1. Background
A medical device is a device that is used to diagnose, prevent, or treat a disease or other medical condition through a non-chemical mean. Earl Bakken is perhaps the father of the development of medical devices as we know them today. In response to a request from Dr. Lillehei in 1957, Earl Bakken developed the first portable external pacemaker—a device that provides external electrical stimulation to the heart in order to regulate its beating. Since the 1950’s, considerable advances have been made in the development of a wide range of medical devices, ranging from pacemakers, insulin pumps, and the like, diagnostic devices such as electro-cardio-graphy (ECG or EKG) machines, to daily fitness trackers. A nice, albeit lengthy, video on recent advances in medical devices can be found here.
In this lab we will look at a particular medical device, a heartbeat monitor. Heart-beat monitors use technology to monitor one of your critical vital signs, the rate and structure of your heartbeat. For many medical applications, a device such as an ECG machine is used to accomplish this. An ECG machine picks up the small electrical signals associated with the motion of your heart, and the information recovered is used to diagnose general cardiac health. Small electrodes are placed on various parts of your body, typically using a conducting jell in between the electrode and the body in order to improve signal detection. A less invasive, but also less accurate, method is to measure your heartbeat relies on observing physical changes associated with the beating of the heart; specifically, the motion of blood through arteries in your finger.
Heart rate monitoring devices can be found in a wide range of applications outside of classic medical applications. Given the increased interest in general physical health, there have been many developments of exercise/fitness heart beat monitors. A wide range of companies (e.g., Apple, Polar, Suunto, and Timex) offer monitors that can be used as part of a general fitness regimen.

2. The Pulse Monitor
When your heart beats, it pumps blood through your arteries. This blood is then returned to your heart through your veins. Blood provides nutrients and oxygen to the various tissues and carries away waste products. The human heart is a sophisticated pumping device with four separate chambers that must operate in a coordinated fashion. Heart rate and the format of the pumping process are key indicators of general cardiovascular health. Perhaps the least invasive way of monitoring heart health is to simply observe the physical movement of blood through the arteries.

2.1 Manual Pulse Measurement
You can monitor your pulse yourself manually. To do this, place the tips of your index (second finger) and third finger on the palm side of your other wrist below the base of your thumb. Press lightly with your fingers until you feel your blood pulsing beneath. You may need to move your fingers around slightly in order to capture this pulse. Heartbeat is normally expressed in beats per minute. Using a watch, count the number of beats in 10 seconds, and multiply by 6 to obtain number of beats per minute. A normal resting heart rate is between 60-100 beats per minutes. Actual heart rate varies with exercise state and general physical health.
Although it is possible to measure heart rate in this manner, this is a rather crude way of examining how the heart is performing. Through the application of a small amount of technology, it is possible to provide a much more detailed examination of the structure of your heartbeat.

2.2 Optical Pulse Measurement
As blood moves through your arteries, the actual amount of blood in an artery changes. It is like water being pumped through a hose. With each pump there is a sudden increase in water volume that decreases as the pump is cycled to pump again. We can monitor this change in fluid volume in some convenient location — such as in your fingertip — in order to monitor your heart. Perhaps the simplest way of doing this is by measuring the amount of blood currently in an artery by shining a light on it and measuring how much of it is reflected back. The amount of light reflected back depends on the amount of blood in the artery. By observing how this changes with time we can monitor the actions of the pump (your heart) that is pumping blood through your finger.
A light emitting diode (LED) shines a light onto your finger. A photodiode (an analog sensor) monitors the amount of light returned. If we monitor the state of the photodiode, and maintain a constant illumination from the LED and block all other light sources, the only change in the state of the photodiode sensor must be due to changes in the reflective property of your finger, i.e. to changes due to the beating of your heart. It is relatively straightforward to build your own heart rate sensor using this approach, but given their low cost and the interest in integrating such technology into exercise and similar devices, a number of manufacturers package the necessary components into integrated packages. Such packages typically also include amplifiers and conditioners to enhance the recovered signal.

2.3 Our Pulse Sensor
This lab will use hardware developed by pulsesensor.com. Formally, the kind of pulse sensor you are going to build is known as a photoplethysmogram. Physically, the pulse sensor consists of a small round sensor head with three lead wires. The sensor is designed to clip onto your finger or earlobe in order to measure your heartbeat. If you examine the sensor, you will see that one side contains a small hole with an LED behind it. Adjacent to that is a light sensor that will detect the light reflected back to it from the LED. This is the front surface of the sensor — the side that will be in contact with your finger. On the back side of the sensor are the electronics.
Like many other analog sensors, three wires are connected to our sensor: power (red), ground (black), and the output signal (purple). This sensor requires between +3 and +5V on the power line. As extraneous light can impact the performance of the device, the sensor has been equipped with a small cuff that holds the sensor in close contact with your finger and at the same time reduces the amount of ambient light that might fall on the sensor.
In order to use a computer to monitor the heart beat, it is necessary to acquire the heart beat signal. The pulse sensor is an analog device. Its output will thus vary continuously with the amount of light being reflected from your finger. When you plug this monitor into any of the 8 analog inputs of our Interface Board, the board will do an analog-to-digital conversion in order to translate this signal to one that the computer can understand. This is accomplished by sampling the analog signal (taking snapshots of it) at regular intervals. The higher the sampling rate the more accurate the conversion. It is recommended to sample at 500 times a second (aka 500 Hz) to correctly capture heart beats in the 60-100 range.

3. Heart Rate Computation
When our software captures the heart beat signal, it needs to analyze it and figure out the number of beats per minute. This computation is discussed in this chapter.

3.1 Anatomy of a Pulse
You have probably seen EKG traces on television or when you have had a checkup. Such signals monitor the electrical activity associated with a heartbeat. Here, we are interested in the blood volume changes associated with a heartbeat. The signal you obtain with a photolethysmograph should demonstrate a repeating pattern, where each individual portion of the pattern is associated with a single heartbeat.
[image: hr_home.jpg]

The pulse begins when the volume of the blood increases and it then maximizes at the peak. This is the pulse wave effect. It then drops down, sometimes below the base-line, to in what is known as the dichotic notch. Measuring the heartbeat requires that we compute how many beats there are in a minute.
In order to facilitate the identification and counting of beats, it would be easier if we can mask away minor fluctuations, such as the varying amplitude (highest point) and the “wrinkles” here and there, and focus only on the major up-down features. To do that, we compute the mean value m of the signal (the average of the y values of all data points) and then replace any point (x,y) with either (x,0) or (x,1) based on whether y is less than m or not. Applying this to the above plot leads to this:
[image: Screen Shot 2014-09-30 at 10.34.29 AM.jpg]

This approximation is known as the Heaviside filter in reference to the Heaviside step function: H(x) = {0 if x < 0, 1 if x>= 1}. In our case, we are using H(x-m) to approximate (and simplify) the y values.

3.2 Capturing and Storing the Data
If we plug the sensor into our interface board, then whenever its output changes, the analog input to the board changes, and that in turn notifies our software by calling its corresponding event listener function. Hence, all we need to do in that function is to record the input value and the time at which it arrived. The data can be recorded in memory (in an array) or on disk (in a file). The former is fast but is volatile—the data is lost once the program ends. The latter is slower but the file stays on disk until we choose to erase it. Since we intend to explore processing and visualizing the data in a number of different ways, we will store it on disk in a file.
Writing data to a file involves three steps: opening the file (to set the file name and its location on disk), writing to the file (to move data from memory to it), and closing the file (to ensure all pending data is written). These steps are accomplished using one fopen, one or more fprinf, and one fclose statements.
As an example, suppose our data consists of these four (x,y) pairs to a file: (1,6), (2,8), (3,5), (4,2). To store these four data points in a file named “myData.txt”, you would type the following lines in Matlab’s console:

>> fid = fopen('myData.txt', 'w');
>> fprintf(fid, '%d %d\n', 1, 6);
>> fprintf(fid, '%d %d\n', 2, 8);
>> fprintf(fid, '%d %d\n', 3, 5);
>> fprintf(fid, '%d %d\n', 4, 2);
>> fclose(fid);

The first statement opens the file and associates its name with a so-called file identifier to be used in the program to refer to this file. Data is written to the file in the four statements that follow. The last statement closes the file thus dissociating it from the file identifier. In this example, each data point is written in a line by itself (hence the \n) with a single space between the x and y values. The resulting text file is known as a space-delimited file.
The second argument of the fprintf function is the format to be used to store the data in the file. Here, the format is to store the data as two numbers per line. More complete details on the structure of the format string can be found here.

3.3 Analyzing the Data
In order to plot the pulse data and compute the heartbeat rate, we start by loading the data from disk to memory and then store it in two column vectors x and y. The following code fragment does that:
>> data = load('testing.txt');
>> x = data(:,1);
>> y = data(:,2);
Once data is stored in vectors, one can use a host of techniques to filter it, smooth it, and plot, and Matlab comes with many such tools. Here are some steps that we can take to facilitate data analysis:
•Zero-offset the x-values
The x values in our pulse data contains the times at which the output of the pulse monitor changed. The time is expressed as milliseconds since 1970, which is not useful for heartbeat computation. We are interested only in the time delay between one change and the next and not in the actual time of each change. Hence, it would be good if we subtract x(1) from all the x values.
•Convert to seconds
We are after the number of beats per minute so measuring time in milliseconds is too fine a resolution. Measuring in seconds is more appropriate./ Hence, it would be good if we divide all the x values by 1000.
•A picture is worth a thousand words
Rather than looking at (x,y) values, it is far more revealing to see a plot. Using plot(x,y), Matlab enables us to quickly visualize relationships and trends.
•Heaviside Filter and Poincaré Plot
The Heaviside filter allows us to identify the beats easily while the Poincare plot provides a different view of the data and its regularity.

These techniques are explored in the exercises. If you like to explore them before your lab session, here is the data file of the signal depicted in Section 3.1.

4. Further Reading
•Structure of the heartbeat
•See the pulse monitor resources in this page.

5. Exercises
Each lab in this course must be properly documented using your e-Portfolio. Rich media content (e.g., videos) should be converted for publication using YouTube, Vimeo or some similar online video system. You should be aware that all material that you are publishing on these sites will be visible to a large number of people, including people outside of the class and the university. Inappropriate publication can result in penalties beyond those associated with your academic record.
Lab exercises are broken down into three sections, pre-lab, in-lab and advanced. pre-lab exercises must be completed before entering the lab. A Moodle quiz associated with the pre-lab must be completed before attending your lab session. The lab monitor will not allow you to participate in the lab without passing this quiz prior to the lab.

A. Pre-lab
1.Measure your pulse. Do this both at rest and also after exercising (e.g., running on the spot) for one minute. What is your resting heartbeat and what is your heartbeat after exercise? How difficult was it to find and measure your pulse?
2.Section 3.3 provided a link to a sample pulse obtained from a subject using the pulse monitor. Download this data by visiting that page and right-clicking “Pulse Sensor Data Sample”. Choose “Save Link As” and save the data in a file “pulseData.txt” in your workspace, i.e. in the folder: home/user/mCode.
3.Plot the downloaded data and estimate (manually) the number of peaks that occur. From this, compute the pulse in beats per minute.
4.Apply some of the techniques listed in Section 3.3 to help analyze the data you downloaded.
5.A very useful way of displaying signals such as the pulse signal is through what is known as a Poincaire Plot. Given the time sequence y1, y2, y3,… yn the Poin-caire Plot is simply the plot of the points (y1,y2), (y2,y3), (y3,y4), … (yn,y1). This means you don’t need the x vector, just the y, but you need to define a new vector, yy, which contained the circularly shifted y values and then plot yy against y. Plot the Poincaire Plot for the data you downloaded. What does the Poincaire plot show?
6.Make sure you complete the Moodle quiz before going to this lab’s session.

B. In Lab
1.Inspect the tackle box that was given to you for this lab and check its inventory. It should contain the items listed below. Let the TA know if anything is missing because you will be asked to return these items when you finish your session):
1.1.A box containing 16 resistors, 16 LEDs, 8 buttons, and a variable resistor.
1.2.A box containing jumper wires of various lengths.
1.3.A bundle of machine pin wires.
1.4.A bundle of alligator clip wires.
1.5.An interface board.
1.6.A prototyping board.
1.7.A multimeter.
1.8.A silver bag containing the pulse monitor and a velcro strip to help secure it.
2.Connect the interface board to your computer.
3.Use alligator cables to power the pulse monitor. Clip one end of an alligator cable to the red sensor wire and clip the other end to the red power source of the interface board. Do the same for ground (the black wire to the back post). The sensor’s green LED should turn on.
4.Use the multimeter (and alligator cables) to measure the voltage between the sensor output wire (purple wire) and ground. Since the sensor is not covered, the voltage should be constant and high.
5.Press the face the sensor with the white heart symbol against your thumb or index finger. Note that if you press too firmly, the voltage drops to zero, and that if you press lightly, the voltage will be constant. At some intermediate pressure, the voltage will start to oscillate between a high and a low value.

Note: Commercial heart beat monitors are mounted within a hard plastic clip that insures the pressure on the monitor is constant.

6.Create a circuit on the prototyping board containing a resistance (10 KΩ) and an LED in series powered by the sensor output, i.e. by the purple wire and ground. Again, monitor the light emitted by the LED and see how it changes depending on how you press the sensor against your thumb.
7.Wrap the velcro strip around your thumb and adjust its tension so the LED is flashing regularly. Keep the strip in place on your thumb for the rest of this lab session.
8.Connect the three wires of the pulse sensor directly to the interface board by plugging its three pins into the plug of any analog input wire. The sensor’s green LED should turn on.
9.In Matlab, double click on Hello.m to open it in the editor and then save it as Heart.m. Make the needed name changes (in the class and constructor headers) and then save again.
10.Run Heart.m in Matlab’s console. Does it output changes in the analog input connected to the pulse monitor? If not, investigate.
11.Press ENTER to terminate Heart.m. Add statements in it to store the captured data in a file named myHeart.txt. To that end, open the file in the main section (after the start ENTER is pressed); write the captured event value and time in the listener section; and close the file at the end of the main section (when the termination ENTER is pressed). Hint: all three changes need to refer to fid, the file identifier, so it should be visible to all of them.
12.Disconnect the pulse sensor and then start your Heart program. Press ENTER to start and then re-connect your pulse sensor. Press ENTER to terminate after about 15 seconds. Do you see the file myHeart.txt in the workspace? If not, investigate.
13.To plot the file, zero offset the x values and convert their unit to seconds. Plot the data and ensure it looks as you expect.

Note: You may need to repeat the capture several times before you obtain a “nice looking” signal. It all has to do with the pressure you apply and the movement of your hand. You may need to adjust the tension of the velcro strip and/or ensure that your arm is resting on the table when the program is running. You can also try increasing the polling rate (set in the constructor section) from 125 to 500 Hz in order to minimize sensitivity. Finally, if you find that the initial or final section of the data is shaky (has a non-constant baseline), then perform your analysis on only the middle, stable section and ignore the rest.

14.Count the number of peaks and compute your heart rate.
15.Document the process in your e-Portfolio.

C. Advanced
1.Whenever we ran our Heart program, we had to first disconnect the sensor and then re-connect it. Why? Why does running Heart while the sensor is connected lead to an “Invalid file identifier” error?
2.Enhance Heart so the sensor needs not be disconnected. Hint: add a boolean flag to the property section and initialize it to false.
3.Generate the Poincaire plot for your heart signal.
4.Apply a Heaviside filter to your signal by computing the mean of the y values and replacing all y values above the mean to 1 and all ones below the mean to zero. Plot the resulting signal.
5.Compute your hear rate from the signal. More specifically, count the number of positive sections found in the Heaviside signal within the duration of the signal and divide that by the signal duration. Compare the number of peaks that you count in the signal (divided but the signal duration) with the value of your function. Do they agree? Why or why not? How might you improve your estimate of the heart rate? Would it help to require the positive sections to be of a certain minimum duration? Or maximum? Is using the mean value as the set point for the Heaviside function the best way of dividing the input signal into peaks? Would the midpoint between the maximum and minimum be better?

6. Credits
[image: Screen Shot 2014-08-27 at 8.52.06 AM.jpg]

OPS/toc.xhtml
		1. Background

		2. The Pulse Monitor

		2.1 Manual Pulse Measurement

		2.2 Optical Pulse Measurement

		2.3 Our Pulse Sensor

		3. Heart Rate Computation

		3.1 Anatomy of a Pulse

		3.2 Capturing and Storing the Data

		3.3 Analyzing the Data

		4. Further Reading

		5. Exercises

		A. Pre-lab

		B. In Lab

		C. Advanced

		6. Credits

OPS/images/cover-image.png
I THE INTERFACE BOARD. Lo

Computational thinking through mechatronics

Medical Devices

O
=

Version 0.3 Copyright © 2014 by:
m Jenkin + h Roumani

OPS/images/Screen Shot 2014-09-30 at 10.34.29 AM.jpg

OPS/images/hr_home.jpg

OPS/images/Screen Shot 2014-08-27 at 8.52.06 AM.jpg
$| COMPUTATIONAL THINKING
THROUGH MECHATRONICS

Copyright © 2014 by:
m Jenkin + h Roumani Sl

