed priority scheduling.

code elsewhere and include a pointer to the context saving/
restoring code in the entry of the Preruntime Schedule Table
corresponding to each of those segments/subsegments,
then let the dispatcher use that information to perform the
corresponding context saving/restoring if necessary. An-
other example is, if a subsegment/segment in the pre-
runtime schedule does not have an exclusion relation or
precedence relation with some other segment that may be
violated if that subsegment/segment is executed earlier
than the beginning of its time slot, then the preruntime
schedule dispatcher could allow that subsegment/segment
to be executed as soon as the preceding subsegment/
segment belonging to the same process finishes and
program the timer to interrupt it if it has not completed
by the next start time of a segment according to the
preruntime schedule. In such cases, the context saving
could be handled by the timer interrupt handler, and the
context restoring and resumption of the remaining part of
the subsegment/segment could be handled by the dis-
patcher. It is also possible to execute segments/subseg-
ments in the preruntime schedule through program
structures and mechanisms similar to procedure calls. The
details/advantages/disadvantages of each alternative way
is beyond the scope of this paper and will be discussed in
detail in a forthcoming separate paper.7

In the following, we will show how to perform
preruntime scheduling through an example.

We note that neither existing scheduling or synchoniza-
tion mechanisms that schedule all processes at runtime nor
previous work on static scheduling would be able to
guarantee that the set of processes in this example would
always satisfy their timing constraints. In contrast, we will
show that, with a preruntime scheduling approach, one can
easily guarantee that the set of processes in this example
would always satisfy their timing constraints.

Example 1. Suppose that, in a hard-real-time system, the
software consists of six sequential programs A, B, C, D, E,
and F, which have been organized as a set of cooperating
sequential processes that cooperate through reading and
writing data on a set of shared variables a, b, c, d, and e.
Among them, A, B, C, and D are to be executed
periodically, with release times at 0, 20, 30, and 90 time
units; computation times 60, 20, 20, and 20 time units;
deadlines 120, 120, 50, and 110 time units; periods 120,
240, 120, and 240 time units, respectively. Programs E
and F are to be executed in response to asynchronous
requests, with computation times at 20 and 20 time units,
deadlines 480 and 481 time units, and minimum time
between two consecutive requests 242 and 243 time units,
respectively. The release time indicates the earliest time
at which a process can start its computation. The

deadline indicates the time by which each process must

have completed its computation.
Process A, at the beginning of its computation, reads

the current value of the shared variable a and proceeds
to perform a computation based on that value. At the
20th time unit of its computation, process A writes a new
value into another shared variable b; that value depends
on the previously read value of a. This new value of b is
intended to be read by process C. At the 21st time unit of
its computation, process A also reads the current values
of two other shared variables c and d, and, at the 40th
time unit of its computation, writes new values into c
and a, where the new values depend on the previously
read values of c and a, respectively. At the 60th time unit,
that is, at the last time unit of its computation, process A
writes a new value into d; the new value depends on the
previously read value of d. (See Fig. 1.)

Process B performs some computation that does not
read or write any variables that are shared with any
other processes.

710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

Fig. 1. The sequential programs A, B, C, and D are to be executed

periodically. The sequential programs E and F are to be executed in

response to asynchronous requests.

7. The actual implementation can be performed in a reasonable amount
of time. Graduate students and fourth year students have completed course
projects involving the implementation of such preruntime schedule
dispatchers as loadable kernel modules, replacing the original scheduler
and timer interrupt handler of the RTAI real-time operating system in a one
semester course taught by this author [48]. In some of the student projects,
time that is not used by time-critical segments in the preruntime schedule is
used by the runtime dispatcher to run Red Hat Linux as a low priority
preemptable process, which in turn runs its own scheduler to run Linux
(non-time-critical) tasks.

Process C, at the beginning of its computation, reads
the current values of the shared variables b and c. The
value of b is required to be that produced by process A.
At the end of its computation, process C writes a new
value, which depends on the previously read value of b
and c, into c.

Process D, at the beginning of its computation, reads
the current values of the three shared variables d, a, and
e, performs a computation, and, at the end of its
computation, writes new values into d, a, and e that
depend on the previously read values of d, a, and e,
respectively.

Process E, at the beginning of its computation, reads
the current values of the shared variable e, performs a
computation, and, at the end of its computation, writes a
new value into e that depends on the previously read
value of e.

Process F, at the beginning of its computation, reads
the current values of the four shared variables e, d, c, and
a, performs a computation, and, at the end of its
computation, writes new values into e, d, c, and a that
depend on the previously read values of e, d, c, and a,
respectively.

In order to prevent processes from simultaneously
accessing shared resources, such as the shared data in this
example, we can divide each process into a sequence of
segments and define critical sections, where each critical
section consists of some sequence of the process segments.
We then define “EXCLUDES” (binary) relations between
critical sections. We require of any satisfactory schedule
that the following condition be satisfied for excludes
relations on critical sections: For any pair of critical sections
x and y, if x EXCLUDES y, then no computation of any
segment in y can occur between the time that the first segment in
x starts its computation and the time that the last segment in x
completes its computation. Note that x EXCLUDES y does
not imply y EXCLUDES x, thus, if mutual exclusion
between two critical sections x and y is required, then one
should specify two separate exclusions: x EXCLUDES y
and y EXCLUDES x.

In order to enforce the proper ordering of segments in a
process, as well as producer/consumer relationships
between segments belonging to different processes, we
can define a “precedes” relation “PRECEDES” on ordered
pairs of segments. We require that the following conditions
be satisfied for precedes relations on segments: For any pair
of segments i and j, if i PRECEDES j, then segment j cannot start
its computation before segment i has completed its computation.8

In the example above, in order to prevent simultaneous
access to the shared variables a, b, c, d, and e, enforce the
required producer/consumer relationship between process
A and C, while, at the same time, maximize the chances of
finding a feasible schedule, one can do the following:

First, one may divide processes into segments according
to the boundaries of the critical sections and the boundaries
of sections of code that have precedence relationships with
sections of code of other processes. Thus, one may divide A

into three segments A0, A1, and A2, such that segment A0

consists of the first 20 time units of computation of A,

segment A1 consists of the next 20 time units of computa-

tion of A, and segment A2 consists of the last 20 time units

of computation of A. There is no need to divide processes B,

C, D, E, and F. In processes B, C, D, E, and F, the entire

process can be considered as consisting of a single

segment.9

In process A, there exists a critical section ðA0; A1Þ which

contains all use of the shared variable a and another critical

section ðA1; A2Þ which contains all use of the shared

variable d. In process D, the critical section consisting of

the entire process ðDÞ and contains the use of d, a, and e. In

process E, the critical section consisting of the entire process

ðEÞ and contains the use of e. In process F, the critical

section consisting of the entire process ðF Þ and contains the

use of e, d, c, and a.
Thus,

ðA0; A1Þ EXCLUDES ðDÞ; ðDÞ EXCLUDES ðA0; A1Þ;
ðA0; A1Þ EXCLUDES ðF Þ; ðF Þ EXCLUDES ðA0; A1Þ;
ðDÞ EXCLUDES ðF Þ; ðF Þ EXCLUDES ðDÞ

should be specified in order to prevent processes A, D, and

F from simultaneously accessing a. Similarly,

ðA1; A2Þ EXCLUDES ðDÞ; ðDÞ EXCLUDES ðA1; A2Þ;
ðA1; A2Þ EXCLUDES ðF Þ; ðF Þ EXCLUDES ðA1; A2Þ;

in addition to ðDÞ EXCLUDES ðF Þ, ðF Þ EXCLUDES ðDÞ
specified above should be specified in order to prevent

processes A, D, and F from simultaneously accessing d.

Likewise, ðDÞ EXCLUDES ðEÞ, ðEÞ EXCLUDES ðDÞ,
ðEÞ EXCLUDES ðF Þ, ðF Þ EXCLUDES ðEÞ, in addition

to ðDÞ EXCLUDES ðF Þ, ðF Þ EXCLUDES ðDÞ specified

above, should be specified to prevent processes D, E, and F

from simultaneously accessing e.
The critical section ðA1Þ in process A, the critical section

ðCÞ in process C, and the critical section ðF Þ in process F

contain all use of the shared variable c in the three processes.

In order to prevent process A and process C from

simultaneously accessing c, ðA1Þ EXCLUDES ðCÞ and

ðCÞ EXCLUDES ðA1Þ should be specified. In order to

prevent process C and process F from simultaneously

accessing c, ðF Þ EXCLUDES ðCÞ, and ðCÞ EXCLUDES
ðF Þ should be specified. Note that ðA0; A1ÞEXCLUDES ðF Þ,
ðF Þ EXCLUDES ðA0; A1Þ, specified earlier, will prevent

process A and process F from simultaneously accessing c.
Note that, in process A, the critical section ðA0; A1Þ

overlaps with the critical section ðA1; A2Þ, while the critical

section ðA1Þ is nested within both ðA0; A1Þ and ðA1; A2Þ.
Because of the required producer/consumer relationship

between process A and process C related to the use of

shared variable b, A0 PRECEDES C should be specified.
Because segments A0, A1, and A2 all belong to the

same process, A0 PRECEDES A1 and A1 PRECEDES A2

should be specified.

XU: ON INSPECTION AND VERIFICATION OF SOFTWARE WITH TIMING REQUIREMENTS 711

8. It is expected that PRECEDES relations will usually only be defined on
segments of processes with identical periods.

9. Each segment i can be preempted at any time by segments that are not
excluded by i.

The asynchronous processes E and F can be converted

into new periodic processes as follows.
Using the set of conditions in the heuristic in Step 3 of the

approach, asynchronous process E can be converted into a

new periodic process E0 as follows:

. From 3a: r½E0� ¼ 0.

. From 3b: c½E0� ¼ c½E� ¼ 20.

. From 3c: The existing set of periods of periodic
process contains two period lengths, prd½A� ¼
prd½C� ¼ 120 and prd½B� ¼ prd½D� ¼ 240 time units.
Among them, prd½E0� ¼ prd½B� ¼ prd½D� ¼ 240 is the
largest menber of the existing set of periods of
periodic processes that satisfies the conditions in 3c,
i.e., 2� prd½E0� ÿ 1 ¼ 2� 240ÿ 1 ¼ 479 � d½E� ¼ 480
and prd½E0� ¼ 240 � min½E� ¼ 242.

. From 3d: d½E0� ¼ 240 is equal to the largest integer
such that d½E0� þ prd½E0� ÿ 1 ¼ d½E0� þ 240ÿ 1 � d½E�
¼ 480 and d½E0� ¼ 240 � prd½E0� ¼ 240.

Finally, one can verify that the condition 3e holds:

d½E0� ¼ 240 � c½E� ¼ 20.
Thus, r½E0� ¼ 0, c½E0� ¼ 20, d½E0� ¼ 240, and prd½A� ¼ 240.
Similarly, asynchronous process F can be converted into

a new periodic process F0 such that:

r½F 0� ¼ 0; c½F 0� ¼ 20; d½F 0� ¼ 240; prd½F 0� ¼ 240:

Using the formulas in Step 4 of the approach, the release

time and deadline of each segment in A can be calculated as

follows:

r½A0� ¼ r½A� ¼ 0; r½A1� ¼ r½A� þ c½A0� ¼ 20;

r½A2� ¼ r½A� þ c½A0� þ c½A1� ¼ 40;

d½A0� ¼ d½A� ÿ ðc½A1� þ c½A2�Þ ¼ 80;

d½A1� ¼ d½A� ÿ c½A2� ¼ 100; d½A2� ¼ d½A� ¼ 120:

There is now a total of two different process period

lengths: prd½A� ¼ prd½C� ¼ 120 and prd½B� ¼ prd½D�¼prd½E0�
¼ prd½F 0� ¼ 240. The length of the preruntime schedule is

equal to the least common multiple (LCM) of all the
periods, which is LCMð120; 240Þ ¼ 240.

Within the preruntime schedule length of 240 time units,
there are two instances each of A0, A1, A2, and C, and one
instance each of B, D, E0, and F0 that need to be scheduled.

Given the excludes relation defined on overlapping
critical sections and the precedes relation defined on
process segments specified above, an algorithm that can
schedule processes with overlapping critical sections, such
as the algorithm described in [55], should be able to find the
feasible schedule shown in Fig. 2 in which all instances of
all the process segments of A0, A1, A2, C, B, D, E0, and F0

occurring within the preruntime schedule length of 240
time units meet their deadlines, and all the specified
exclusion relation and precedes relation are satisfied.

If the algorithm was unable to deal with processes with

overlapping critical sections, then one would have to

replace the nested critical section ðA1Þ with a larger critical

section ðA0; A1; A2Þ which is obtained by combining all the

critical sections that surround ðA1Þ and, instead of

specifying ðCÞ EXCLUDES ðA1Þ and ðA1Þ EXCLUDES
ðCÞ, one must specify exclusions involving a larger

critical section, i.e., ðA0; A1; A2Þ EXCLUDES ðCÞ and ðCÞ
EXCLUDES ðA0; A1; A2Þ. This would decrease the chances

that a feasible schedule will be found.10

Furthermore, if the algorithm was unable to schedule

processes with critical sections that consist of more than one

separately schedulable segments, then, instead of specifying

a precedes element A0 PRECEDES C which involves a

shorter single segment A0, one must specify the precedes

element A PRECEDES C, which involves a lengthier

segment consisting of the whole process A. This would

also decrease the chances that a feasible schedule will be

found.
In Step 6, if the particular way of executing segments

according to the preruntime schedule described in this
paper is used, then, prior to runtime, the following should
be done:

Context saving code should be appended at the end of
the following segments and subsegments in the preruntime
schedule (see Fig. 3): first instance of segment A0 between
time unit 0 and 19, second instance of segment A0 between
time unit 120 and 139, subsegment B between time unit 20
and 29, subsegment E0 between time unit 140 and 149.

Context restoring code should be inserted at the
beginning of the following segments and subsegments: first
instance of segment A1 between time unit 50 and 69, second
instance of segment A1 between time unit 170 and 189,
subsegment B between time unit 110 and 119, and
subsegment E0 between time unit 210 and 219.

Code that transfers control to the dispatcher should be
appended to the end of all the segments and subsegments
in the preruntime schedule.

In the following, we will discuss how the preruntime
scheduling approach makes it easier to inspect and verify
the timing properties of software using the processes A, B,

712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

Fig. 2. A preruntime schedule for the four periodic processes A, B, C,

and D, and the two asynchronous processes E and F.

10. In this particular case, one can easily verify that no feasible schedule
such that all processes meet their deadlines exists when overlapping critical
sections are disallowed.

C, D, E, and F and the preruntime schedule in Fig. 3 as an
example.

1. Instead of having to exhaustively analyze and
inspect a huge number of different possible inter-
leaving/concurrent task execution sequences, with a
preruntime scheduling approach one only needs to
inspect one single preruntime schedule each time.

If we did not use preruntime scheduling, but had
allowed processes A-F to execute nondeterministi-
cally at runtime, even if we assume that each of the
processes A-F can only execute exactly one single
instruction in each time unit, just the number of
different possible interleavings of two instances each
of processes A and C, and one instance each of B, D,

E, and F within a time interval of 240 time units
alone would be11

240!

120!� 20!� 40!� 20!� 20!� 20!
:

One may argue that conventional non-real-time
systems routinely include a much larger number of
processes, and conventional non-real-time schedul-
ing and synchronization methods seem to be able to
handle them without too much of a problem, but a
fundamental difference is that, in conventional non-
real-time systems, most of the possible interleavings
do not affect logical correctness, and, if some of them
do affect logical correctness, in most cases we can err
on the side of allowing too few interleavings, even
prohibit interleavings altogether, without affecting
logical correctness. More importantly, the exact
times at which interleavings occur do not matter.
In contrast, in a real-time system, in many cases,
allowing or disallowing certain interleavings at
precise times can be crucial for timing correctness.
In Example 1, one may observe that, if either
process C could not preempt one precise process
(process B) at one precise time (time 29) or if any
other process other than B were allowed to execute
at any time between time 20 and time 29 (even
though B does not contain any critical section), then
it would be impossible to satisfy all the timing
constraints.

With the preruntime scheduling approach, to
verify that all the timing constraints of processes A-F
will always be satisfied, one only needs to inspect
one single interleaving sequence of the processes
—the single interleaving sequence shown in the
preruntime schedule in Fig. 3. In comparison, if
processes A-F are to be scheduled at runtime, then to
verify that all the timing constraints of processes A-F will
always be satisfied, one would need to prove that every
possible interleaving permitted by the runtime system of
processes A-F does not violate any timing constraint.

2. In each preruntime schedule, the interleaving/
concurrent task execution sequence is statically and
visually laid out in one straight line of code. This
makes it much easier to verify, by straightforward
visual inspection of the preruntime schedule, that all
the timing constraints, such as release times and
deadlines, periods, low jitter requirements, etc., are
met by the execution sequence.

Consider the reality that, at actual runtime, each
of these processes could take any time between 0
and their worst-case computation time to complete
even if each of them were run uninterrupted. When
processes are scheduled at runtime, it is possible that
some process finishing at some nondeterministic
time, may cause a violation of a timing constraint.
For example, if processes A-F are to be scheduled at

XU: ON INSPECTION AND VERIFICATION OF SOFTWARE WITH TIMING REQUIREMENTS 713

Fig. 3. The detailed code-layout in the preruntime schedule for the four
periodic processes A, B, C, and D, and the two asynchronous processes
E and F makes it much easier to inspect the timing and runtime behavior
of the programs.

11. The number of interleavings given assumes that the instructions in
each instance of each process are executed in one single order, the
instructions in the two instances of processes A are executed in one single
order, and the instructions in the two instances of processes C are executed
in one single order.

runtime, then, if process B finishes early, say at
time 25, then a runtime scheduler might schedule
process F for execution at time 25 since process F is
an asynchronous process that arrives at nondetermi-
nistic times and F could be the only process that is
ready at that time. But, if process F starts executing
at time 25, it could cause process C to miss its
deadline because process F cannot be interrupted by
process C.12

This shows that, in general, if processes A-F are to
be scheduled at runtime, then to verify that all the timing
constraints of processes A-F will always be satisfied, one
would also need to prove that for every possible
computation time between 0 and the corresponding
worst-case computation time under every possible inter-
leaving permitted by the runtime system of processes A-F,
no timing constraint will be violated.

When a preruntime scheduling approach is used,
we do not need to be concerned about the possible
effects of variations in the actual execution time of
the process on timing properties. Assuming that the
worst-case computation times of process segments
are estimated correctly, each process segment will
always execute within the allocated time slot in the
preruntime schedule, regardless of the actual execu-
tion time. By straightforward visual inspection of the
preruntime schedule in Fig. 3, one can easily confirm
that every process will always meet its deadline,
regardless of how long any of the process segments
actually execute at runtime.

In a recent attempt by researchers at NASA Ames

Research Center and Honeywell to verify some time

partitioning properties of the Honeywell DEOS real-

time operating system scheduler kernel using the

model checker SPIN [32], in order to limit the

number of potential execution paths and avoid state

space explosion, the researchers had to limit the

choices as to the amount of time that a thread could

execute to just three possibilities: Either it used no

time, it used all of its time, or it used half of the time.

Even with such limitations, they found the state

space was too large to be exhaustively verified

without using a high level of abstraction when they

allowed dynamic thread creation and deletion, even

though the kernel overhead, such as the time

required for runtime scheduling and context switch-

ing, was not taken into account; the system only

included a total of three threads—one main thread

and two user threads [43], [15]!
3. Instead of using complex, unpredictable runtime

synchronization mechanisms to prevent simulta-
neous access to shared data, the preruntime sche-
duling approach prevents simultaneous access to
shared data simply by constructing preruntime
schedules in which critical sections that exclude

each other do not overlap in the schedule. This
makes it easy to verify, by straightforward visual
inspection of the preruntime schedule, that require-
ments such as exclusion relations and precedence
relations between code segments of real-time tasks,
are met by the execution sequence.

For example, by straightforward visual inspection
of the preruntime schedule in Fig. 3, one can easily
confirm that process C will always correctly read the
value of shared variable b produced by segment A0,
and no other process will be executing while process C
accesses the shared variables b and c, and process C
will always meet its deadline, regardless of how long
any of the process segments actually execute at
runtime.

If processes A-F are to be scheduled at runtime,
then, in order to satisfy their timing constraints, it
would require that the runtime synchronization
mechanism must simultaneously possess, at the
very least, the following capabilities:

a. the ability to handle process release times;
b. the ability to handle precedence constraints

between processes;
c. the ability to handle overlapping or nested

critical sections;13

d. the ability to prevent deadlocks;14

e. the ability to handle the type of situations shown
in Step 3.b above, i.e., prohibit a process that is
ready from executing, even if the CPU will be
left idle for some interval of time, if there is a
possibility that the immediate execution of that
process may cause a second process that is not
yet ready to miss its deadline in the future;

f. the ability to maximize schedulability and
processor utilization;

g. at the same time provide a priori guarantee that
the set of schedulable processes will always
satisfy their timing constraints.

We are not aware of any runtime synchronization
mechanism that simultaneously possesses all of
these capabilities, while the preruntime scheduling
approach simultaneously possesses all of these
capabilities.

On the contrary, it can be observed that low-level

implementation code of existing real-world synchro-

nization and scheduling mechanisms that claim to

714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

12. In fact, this example shows that none of the existing fixed priority
scheduling algorithms, including the Priority Ceiling Protocol [45], would
be able to guarantee that the timing constraints of C will never be violated,
whereas we have already shown that the preruntime scheduling approach
can easily provide such a guarantee.

13. In practice, it is quite important for a scheduling algorithm to be able
to handle exclusion relations defined on overlapping critical sections; in
many hard-real-time applications, many naturally occurring critical sections
overlap. For example, the periodic processes in the US Navy’s A-7E aircraft
operational flight program [28], [24] contained many overlapping critical
sections. If the algorithm used for scheduling processes does not allow
overlapping critical sections, then one would be obliged to treat each set of
such sections as a single critical section; this can significantly reduce the
chances of finding a feasible schedule. One would not have been able to
satisfy all the timing constraints and construct a feasible preruntime
schedule for the US Navy’s A-7E aircraft operational flight program if
overlapping critical sections were not allowed.

14. In general, deadlock avoidance at runtime requires that the runtime
synchronization mechanism be conservative, resulting in situations where a
process is blocked by the runtime synchronization mechanism, even though
it could have proceeded without causing deadlock. This in general reduces
the level of processor utilization [57].

implement well-known high-level real-time synchro-

nization protocols and algorithms, such as the

Priority Ceiling Protocol [45], and Rate Monotonic

Scheduling [36], often have very complex timing

behaviors that are quite different from the theoretical

properties that the high-level protocols and algo-

rithms are supposed to have.
These runtime synchronization and scheduling me-

chanisms not only often incur high amounts of costly

system overhead and do not have the capability to handle
complex dependencies and constraints, they also often

make it virtually impossible to accurately predict the

system’s timing behavior [56], [57].
These realities explain why up to the present time,

virtually all large scale complex safety-critical real-
time applications use some form of static schedule,
even if the static schedules have to be manually
constructed,15 are very fragile and difficult to
maintain, as in the case of cyclic executives [10], [38].

4. In a preruntime schedule, there is no possibility of
task deadlocks occurring.

With the preruntime scheduling approach, pro-

cesses A-F are automatically executed at their

scheduled start times; they do not encounter any

synchronization mechanism that may block them.
If processes A-F are to be scheduled at runtime,

then they would require some kind of blocking
synchronization mechanism to prevent them from
accessing a shared variable in a critical section when
another process is accessing the same shared
variable in a critical section. If the runtime blocking
synchronization mechanism does not prevent dead-
locks, then it is possible that process A may start
accessing a at the same time that process D accesses
d. This will create a deadlock since process A would
need to access d and process D would need to access
a. Similarly, a second deadlock may happen invol-
ving process D and process F through accessing the
shared variables d and e. A third deadlock may
happen involving process A and process F through a
and d. A fourth deadlock may happen involving
process A and process F through c and d. A fifth
deadlock may happen involving process A and
process F through a and c.

The contrast between preruntime scheduling and
runtime scheduling of processes concerning the
ability to avoid deadlocks is noteworthy:

When processes are scheduled at runtime, in order to
guarantee that no deadlocks will happen, one would have

to check through all possible execution paths that may lead

to deadlock, which, as one of the reviewers has noted,
is often not tractable in practice on software.

Interestingly, when the preruntime scheduling
approach is used, in order to guarantee that no
deadlocks will happen, it suffices for a preruntime
scheduler to find just one single feasible preruntime
schedule!

This mirrors the contrast between preruntime
scheduling and runtime scheduling on the ability to
satisfy timing constraints mentioned in 1 and 2.

With a preruntime scheduling approach, the proof of
the preruntime schedule’s timing correctness and deadlock

free properties is obtained essentially through a “proof-by-

construction” process—the search for one feasible sche-

dule by the preruntime scheduler,16 which is fundamen-

tally easier than a proof that must check through every

possible executable path, as only one feasible schedule for
each mode of system operation is needed.

5. Instead of having to assume that context switches
can happen at any time, it is easy to verify, by
straightforward visual inspection of the preruntime
schedule, exactly when, where, and how many
context switches may happen.

By inspecting the preruntime schedule one would
also know exactly which information needs to be
saved and later restored. This allows one to minimize
the system overhead required with context switching.

If processes A-F are to be scheduled at runtime,
then it would be impossible to know exactly when,
where and how many context switches may happen.
Not only could there be a much higher number of
context switches, but also, at every time there is a
context switch at runtime, one would have no choice
but to blindly save and restore every possible bit of
information that might be affected. This can increase
the system overhead substantially.

6. With a preruntime scheduling approach, one can
switch processor execution from one process to
another through very simple mechanisms, such as
procedure calls, or simply by catenating code, which
reduces system overhead and simplifies the timing
analysis.

In general, under the assumption that the worst-
case execution time of each segment/subsegment
has been estimated correctly,17 when a single

XU: ON INSPECTION AND VERIFICATION OF SOFTWARE WITH TIMING REQUIREMENTS 715

15. It is also noted here that previous work on static scheduling [49], [50]
does not possess the capability of handling all the constraints and
dependencies mentioned in Steps 1-4 above, thus they are not really
suitable for automating the task of constructing preruntime schedules. Most
of the work on static scheduling either assumes that all processes are
completely preemptable, which makes it impossible to prevent simulta-
neous access to shared resources; assumes that none of the tasks are
preemptable, which significantly reduces the chances of finding a feasible
preruntime schedule; or they are incapable of handling release times,
precedence relations, or overlapping critical sections, which are required in
many real-time applications.

16. When critical sections overlap, the preruntime scheduling algorithm
needs to detect and handle deadlocks while searching for a feasible
schedule. However, this is easily accomplished by using a standard
resource allocation graph technique and checking for cycles involving
processes and critical sections in the graph. If a cycle occurs when a
resource is “allocated,” i.e., when the scheduler constructs part of a
schedule in which it simulates allocating processor or other resources, the
scheduler can simply discard the partially built schedule as unfeasible and
start trying to construct an alternative feasible schedule which is different
from the discarded partial schedule. Since all of this is simulation that is
performed offline, the time needed to detect and handle deadlocks by the
preruntime scheduler is not critical, unlike the case of a scheduler allocating
real resources during runtime.

17. One should note that, while catenating a sequence of segments/
subsegments reduces system overhead, it may also make it difficult for the
dispatcher to immediately detect cases where a segment/subsegment
executes longer than its allocated time slot in the preruntime schedule,
possibly resulting in a missed deadline not being immediately detected by
the dispatcher.

processor is used,18 a continuous sequence of
segments/subsegments can be catenated when all
of the release times of the segments/subsegments in
the sequence are less than or equal to the release
time of the first segment/subsegment in the
sequence.

A straightforward inspection of the preruntime
schedule in Fig. 3 would allow one to conclude that
it is possible to directly catenate the following
sequences of segments (each sequence is enclosed
in parentheses below) prior to runtime, while
guaranteeing that no timing constraints or errors
will occur:

Catenate (first instances of C, A1, and A2);
Catenate (D, second subsegment of B); Catenate
(second instance of A0, first subsegment of E0);
Catenate (second instances of C, A1 and A2, second
subsegment of E0, F0).

(Note that the code for restoring context men-
tioned above will still need to be included in the
catenations).

This will reduce system overhead as the dis-
patcher only needs to be invoked at the start and end
times of sequences of segments/subsegments in-
stead of at the start and end time of every individual
segment/subsegment.

7. With a preruntime scheduling approach, an auto-
mated preruntime scheduler can help automate and
speed up important parts of the system design and
inspection process. Whenever a program needs to be
modified, a new preruntime schedule can be auto-
matically and quickly generated, allowing one to
quickly learn whether any timing requirements are
affected by the modifications.

As preruntime schedules can be carefully de-
signed before runtime, the designer has the flex-
ibility to take into account many different possible
scenarios of system errors and tailor different
strategies in alternative schedules to deal with each
of them. For example, in the case of system overload,
an alternative preruntime schedule which only
includes the set of processes that are considered to
be essential under the particular circumstances can
be executed.

Performing modifications to the system online is
also not difficult. One can easily insert code in
preruntime schedules that, when activated by an
external signal, will cause processor execution to
switch from a previously designed preruntime
schedule to a newly designed preruntime schedule
that includes new processes and new functionality to
meet new requirements during runtime.

8. Preruntime scheduling can make it easier to imple-
ment a relatively constant “loop time” for control
systems software, making it easier to implement and
verify timing properties that span longer durations

by making use of the loop time; it can also help to
reduce jitter in the output and guarantee constant
sampling times for inputs both of which can be
critical to guarantee stability of feedback control
systems.

9. With a preruntime scheduling approach, most
asynchronous processes can be converted to periodic
processes so that, instead of using interrupts to
respond to external and internal events, periodic
processes are used to handle those events. This
removes a significant source of nondeterministic
behavior from the system, which greatly reduces the
complexity of the software and its timing behaviors.
Many researchers, experienced engineers, and prac-
titioners have long considered interrupts to be the
most dangerous [35], most error-prone, and most
difficult to test and debug part of real-time software
[25], [5], [6].

We have examined a number of hard real-time applica-
tions and it appears that, in most of them, periodic
processes constitute the bulk of the computation. Usually,
periodic processes have hard deadlines, whereas asynchro-
nous processes are relatively few in number and usually
have very short computation times. We believe that this is
because most hard real-time applications are concerned
with simulating continuous behavior, and simulating
continuous behavior requires many computationally inten-
sive periodic actions. The sporadic events are relatively rare
compared with the periods of the processes. In addition,
information about most external and internal events can be
buffered until it can be handled by periodic processes. A
preruntime scheduling approach should be applicable to
most such hard real-time applications in which it is
absolutely necessary to provide an a priori guarantee that
all hard timing constraints will be satisfied.

For example, in order to investigate the feasibility of
applying a preruntime scheduling approach to an existing
hard real-time system, the F/A-18 aircraft (referred to as
the CF-188 by the Canadian Forces) Mission Computer
(MC) Operational Flight Program (OFP), a detailed
analysis and documentation of the computational require-
ments and timing constraints of the CF-188 aircraft MC
OFP, was conducted by Shepard and Gagne, in part at the
CF-188 Weapon Software Support Unit at Canadian Forces
Base Cold Lake, Alberta. The following description of the
results of the CF-188 MC OFP project is based on [46],
[47]. In the CF-188 MC OFP, most processes were periodic
and were grouped into four separate task rates: 20 Hz, 10
Hz, 5 Hz, and 1 Hz. It was found that most routines
referred to as “demand” (asynchronous) routines in the
original documentation were invoked by periodic monitor
interrupts, which meant that they were actually periodic;
while the remaining demand routines could also be
transformed into periodic processes and effectively
handled by polling because the computation load asso-
ciated with the demand routines was very small. Thus, it
was found that approximately 95 percent of the existing
interrupts could be eliminated. Aside from the interrupts
required to synchronize the real-time clocks, the only
interrupts which were maintained were the ones asso-
ciated with software or hardware faults. The retention of

716 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

18. In cases where more than one processor is used, if some segment s
has an exclusion relation or precedence relation with some other segment
on a different processor that may be violated if s starts earlier than the
beginning of its time slot, then segment s should not be catenated with
segments that precede it.

these interrupts did not create a runtime implementation
problem since their occurrence must terminate the normal
execution of the schedules in order to initiate fault
recovery actions. It was concluded that implementing a
preruntime scheduling strategy for a hard real-time
system such as the CF-188 MC system was a suitable
and viable option and that, in addition to many important
benefits such as reducing context switching overhead,
reducing the cost and difficulties associated with software
maintenance, and facilitating effective life cycle manage-
ment of the CF-188 MC system, including the capability to
assess the software growth capacity of the system,19 “the
single most important benefit provided by preruntime
scheduling technology is a way to verify and guarantee
that all the timing constraints will be observed at
runtime.” It was noted that the existing software for the
CF-188 MC OFP, which used a rate monotonic, preemp-
tive scheduling discipline based on clock interrupts, did
not provide such a guarantee, even when extensive testing
was carried out, and that specific occurrences of timing
constraint violations in the existing software following
“verification via simulations” had been reported within
the United States Navy F/A-18 community.

In order to apply preruntime scheduling, periodic
processes were extracted from the existing cycles of the
task rates, and the existing input-processing-output order
within each task rate was conserved by the specification
of precedence constraints between the processes. Special
programs were created and used to extract precedence
and exclusion constraints from the CF-188 MC OFP
source code.20 Two variable lists were generated for each
of 2,324 routines in the source code. One list contained all
the variables written to by the routine. The other list
included all the variables read by the routine. These lists
were then correlated in order to determine the precedence
and exclusion constraints between all possible pairs of
routines. Based on the existing routine sequence, if a
routine was found to write to a variable which was read
by a routine succeeding it in the same sequence on every
execution of the task rate, a precedence constraint was
specified. An exclusion relation was specified in cases
where a precedence constraint was not needed but
preventing read-write problems was necessary. This
resulted in 620 synchronization constraints, including
555 precedence constraints and 65 exclusion constraints21

on 675 process instances in a preruntime schedule length
of 1,000 milliseconds. The precedence constraints were
used to divide the routines in the source code into
processes. Where the precedence constraints linked a
group of routines as a single execution thread (no parallel
paths possible), these routines were merged into a single
process. When a routine preceded two or more processes,
a separate process was defined in order to reflect the
possibility of parallelism. The preruntime scheduler was
able to generate a feasible schedule in just one iteration in
58 seconds. While resource limitations and operational
considerations precluded the actual reimplementation of
the OFP, this exercise nevertheless demonstrated the
feasibility and the many important potential benefits of
applying a preruntime scheduling approach to the F/A-18
aircraft Mission Computer software [46], [47].

Using a preruntime scheduling approach has also been

found to be feasible and to have many similar important

advantages for the US Navy’s A-7E aircraft operational

flight program, even when the preruntime scheduler was

not yet automated and preruntime scheduling had to be

performed by hand [28], [24].
Readers are directed to [57], [52] for discussion on other

advantages and perceived disadvantages of the pre-run-
time scheduling approach not discussed in this paper due
to space limitations.

5 HOW THE PRERUNTIME SCHEDULING APPROACH

ALLEVIATES THE THEORETICAL LIMITATIONS AND

PRACTICAL DIFFICULTIES

In the following, we will discuss how the preruntime

scheduling approach helps to alleviate the theoretical

limitations and practical difficulties in verifying timing

properties of software that were mentioned in Section 2.

5.1 Alleviating the Theoretical Limitations

1. Preruntime scheduling reduces the complexity of the
timing behaviors of the software:

a. By restricting the number of different possible
relative orderings of the runtime process seg-
ment executions in each Least Common Multi-
ple of the periods of the set of periodic processes
(including asynchronous processes that are
converted to periodic processes) in each system
mode to be a relatively small constant in relation
to the number of process segments, the number
of global timed states that needs to be checked
during inspection and verification is signifi-
cantly reduced.

b. By avoiding the need for complex runtime
synchronization mechanisms and process block-
ing through the use of exclusion relations and
precedence relations on ordered pairs of process
segments, both the number and complexity of
various properties that need to be proven,
including various safety and liveness properties,
e.g., absence of simultaneous access to shared
resources, absence of deadlocks, (time bounded)

XU: ON INSPECTION AND VERIFICATION OF SOFTWARE WITH TIMING REQUIREMENTS 717

19. It was found that the a priori knowledge of the location and length of
the gaps in the preruntime schedule can facilitate the specifications of the
timing requirements for new processes or help assess the feasibility of
increasing the computation time of existing processes.

20. “Reverse engineering” to extract precedence and exclusion con-
straints from the existing CF-188 MC OFP source code was necessary
because of unavailability of necessary documentation. Because of the
unsystematic shuffling of routines to finetune the OFP, the existing routine
sequence within each processing cycle could not be assumed to reflect the
correct precedence order between the routines. Instead, the dependencies
between the routines had to be determined.

21. It was reported that some precedence constraints were specified that
should have been exclusion constraints. This resulted in simplification of
the scheduling problem, even though this creates the possibility that some
solutions which might be feasible were not investigated. In this case, it did
not create a problem because a feasible schedule was easily found. If a
precedence relation is used when an exclusion relation is sufficient, it will
still prevent simultaneous access to shared resources. However, the
preruntime scheduler will have less flexibility in finding a feasible schedule.

guaranteed access to resources, (time bounded)
termination of parts of the software, etc., are
significantly reduced.

2. Preruntime scheduling makes it possible to com-
partmentalize each process segment’s possible tim-
ing/logical errors within specific time frames in the
preruntime schedule. The ability to check timing
constraints at predetermined points in the prerun-
time schedule helps prevent timing unpredictability
due to both runtime logical errors and timing errors.
The preruntime schedule provides precise knowl-
edge about which other process segments could be
affected by any process’ possible timing/logical
errors and the times at which they could be affected.
With such knowledge, more effective fault-tolerant
procedures, including alternative preruntime sche-
dules, can be incorporated. This should simplify the
task of verifying critical timing properties of the
software.

3. The concept of cooperating sequential processes
provides a powerful and well-understood abstraction
for structuring concurrent software. With the number
of different timing behaviors significantly reduced
through preruntime scheduling, there should be
much less of a need to use other less well-understood
forms of approximation or abstraction.

5.2 Alleviating Practical Difficulties

1. With preruntime scheduling, asynchronous pro-
cesses can be converted into periodic processes,
eliminating a source of nondeterminism, which
simplifies verification of timing properties by sig-
nificantly reducing the number of timed states that
need to be checked.

2. With preruntime scheduling, exact knowledge about
the runtime execution sequence will be known in
advance, making it feasible to predict the worst-case
execution time more accurately.

3. With preruntime scheduling, only a small constant
number of different execution orderings needs to be
studied, thus studying each of those orderings at the
most detailed machine code/assember should be
less constrained by time and space limits.

Thus, the preruntime scheduling approach reduces the

complexity of inspection and verification of timing proper-

ties in all the cases of theoretical limitations and practical

difficulties discussed in Section 2.

6 CONCLUSION

In most cases, researchers verify the timing properties of

specifications/models/algorithms/protocols, but not actual

code. In most cases, no proof is given that the specifica-

tions/models/algorithms/protocols have the same timing

properties as the actual code.
A major benefit of the preruntime scheduling approach

is that it allows one to systematically inspect and verify the

timing properties of actual code, not just various high-level

abstractions of code.

A preruntime scheduling approach combines two
essential factors that we believe are key to allowing one to
systematically structure large scale software with hard
timing requirements so that it would be easier to inspect
and verify the timing properties of the actual code of the
software:

1. With the preruntime scheduling approach, the proof
of the preruntime schedule’s timing correctness and
deadlock free properties is obtained essentially
through a “proof-by-construction” process—the
search for one feasible schedule by the preruntime
scheduler, which is fundamentally easier than a
proof that must check through every possible
executable path.

Once a preruntime schedule has been con-
structed, the task execution sequence is statically
and visually laid out in one straight line of actual
code. This makes it much easier to verify, through
straightforward visual inspection of the actual code
in the preruntime schedule, that all timing con-
straints, no matter how complex, are satisfied.

Because of this fundamental reduction in the
complexity of verifying the timing correctness and
deadlock free properties, we believe that, compared
with scheduling strategies and mechanisms that
perform synchronization and scheduling at runtime,
the preruntime scheduling approach has far better
capability to scale-up to large systems.

2. The preruntime scheduling approach has the
capability to simultaneously and systematically
handle complex dependencies and constraints such
as release times, exclusion relations defined on
overlapping critical sections, precedence relations,
that are often required by large scale, complex,
safety-critical real-time applications, etc., that
neither scheduling strategies and mechanisms that
perform scheduling at runtime nor previous work
on static scheduling can simultaneously and
systematically handle. The capability of system-
atically handling complex dependencies and con-
straints is fundamental to allowing one to automate
the tedious, error prone manual process of
constructing preruntime schedules containing the
actual code that, once constructed, would be much
easier to inspect and verify.

Overly complex interactions between system compo-

nents that execute in parallel is a main factor in creating an

exponential blowup in complexity, especially in large scale,

complex, nonterminating concurrent real-time software.

The preruntime scheduling approach effectively reduces

complexity by structuring real-time software as a set of

cooperating sequential processes and imposing strong

restrictions on the interactions between the processes.

Earlier, we mentioned that one of the reasons that

program timing correctness in general is undecidable is

because program logical correctness is in general undecid-

able, and timing correctness depends on logical correctness.

Thus, even though each system component in the pre-

runtime scheduling approach is much simpler because it is

718 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

restricted to be a sequential program where concurrency

has been eliminated, we still need to ensure that each

sequential program’s worst-case execution time and logical

correctness is decidable and can be independently verified.

Although it may be infeasible to verify the logical and

timing correctness of any arbitrary piece of software, one

should be able to verify the logical and timing correctness of

each sequential program if each sequential program has

been methodically designed and structured to make its

logical and timing properties easier to inspect and verify.

We believe that a key to ensuring that the worst-case

execution time and logical correctness of each sequential

program is decidable and can be independently verified is

to also impose strong restrictions on the sequential program

structures. If the system is safety-critical and time-critical

and if certain structures or methods of constructing any

system component, including both hardware and software

components, may make the logical and timing correctness

of the system either undecidable or practically impossible to

inspect and verify, then system designers should refrain

from using those structures, methods, and components, and

only use structures, methods, and components that result in

systems that are predictable, verifiable, and easy to inspect.

We plan to discuss these issues in detail in a future paper.

ACKNOWLEDGMENTS

The author would like to thank the reviewers for numerous
thoughtful comments and helpful suggestions on how to
improve this paper. The author is indebted to Dave Parnas
for helpful discussions and advice, related to this work.
This work was partially supported by a Natural Sciences
and Engineering Council of Canada grant. A preliminary
version of this paper was presented at the First Workshop
on Inspection in Software Engineering (WISE’01), Paris,
France, July 21, 2001.

REFERENCES

[1] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho, “Hybrid
Automata: An Algorithmic Approach to the Specification and
Verification of Hybrid Systems,” Hybrid Systems, R.L. Grossman,
A. Nerode, A. Ravn, and H. Rischel, eds., 1993.

[2] R. Alur and D.L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, pp. 183-235, 1994.

[3] R. Alur and T.A. Henzinger, “Real-Time Logics: Complexity and
Expressiveness,” Proc. Fifth Ann. IEEE Symp. Logic in Computer
Science, pp. 390-401, 1990.

[4] R. Alur and T.A. Henzinger, “Logics and Models of Real Time: A
Survey,” Real Time: Theory in Practice, J.W. de Bakker et al., eds.,
1992.

[5] S.R. Ball, Debugging Embedded Microprocessor Systems. Newnes,
1998.

[6] S.R. Ball, Embedded Microprocessor Systems: Real World Design,
second ed. Newnes, 2000.

[7] P. Bellini, R. Mattolini, and P. Nesi, “Temporal Logics for Real-
Time System Specification,” ACM Computing Surveys, vol. 32, no. 1,
pp. 12-42, 2000.

[8] A. Burns, K. Tindell, and A. Wellings, “Effective Analysis for
Engineering Real-Time Fixed Priority Schedulers,” IEEE Trans.
Software Eng., vol. 21, pp. 475-480, 1995.

[9] S.V. Campos and E.M. Clarke, “The Verus Language: Represent-
ing Time Efficiently with BDDs,” Theoretical Computer Science,
1999.

[10] G.D. Carlow, “Architecture of the Space Shuttle Primary Avionics
Software System,” Comm. ACM, vol. 27, pp. 926-936, Sept. 1984.

[11] E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic Verifica-
tion of Finite-State Concurrent Systems Using Temporal Logic
Specifications,” ACM Trans. Programming Languages and Systems,
vol. 8, pp. 244-263, 1986.

[12] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Progress
on the State Explosion Problem in Model Checking,” Informatics.
10 Years Back. 10 Years Ahead, R. Wilhelm, ed., 2001.

[13] E.M. Clarke and J.M. Wing, “Formal Methods: State of the Art and
Future Directions,” ACM Computing Surveys, Dec. 1996.

[14] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venter, D. Weil, and S.
Yovine, “TAXYS: A Tool for the Development and Verification of
Real-Time Embedded Systems,” Proc. 13th Int’l Conf. Computer
Aided Verification (CAV), pp. 391-395, 2001.

[15] D. Cofer and M. Rangarajan, “Formal Modeling and Analysis of
Advanced Scheduling Features in an Avionics RTOS,” Proc. Int’l
Workshop Embedded Software (EMSOFT 2002), A. Sangiovanni-
Vincentelli and J. Sifikis, eds., 2002.

[16] P. Cousot, “Abstract Interpretation Based Formal Methods and
Future Challenges,” Informatics. 10 Years Back. 10 Years Ahead,
R. Wilhelm, ed., 2001.

[17] P. Cousot and R. Cousot, “Verification of Embedded Software:
Problems and Perspectives,” Proc. Int’l Workshop Embedded Soft-
ware (EMSOFT 2001), 2001.

[18] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The Tool
KRONOS,” Hybrid Systems III, Verification and Control, 1996.

[19] E.W. Dijkstra, “Cooperating Sequential Processes,” Programming
Languages, F. Genuys, ed., pp. 43-112, 1968.

[20] D. Dill and J. Rushby, “Acceptance of Formal Methods: Lessons
from Hardware Design,” Computer, vol. 29, pp. 23-24, 1996.

[21] B. Dutertre, “Formal Analysis of the Priority Ceiling Protocol,”
Proc. IEEE Real-Time Systems Symp., pp. 151-160, Nov. 2000.

[22] E.A. Emerson and E.M. Clarke, “Using Branching Time Temporal
Logic to Synthesize Synchronization Skeletons,” Science of Com-
puter Programming, vol. 2, pp. 241-266, 1982.

[23] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan, “Quanti-
tative Temporal Reasoning,” Proc. Second Workshop Computer-
Aided Verification, pp. 136-145, 1989.

[24] S.R. Faulk and D.L. Parnas, “On Synchronization in Hard-Real-
Time Systems,” Comm. ACM, vol. 31, pp. 274-287, Mar. 1988.

[25] J.G. Ganssle, The Art of Designing Embedded Systems. Newnes,
2000.

[26] G. Ghezzi, D. Mandrioli, S. Morasea, and M. Pezze, “A Unified
High-Level Petri Net Formalism for Time-Critical Systems,” IEEE
Trans. Software Eng., vol. 17, no. 2, pp. 160-172, Feb. 1991.

[27] C. Heitmeyer, “On the Need for Practical Formal Methods,” Proc.
Fifth Int’l Symp. Formal Techniques in Real-Time and Fault-Tolerant
Systems, 1998.

[28] K. Heninger, J. Kallander, D.L. Parnas, and J. Shore, “Software
Requirements for the A-7E Aircraft,” NRL Report No. 3876, Nov.
1978.

[29] T. Henzinger, Z. Manna, and A. Pneuli, “Temporal Proof
Methodologies for Real-Time Systems,” Proc. 18th ACM Symp.
Principles of Programming Languages, pp. 353-366, 1991.

[30] T.A. Henzinger and J.-F. Raskin, “Robust Undecidability of Timed
and Hybrid Systems,” Proc. Third Int’l Workshop Hybrid Systems:
Computation and Control, 2000.

[31] Software Fundamentals: Collected Papers by David L. Parnas.
D.M. Hoffman and D.M. Weiss, eds., Addison-Wesley, 2001.

[32] G. Holzmann, “The Model Checker SPIN,” IEEE Trans. Software
Eng., vol. 23, pp. 279-295, 1997.

[33] F. Jahanian and A. Mok, “Safety Analysis of Timing Properties in
Real-Time Systems,” IEEE Trans. Software Eng., vol. 12, pp. 890-
904, 1986.

[34] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M.G. Harbour, A
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems. Kluwer Academic, 1993.

[35] H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic, 1997.

[36] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
Jan. 1973.

[37] K.L. McMillan, Symbolic Model Checking. Kluwer Academic, 1993.
[38] M.P. Melliar-Smith and R. L. Schwartz, “Formal Specification and

Mechanical Verification of SIFT: A Fault-Tolerant Flight Control
System,” IEEE Trans. Computers, vol. 31, no. 7, pp. 616-629, July
1982.

XU: ON INSPECTION AND VERIFICATION OF SOFTWARE WITH TIMING REQUIREMENTS 719

[39] A.K. Mok, “Fundamental Design Problems of Distributed Systems
for the Hard-Real-Time Environment,” PhD thesis, Dept. of
Electrical Eng. and Computer Science, Massachusetts Inst. of
Technology, Cambridge, Mass., May 1983.

[40] A.K. Mok, “The Design of Real-Time Programming Systems Based
on Process Models,” Proc. IEEE Real-Time Systems Symp., pp. 5-17,
Dec. 1984.

[41] J. Ostroff, Temporal Logic of Real-Time Systems. Research Studies
Press, 1990.

[42] D.L. Parnas, “Inspection of Safety-Critical Software Using
Program-Function Tables,” Proc. IFIP World Congress 1994, vol. 3,
Aug. 1994.

[43] J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger,
“Verification of Time Partitioning in the DEOS Scheduler Kernel,”
Proc. Int’l Conf. Software Eng., pp. 488-497, 2000.

[44] J. Queille and J. Sifakis, “Specification and Verification of
Concurrent Systems in CAESAR,” Proc. Fifth ISP Conf., 1982.

[45] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization,” IEEE
Trans. Computers, vol. 39, no. 9, Sept. 1990.

[46] T. Shepard and M. Gagne, “A Model of the F-18 Mission
Computer Software for Preruntime Scheduling,” Proc. 10th Int’l
Conf. Distributed Computing Systems, pp. 62-69, 1990.

[47] T. Shepard and M. Gagne, “A Preruntime Scheduling Algorithm
for Hard-Real-Time Systems,” IEEE Trans. Software Eng., vol. 17,
no. 7, pp. 669-677, July 1991.

[48] W. Soukoreff, “A Comparison of Two Preruntime Schedule-
Dispatchers for RTAI,” COSC6390 Project Report, Dept. of
Computer Science, York Univ., Dec. 2001.

[49] “Hard Real-Time Systems,” IEEE Computer Society Tutorial,
J. Stankovic and K. Ramamrithan, eds., 1988.

[50] J. Stankovic, M. Spuri, M. DiNatale, and G. Buttazzo, “Implica-
tions of Classical Scheduling Results for Real-Time Systems,”
Computer, vol. 28, no. 6, pp. 16-25, June 1995.

[51] J. Xu, “Multiprocessor Scheduling of Processes with Release
Times, Deadlines, Precedence, and Exclusion Relations,” IEEE
Trans. Software Eng., vol. 19, no. 2, Feb. 1993.

[52] J. Xu, “Making Timing Properties of Software Easier to Inspect
and Verify,” IEEE Software, July/Aug. 2003.

[53] J. Xu and K.-y. Lam, “Integrating Runtime Scheduling and
Preruntime Scheduling of Real-Time Processes,” Proc. 23rd IFAC/
IFIP Workshop Real-Time Programming, June 1998.

[54] J. Xu and D.L. Parnas, “Scheduling Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations,” IEEE Trans.
Software Eng., vol. 16, no. 3, pp. 360-369, Mar. 1990.

[55] J. Xu and D.L. Parnas, “Preruntime Scheduling of Processes with
Exclusion Relations on Nested or Overlapping Critical Sections,”
Proc. 11th Ann. IEEE Int’l Phoenix Conf. Computers and Comm.
(IPCCC-92), Apr. 1992.

[56] J. Xu and D.L. Parnas, “On Satisfying Timing Constraints in Hard-
Real-Time Systems,” IEEE Trans. Software Eng., vol. 19, no. 1, pp. 1-
17, Jan. 1993.

[57] J. Xu and D.L. Parnas, “Fixed Priority Scheduling versus Pre-Run-
Time Scheduling,” Real-Time Systems, vol. 18, pp. 7-23, Jan. 2000.

Jia Xu received the Docteur en Sciences
Appliquées degree in computer science from
the Université Catholique de Louvain, Belgium,
in 1984. From 1984 to 1985, he was a
postdoctoral fellow at the University of Victoria,
British Columbia, Canada. From 1985 to 1986,
he was a postdoctoral fellow at the University of
Toronto, Toronto, Ontario, Canada. He is
currently an associate professor of computer
science at York University, Toronto, Ontario,

Canada. His current research interest is in real-time and embedded
system engineering.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

720 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

