1. Video tracking
Video tracking relates tho the problem of locating a moving object over time using a video camera. Video tracking finds application in a wide range of different domains, from military and space applications — tracking a satellite in order to capture it — to the medical domain — tracking the motion of cells in the bloodstream. Regardless of the domain the basic goal remains the same; to locate and associate target objects in consecutive frames of a video sequence. Imagine, for example, the problem of tracking a single player on a football (soccer) field using a single video camera. There are a large number of different technical problems that must be solved in order to do this. How do we characterize some part of the image that the computer captures as being “the player”? How do we direct the camera that is capturing the imagery to follow the player as he or she moves about the field? This is the problem that you will consider in this lab. Rather than dealing with a player moving about a sports field, however, in this lab you will deal with the problem of tracking a balloon as you move it about the lab.
[image: pasted-image.png]
Figure 1: Tracking an object in an image.
The picture shown in Figure 1 is representative of the problem. A uniquely coloured object (here a lemon) is in the field of view of the camera. We would like to keep the balloon centred in the camera’s field of view. That is, we would like to have the camera pan (move left and right) and tilt (move up and down) so that the balloon is centred in the camera’s image. We will assume that the balloon does not move very fast — it does not zoom out of the camera’s field of view in an instant, for example. We will also assume that the balloon will not move too close to the camera — it does not completely block the camera’s view. And we will also assume that the balloon does not move behind other structure in the world. But all that being said, our goal is to keep the balloon centred in the camera’s field of view.
In order to meet these goals we need several things. We require a camera that can capture the visual scene. We require a mechanism to direct the camera around the scene — to centre it on the balloon. And we need software that will control the camera so that it remains pointed at the balloon. Essentially, we are tying sensing to action. This basic concept of tying sensor inputs via processing into action can be tied to the work of Norbert Wiener in the 1940’s. As he mused in his January 1949 article in Electronics:
“It has long been clear to me that the modern ultra-rapid computing machine was in principle an ideal central nervous system to an apparatus for automatic control: and its input and output need not be in the form of numbers or diagrams, but might very well be, respectively, the readings of artificial sensors such as photoelectric cells or thermometers, and the performance of motors or solenoids.” — Electronics, 1949.
Norbert Wiener is considered to be the father of cybernetics for his work in this area.
This lab will be completed over two weeks. The first week of the lab concentrates on designing code that finds the centre of a coloured object (a balloon or in the examples shown here, a lemon) in the field of view of the camera. The second week of the lab will take the information you obtained in your code in the first week and use it to point a camera so that it tries to centre in, or attend to the coloured object.

1.1 Getting started
As with all labs in this course there are three sets of exercises associated with the lab. The first set (set A) must be completed prior to taking part in the lab. You will not be allowed to take part in the lab if you cannot convince your TA that you have completed the work. The second set (set B) must be completed in order to receive a grade for the lab. The final set (set C) are extensions to the basic lab. As two labs sessions are associated with this project you will find two sets of exercises: one for the first lab and one for the second. You should generate a single digital lab book for this lab, split into two parts as is the lab itself.

2. Background
This lab deals with capturing an image sequence from a camera and directing a camera where to look next. This is a well studied problem with a wide range of different solutions. You will implement one such solution here, but you should be aware that there are many other ways of approaching this problem — see the list of readings for some of these. As with the other labs in this course, you might start with the exercises given at the end and then come back and look at the background material.

2.1 Pinhole camera model
The pinhole camera model is a very common model for how light interacts with a camera. The basic concept is shown in the figure below. The pinhole camera consists of an image plane within an opaque box which is punctured by a single pinhole some distance from the image plane Light is emitted into the environment and travels in a straight line. Some of that light strikes objects in the environment and is reflected off of it. Some of this light passes past the camera and is lost to the camera. Some strikes the camera box and does not strike the image plane. But some passes through the pinhole and strikes the image plane. What does where the light strikes the image plane tell us about the direction to the object in the world?
[image: pasted-image-1.png]
Figure 2. A pinhole camera.
Pinhole cameras obtain the direction to an object in a scene but loose information about its depth.

2.2 Image representation
A digital camera is a remarkable device. Behind the optics of the lens an array of light sensors convert the light that falls onto the sensor into a rectangular array that encode the colour of the light that falls onto the camera. Each element of this array is known as a pixel element or pixel. Suppose that the image has a width (w) and height (h). Then the process of representing the image becomes one of representing the array of pixel elements that make up the image. Pixels represent the colour of the light striking a particular element of the picture array. If we are going to represent this information we require some way of representing this physical property. Perhaps the easiest way of doing this is to consider light as a combination of a certain amount of red, green and blue primitives. If we use 0 to represent none and 1 to represent maximum, then a given colour — say black — could be represented as no red, no green, and no blue or (0,0,0) as a vector of the three values (red, green, blue). Similarly, bright white would be represented as (1,1,1). This way of representing colours is very common in computer hardware as the colours being displayed on many computer displays are generated by emitting a certain amount of red, green and blue onto a particular point on the image display. Given the way in which the light sensors work each of the individual colour channels work are typically represented by a maximum number of bits (say 8), resulting in colour values that run in some limited range (e.g., 0..255 or 256 unique values). In order to remain independent of the underlying hardware in this lab we will assume that values are in the range 0..1 inclusive.
Given a mechanism to represent colour as a triplet of red, green and blue values, we require a way to represent an image. An image can be represented as a two dimensional array values(nrows, ncols) where nrows is the number of rows in the image and ncols is the number of columns. The position (1,1) representing the upper left hand corner of the image while the position (nrows, ncols) representing the lower right hand corner of the image. Each element in the array values would then have to represent the triple of (red, green, blue). This triple can be thought of as an array of three elements, element zero being red, element one being green, and element two being blue. The entire representation can be thought of as a three dimensional array : image(nrows, ncols, 3). Given this representation, one can imagine two primitive operations that will be required on an image:
•Set an image location to a value. With the representation described here this involves setting the elements of image(row, col, 1), image(row, col, 2), and image(row, col, 3) to specific values in the range from 0 (no amount of that colour) to 1 (a full amount of that colour).
•Access the image value at a location. With the representation described here this involves retrieving the elements of the red, green and blue arrays at some location (row, col).
All operations on an image can be defined in terms of combinations of these basic operations on the three dimensional array. For example, to set an image to black we would simply set all of the elements of the three dimensional array image to the value 0. In Matlab we could write this as image(:,:,:)=0.

2.3 Accessing a video source in Matlab
In order to capture an image (or an image sequence) using Matlab your laptop must have at least one video camera attached to it1. As you are running Matlab within a virtual machine you must also ensure that your VirtualBox has access to it. In the VirtualBox menu there is an entry ‘Devices’ with a pull-down item ‘Webcams’. If you select this you will see a list of web cameras available to the virtual box. Ensure that the web camera you wish to use is checked. (You can access more than one web camera at a time, but for simplicity, ensure that only the web camera you wish to use is connected.) It is also important that no other application is attempting to use the video camera. Ensure that no application in the host operating system is open and attempting to use the video camera. If such an application is running in either the host or virtual machine, quit it.
Assuming you have the one web camera you wish to use checked, then in the Matlab Command Window type
	video = c4e.media.Video(0);
This will create a video object using the first available video source. (If you have more than one web camera connected, you can select different cameras by using different numbers.) If everything is working, you will get no output from this command. You can verify that everything is working well by typing
	video.play();
in the command window. This will bring up a live capture from the video camera. If everything is working properly then you should be able to wave things in front of the camera and see them in the window like that shown in Figure 3. To return to Matlab click on the ‘X’ in the C4E Camera Window.
[image: pasted-image.png]
Figure 3. The C4E Camera Window
In order to capture the current contents of the camera into memory type
	rgb = video.getFrameAsArray();
This will capture the current view of the camera as an array of some default size (likely 480 rows x 640 columns or larger, but the actual size will depend upon the specifics of your camera) where every element of the array is a vector of length 3 encoding the red, green and blue values of that picture element or pixel. To convert this representation into the “standard” Matlab representation of images where colour values are in the range 0..1, execute the following commands
	d = double(rgb);
	d = d./255;
You can now display and manipulate this image with the standard Matlab tools. For example,
	image(d);
will display the contents of d in a window. Note that Matlab lets you type other commands while the window created by image(d) is being displayed. Changes in ‘d’ will not be reflected in changes in the image window. If you make a change in ‘d’ and you want to update the window to reflect this type
	image(d);
	drawnow;
You can also store the image ‘d’ in a file for processing outside of Matlab using the Matlab function imwrite. imwrite can do many things, but
	imwrite(d,’image.tif’);
will create the file ‘image.tif’ in your mCode directory. Similarly, you can load a file from disk using the Matlab function imread. imread has many options, but
	z = imread(‘image.tif’);
will load the image file ‘image.tif’ into Matlab. Note, you will probably have to convert z (which will have pixel values in the range 0..255) to the range 0..1 using
	zz = double(z);
	z = z./255;
Many of the file formats for images are ‘lossy’ in that they do not store all of the colours in your image exactly. In this lab, you will very much want to use ‘lossless’ file formats. The ‘tiff’ image format can be ‘lossless’, and by default imwrite will output tiff files in a lossless, but compressed format.
Finally, when you are done with the camera, you can execute the command
	video.stop();
This will turn off frame grabbing.

2.4 Gnu Image Manipulation Program
There are many image manipulation (or paint) programs available. Adobe photoshop is perhaps the most famous, and it is certainly feature rich. This lab will require you to edit (manipulate) an image that you capture. You can use any image manipulation tool you like to do this, but a copy of GIMP (the Gnu Image Manipulation Program) is included within the virtual machine image you are using in the course. Full details on GUMP can be found at www.gimp.org, including instructions on how to download it for your own machine. Like many image manipulation programs, GIMP allows you to paint on the image or on one or more of a set of image layers. In this lab you will use GIMP to paint certain portions of an image black. There are many ways of doing this, but perhaps the easiest is to use the eraser tool (it looks like an eraser in the tool menu). Note: It will be important to paint portions of the image ‘black’ as (r,g,b)=(0,0,0). Your default ‘black’ may not be (0,0,0). If you double click on the eraser colour — the black box in the toolbox — a dialog will appear which will let you manipulate the foreground and background (eraser) colour.

2.5 Image Processing
The key image processing questions that must be answered in this lab are “is the balloon in the image” and if so “where in the image is it”? There are many ways that one might try to answer this question, but lets consider an approach based on the colour of the balloon. The balloon you have is of a given colour and assuming that the lighting in the room is well behaved then the colour of the balloon will more or less be constant in an image that is captured of it. It will not be exactly the same colour throughout of course. Illumination and shadow effects will mean that the balloon will be approximately the same colour throughout. How can we use this information to determine if the balloon is in the image and its centre, assuming that it is?
Suppose we knew the range of red, green and blue values that correspond to the appearance of your balloon in an image of it. Then given an test image, we could examine each pixel in the test image to determine if its colour — its red, green and blue components — is consistent with the colour of the balloon. This would allow us to mark pixel locations that are consistent with the colour of the balloon. If the balloon colour was unique in the image then the centre of mass or centroid of these locations would tell us the centre of the balloon. Furthermore, if there were no pixels identified as being of the necessary colour, this would let us know if the balloon was (or was not) present in the image. For such an approach to work, all that is required is some mechanism to determine the range of colours that are consistent with the balloon. We could accomplish this by having a reference image provided to the system. This reference image would consist of (say) the balloon on a black background. The system could then process this image and discard the black pixels, and take the rest of the pixels as being balloon pixels, and use this to compute the range of red, green and blue components that are consistent with the colour of the balloon.
There would be many ways of representing this range. Perhaps the easiest would be to compute the average red, green and blue colours that correspond to the balloon along with the standard deviations of the red, green and blue colours in the reference image. Then given a test image, if a given pixel’s red, green and blue values are within one standard deviation of the mean red, green and blue values, then this pixel could be characterized as belonging to the balloon, and not otherwise.
In terms of specific image processing operations, within this laboratory you may find the following basic definitions and mechanisms useful.
Computing the mean of an image channel. The mean of a collection of numbers x1 through xn is given by their sum (x1 + x2 + … + xn) / n. This can be computed by iterating through every pixel in an image channel and summing the elements, then dividing this sum by n.
[image: pasted-image-2.png]
Computing the standard deviation of an image channel. The standard deviation of a population x1 through xn is given by the square root of the average of the squared deviations from the mean. If the mean xmean has already been computed, then sigma squared (the variance) can be computed as
[image: pasted-image-3.png]
Computing the centre of mass of an image. Given a two dimensional array image[nrows][ncols] consisting of 0’s and 1’, then the centre of mass is simply the average computed over the non-zero values of the image. More specifically, if i is an index over the rows and j is an index over the columns then the centre of mass is given by
[image: pasted-image-4.png]

2.6 Servo Motors
The pan and tilt assembly provided for this laboratory is based on RC DC two servomotors. These are very sophisticated devices deployed widely in the RC (radio controlled) hobby environment. Electrically, each motor is connected via three wires to a motor controller board which provides both power and data to the device. The motor controller also exposes an API to external software to control the device. Internally, each motor assembly contains a DC motor, an orientation sensor, and a small gearbox that reduces the speed of the motor in exchange for enhanced motor torque. DC servo motors can generally be back-driven. This means that you can turn the output shaft by hand, causing the gears to back drive the motor. (Note, this is not always true for a given motor, so avoid trying this with an arbitrary motor and gearbox.) If you do this with most DC motors — and the ones used in the lab — you will find that the motor has a limited range of travel. You can rotate the output shaft a very limited amount — typically in the range of 180 degrees — but that is it. Fortunately, that is sufficient for the task we are considering here, pointing a camera in different directions.
[image: pasted-image-5.png]
Figure 4. A servomotor.

The orientation sensor is some mechanism that allows the orientation of the motor’s output shaft to be monitored. In inexpensive servomotors like that ones that are used in the lab, this is accomplished through the use of a variable resistor connected to the output shaft. As the output shaft rotates the resistance changes and so it is possible to control the motion of the motor so that it rotates the shaft to a particular orientation. A software API is provided by the motor controller board to drive the output shaft to a particular position — a particular resistance as measured by the variable resistor connected to the output shaft. As each motor is manufactured slightly differently each motor will have different resistances corresponding to the orientation of the shaft. A consequence of this and of the slight variations in terms of the assembly of the pan and tilt unit provided to you in this lab is that each motor will require calibration. That is, for a given external orientation of the output device (in degrees) it will be necessary to determine the corresponding value of the motor’s orientation encoder (as measured in encoder counts).

2.7 Pan and Tilt Assembly
Cameras do not have an infinite field of view. They cannot see everywhere. As a consequence it is often necessary to point a camera in different directions to keep an object within the camera’s field of view. A common way of addressing this problem is through the use of two motors that direct the pan (horizontal) direction of the camera, and one that directs the tilt (vertical direction): Hence, pan and tilt assembly.
[image: unknown.jpg]
Figure 5. The Pan and Tilt Assembly with a camera mounted on it.

As in many engineering endeavours the final design of any device involves a series of tradeoffs. This is also true in the design of a pan and tilt assembly. In a perfect world a pan and tilt assembly would only change the direction in which the camera points and would not translate it as well. The assembly provided for you in this lab does introduce a small translation in the camera as it tilts — the optical centre of the camera is not perfectly aligned with the intersection of the rotational axes of the pan and tilt motors — but for the purpose of this lab, let us assume that they are. Assuming so, then directing the camera in a particular direction is simply a matter of choosing the appropriate pan and tilt angles and commanding the corresponding motors of the assembly to direct the camera in that direction.
The pan and tilt unit is comprised of a number of different components that you will have to connect together in order to use the unit. All should be present in your lab kit.
•A pan and tilt unit with a web camera attached to it.
•A Phidget servomotor controller board
•A serial cable that connects the two.
•A USB cable to connect the servomotor controller board to your computer
•An AC power supply for the servomotor controller.
In order to use the unit, you will need to connect the servomotor controller board and the pan and tilt board together using the serial cable. It can only be connected in one way. The barrel connector from the power supply should be connected to the servomotor board and plugged into an AC socket. Finally, connect the USB connector to the servomotor board and your computer.

2.8 Servomotor API
The servomotor system that you will use in this lab has two degrees of freedom. A motor that pans the stage around the vertical axis (this is axis 0), and a motor that tilts the stage about the horizontal axis (this is axis 1). The following methods defined by the servo controller board will be useful in this lab
•this.servo.setEngaged(axis, value) - In order to drive an axis, it must first be engaged. Thus to engage axis 0, you would execute the command this.servo.setEngaged(0, true). Once an axis is engaged the servo motor controller will seek to keep the axis at that value.
•this.servo.setPosition(axis, value) - The servo will move (immediately) to have the value given. Thus to move axis 0 to value 100 you would execute the command this.servo.setPosition(0, 100)
Note that for axis 0, a value near 100 corresponds to the camera pointing ‘straight ahead’ and a tilt value near 130 corresponds to the camera parallel to the tabletop. Pan values less than 100 correspond to rotations counterclockwise, while tilt values less than 130 correspond to the camera pointing down. (These numbers are only approximate as each pan and tilt unit is slightly different.)
The m-file associated with this lab ‘tracker.m’ provides an example of how you can drive the the pan and tilt using this API. If you look at the code you will see that it prompts you for pan values (until you enter a -1) and then tilt values (until you enter a -1). You can use this code as a template, and also to ‘calibrate’ your pan and tilt unit so that you know what its ‘straight ahead’ and ‘parallel to the tabletop’ values are for pan and tilt.

2.9 Proportional Controller
Having the camera follow the balloon using the pan and tilt unit is the problem of ensuring that the balloon appears in the centre of the image. The difference between the measured position of the balloon and the intended position of the balloon (its set point) is the system’s current error. This error will fluctuate over time as the balloon is moved, and it will fluctuate even if we do nothing as slight changes in illumination in the world could cause our estimation of the image location containing the centre of the balloon to change. Some mechanism is required to minimize this error. This mechanism should take as input the current error and command the pan and tilt motors to direct the camera to centre the position of the balloon. Once we do this, of course, we will capture another image, and receive another error and the process can be continued. An input signal — say the x coordinate of the balloon — enters the system. The system then takes this measurement and determines a motion of the camera that will tend to null out the difference between the desired measurement and the current value. Suppose that the goal location of the centre of the balloon is xcentre. Then the error e=x-xcentre between x and xcentre can be used to control the motion of of pan motor of the robot. We could try to correct the error by driving the camera by exactly the expected amount to null the error, but this approach is likely to be unstable as slightly over-estimating the error could lead to the axis oscillating around the correct answer. A more general approach is to correct the error by an amount Kp*e, where Kp is the proportional gain. If Kp is set to a value less than 1 — say 0.5 — then assuming that the target is stationery then on the first iteration the axis will correct one half of the error. On the second iteration, one half of the reaming error, and so on. Provided that the sampling rate of the system is sufficiently high, this approach will allow the controller to drive the camera towards the target and will allow the camera to track a balloon that does not move that quickly across the field of view of the camera.
One final but important detail is dealing with the difference between pixels and degrees or encoder counts. The pan and tilt motors deal in encoder counts, which is internally corrected to degrees by the pan and tilt unit itself. The camera make measurements in terms of pixels. In oder to track an object we must convert pixel error to degrees of motion. This requires calibrating the camera/pan-tilt unit in order to understand this relationship.

3. Lab Equipment
Before starting each of the weekly labs associated with this project you must verify that your lab box contains the following
•A Phidget motor controller board with USB cable.
•An AC power brick to provide power to the motor controller board.
•A pan and tilt motor assembly equipped with a video camera.
•A ‘straight through’ serial cable that connects the pan and tilt motor assembly with the Phdiget motor controller board.
•Two identically coloured balloons.
Note: For the first week of the lab your lab kit may only contain the video camera and balloons. The other times are only needed for the second part of the lab.

You will also require a laptop computer with two spare USB ports. Should your kit be missing any of these parts you should talk to your lab instructor immediately. Note that you will not be using the Phidget motor controller board during the first lab associated with this project but that you will need them for the second lab.

4. Lab 1: Exercises

A. Pre-lab
1.Review how Matlab represents 2D arrays. Specifically, what is the syntax that Matlab uses to access an element of an array? How are arrays passed to methods/functions? How are arrays returned from methods/functions?
2.Review the API provided for image capture, storage, and display. How would one load an image from disk? How would one store an image internally to disk? How would one create a window that displays an image from within the Matlab environment?
3.Review the GIMP paint program found in the native machine. Documentation on this application can be found on the web. How would you use the paint program to paint pixels in an image a particular colour (e.g., black) while leaving other portions of the image their current colour?
4.Use your course lab book site to set up a framework for the next two labs. Complete a draft version of the section “Purpose”.

B. In-lab
1.Blow up one of your balloons and use the camera mounted in the pan and tilt unit to capture images of it. Save an image as ‘balloon.tif’.
2.Use the Gnu Image Manipulation Program (gimp) paint program provided in the virtual machine to paint all of the image in ‘balloon.tif’ except the balloon itself, black. Save this image as ‘onlyballoon.tif’. Note: make sure that black is the value (r,g,b)=(0,0,0). That is, for the balloon.tif image shown above, your onlyballoon.tif image would appear as below
[image: pasted-image-6.png]
3.Using Matlab, read in ‘onlyballoon.tif’ and display it in a window.
4.Using Matlab, take the representation of ‘onlyballoon.tif’ that you created above, and change all pixels that are black (0,0,0) to the value(1,0,0). Display this image on the screen. What did you do to the image?
5.The rest of this lab walks you through the process of tracking the location of your balloon in the image stream. You may to choose to solve the problem in some other way, and there are certainly improvements/efficiencies that you can make to the approach described here. Feel free to do so. However, your code at the end should accomplish the same task as the code that you are walked through here.
6.Create an ‘m file’ called tracker.m. You will use this file to organize the code you need to track the balloon in the image. Add the Matlab code
fprintf(‘Tracker started\n’);
To the file and save it. Then in the Matlab command window, execute tracker. You should see the output
Tracker started
On the command line.
7.Add code at the end of the tracker.m file to read in onlyballoon.tif, into the array ‘base’, covert its r,g,b values to be in the range 0..1 and then display base in a separate window using the ‘image()’ command. Test your code. You should see ‘onlyballoon.tif’ in a window.
8.Add code at the end of the tracker.m file to compute the mean of the red, blue and green channels in the image ‘base’ for those pixel elements that are not (0,0,0). Call these values rmean, gmean, bmean. This will require you to iterate over every pixel in the image. The following Matlab code fragment/psuedocode may be helpful
sumRed = 0;
same for green and blue
countNotZero = 0;
for i=1:size(base,1)
 for j=1:size(base,2)
 if (base(i,j) is not a black pixel)
 sumRed = sumRed + the red colour of base(i,j)
 # same for green and blue
 countNotZero = countNotZero + 1;
 end
 end
end
In order to do this, you will have to sum the red, green and blue components for non-(0,0,0) pixels, and then divide by the number of non-(0,0,0) pixels you encountered. Print out these values.
9.Add code at the end of tracker.m to compute the variance of the red, green and blue channels in the image ‘base’ for those pixel elements that are not (0,0,0). Print out these values.
10.Add code a the end of tracker.m that does the following forever. (That is, to stop the program you will have to type control-C to stop it.)
10.1. Capture a new image from the video camera and covert this image so that it’s red, green and blue values are in the range 0..1. Store this image in the array ‘current’.
10.2. Display ‘current’ in a window using the image() command.
Test this code to make sure that it is working. You should be able to move the camera around to ensure that the video is live. Some possibly helpful observations
•while true … end will create an infinite loop in Matlab
•You should create a link to the video library outside of your tracker.m file. That is, make sure you have typed video = c4e.media.Video(0); in the Matlab command window assuming that you are using ‘video’ to represent the link to the video system.
•If the camera ‘hangs’, you may have to exit out of Matlab and restart it. It is typically not necessary to restart the virtual machine.
11.Modify your code from the step above so that it no longer displays the live video stream, but rather first examines every pixel in the ‘current’ image to see if its red green and blue values are within one standard deviation of the mean from the mean red, green and blue values in the base image. If the pixel is within one standard deviation of the mean red, green and blue values, it sets the pixel in a parallel image array mask to be 1, otherwise set the pixel in the parallel array mask to be 0. (‘mask’ is just another image of the same size as ‘current’.) Display this image as each new frame is processed. The image ‘mask’ contains only pixels that are black (0,0,0) or white (1,1,1). Such an image is known as a binary image (it only contains two values).
12.Modify your code from the step above so that it no longer displays the image ‘mask’. At the end of your code from the previous step add code to compute the centre of mass of the binary image ‘mask’ you computed in the previous step. This will compute a row and column that corresponds to the centre of mass of the image. (Call these cm_row and cm_col.) In the image mask, set all of the pixels in the row cm_row and in the column cm_col to be black, and display this image. This should draw a large cross through the centre of mass of the mask image. Display this image as each new frame is processed.
13.Now a final cleanup to your code. Remove the code that drew the cross in the mask image — but keep it somewhere as you will need it in a moment. Take the ‘current’ image (the raw image from the camera at each frame), and do the following
13.1. Process each pixel in the image. If the pixel corresponds to a mask value of 0, halve the values of (r,g,b) at that location in the image. That is, replace (r,g,b) with (0.5 * r, 0.5 * g, 0.5 * b). This will have the effect of dimming pixel locations that do not correspond to the locations identified by your code as being part of the balloon.
13.2. Redraw the cross on the resulting image. Draw the cross in white (r,g,b)=(1,1,1) instead of black though. It will be easier to see in the resulting image.
13.3. Display this image as it is processed.
14.Experiment with your system. The input image should be processed to obtain the centre of mass of the balloon under reasonable input conditions. Show the operation of the system when it succeeds in your e-Portfolio. When does it fail? Show an example of this in your e-Portfolio. Why does it fail?
15.The time it takes for a system to complete one cycle of its operation is known as the system’s cycle time. What is the cycle time of your system? If you disable the redrawing events on the sleep operations inserted in your code, how often is your software able to capture another image? Document this in a convincing way in your e-Portfolio. How did you measure the cycle time? Note that there are many ways of doing this. One (easy) way is to use an external clock to time how many seconds it takes for your system to run a number of times. Another is to use Matlab itself to do this counting.
16.How does your code handle failures such as the object not appearing in the scene?
17.Describe this lab in your e-Portfolio. Note: videos are an effective mechanism to show how the various operations you perform on the input signal perform.

C. Advanced
1.One problem with the centre of mass computation is that if there are other sources of your balloon colour in the environment they can corrupt the computation of the centre of mass. One source of such corruption comes from random spots in the world that just happen to have or more less the same colour as your balloon. One approach to dealing with such random spots is to ignore (remove) non-zero locations in the binary image that are not connected to other non-zero locations. One operation that accomplishes this is known as the erosion operation. Suppose you have an input (binary) image input[nrows][ncols]. We can construct an eroded version of input (call it output) also of size nrows x ncols. For a given pixel in the input, the output pixel is set to one only if the input pixel at (row, col) and all of its eight neighbours have the value 1. Note that no pixel at the edge of the image meets this test. This will have the effect of setting to zero any pixel location that is not in the interior of an ‘on’ region. Implement erosion, and insert it into your code so that the binary image of the balloon is eroded. Does erosion deal with some of the noise in the image?
2.Erosion ‘shrinks’ the balloon. We can undo this shrinking, but still take advantage of the erosion operation by dilating the image after applying the erosion operator. Again, suppose you have an input (binary) image input of size nrows x ncols. To construct a dilated version of input (call it output), an output pixel is set to one only if one or more of the 9 pixels within zero or one pixel of (row,col) is set to one. The output pixel at (row,col) is set to zero otherwise. Dealing with the boundary is a bit more difficult, but for ease of implementation let us suppose that erosion does not extend to the boundary pixels. After applying the erosion operation, apply the dilation operation. What effect does this have on the process? Note: tasks such as image erosion and dilation are so common that they are actually built into parts of Matlab. But you should implement them yourself.
3.As described above the code treats a pixel as being part of the balloon if its colour in the red green and blue channels is within one standard deviation of the mean. This may be too restrictive or too liberal for some environments. Enhance your code so that there is a positive variable tolerance, and that pixels are identified as being part of the balloon if their red, green and blue channels are within tolerance standard deviations of the mean. When you run your code with tolerance set to 1, then the revised code should work as before. Try running your code with tolerance values of 2 and 0.5. What effects does the change have on performance. What is a good tolerance value for the lab?

5. Lab 2: Exercises

A. Pre-lab
1.Review your notes from the previous lab. In particular, ensure that you are comfortable with capturing data from a camera and processing it. If there were issues in your code from the previous lab, ensure that they are correct now.
2.Review the API for the motor controller as described above. How would you drive the motor to encoder position 100?
3.Download the m-file Tracker.m from the course web site. How does it prompt the user to enter pan and tilt values? Observe that the code ‘Tracker.m’ use a global variable ‘video’ to refer to the video structure. In order to use the Tracker m-file, you must type in the command window
global video;
video = c4e.media.Video(0);
Although the use of the global ‘video’ to reference the video camera is not the best programming style, it allows you to edit and execute m-file that refer to the video structure without starting and stopping the video system.
If you look at the Tracker code, you will see that it grabs 10 images every time an image is required. This is to deal with image buffering taking place in the capture library. (This will slow down the speed of your code, but it will make your processing deal with the current image, rather than a buffered one.)
4.Review the encoder-pixel calibration process described in step B.2 below. How many points will you plan to capture in order to calibrate How can you use Matlab to solve the least squares problem of finding the gain between the difference in

B. In-lab
1.Assemble the pan and tilt assembly with its video camera somewhere where the motion of the motors is unlikely to have the unit fall off of the table and become damaged, or become entangled with the various cables. Blow up the balloon. It is critical that the balloon is the same colour as that used in Part 1 of this lab. If it is not, you will have to re-calibrate the colour calibration you obtained in Part 1.
2.In order to track the balloon with the pan and tilt unit it is necessary to determine the relationship between encoder counts as measured by the pan and tilt motors (these are close to degrees)and pixels as measured by the camera and to determine the limits (range of pan and tilt) available with your unit. You will perform this as follows:
2.1. Create a global reference to ‘video’ and initialize it to the video camera you are going to use. (See instructions above.)
2.2. Run the Tracker.m code to determine the maximum and minimum pan and tilt values that your system supports. Do this by driving the pan and tilt unit carefully towards the maximum values. Try to avoid crashing the unit into things. Also use this process to determine the ‘straight ahead’ values for pan and tilt. Modify your tracker code so that when the code starts up it uses this values for ‘hpos’ and ‘vpos’. Call these values (pan0,tilt0).
2.3. Run the Tracker.m code again Place a (e.g., a mark on a piece of paper) in front of the camera. Move the target so that it is about 1.5m from the camera, and is centred when the Tracker.m code starts up. Now use the Tracker.m m-file to pan so that the target is just on the edge of the image. Record the change in pan value required to move the target 1/2 of the image width. This allows you to compute the approximate required change in pan angle to induce a change in horizontal pixel location; 2*(pan-pan0)/width. Do this similarly for tilt. Note that this is not a perfect way to do calibration, but it will do for the lab.
3.Build a proportional controller that tracks the balloon as it moves in front of the camera. Your tracker should use a different error and correction for each of the pan and tilt axes. That is, use the horizontal camera error to compute a change in the pan and the vertical camera error to compute a change in that tilt. Use a proportional controller with a gain of Kp=0.5. Write your code so that it does not start tracking until it detects the balloon near the centre of the image and that it stops tracking when the balloon is no longer detected in the image. (That the ‘mass’ of the balloon falls below a threshold.) Your program should record, as a function of the number of captured images (e.g., time), the detected position of the balloon in terms of rows and columns, and the current pan and tilt of the unit. You should ensure that you never command the pan and tilt unit outside of the limits you identified under 2.1 above.
Your code is likely to only be able to process one frame a second (or so). This means that you will not be able to move the balloon very quickly.
4.Record a number of tracking scenarios in your digital e-Portfolio. You should capture both the tracking operation as well as the results of your tracking software on the screen.
5.What are the limits of your tracker?
6.In step 3 above you set Kp=0.5. What happens if you increase or decrease Kp?

C. Advanced
1.The basic system described above uses what is known as a proportional tracker. That is, it corrects its estimate of the position of the pan and tilt unit by an amount proportional to the error. The classic solution to this type of controller is what is known as a proportional, integrative and derivative (PID). Suppose that the error between the set point (the target is in the centre of the image) and the current position of the target is e(t). Then the proportional controller built above chose a change in the direction of the pan and tilt unit as u(t) = Kp e(t). More generally, using a PID controller you could use a u(t) given by[image: pasted-image-7.png]

The controller implemented above basically has the Ki and Kd terms set to zero. Here, we will work on implementing a full PID controller. Each of the sections below look at implementing the proportional and derivative terms. Each can be implemented separately.
2.	The integral term. Modify the tracking code so that it maintains a sum of the errors obtained during tracking for each of the pan and tilt terms. This sum can be used as an approximation of the integral. Choose a value of Ki that is smaller than Kp. Play with different values of Ki relative to Kp. What does large values of Kp do to the tracking process?
3.	The derivative term. Modify the tracking code so that it maintains how much e(t) changed between the last iteration of your code and the current one. That is, approximate e(t) as e(t)-e(t-1). Do this separately for each of the pan and tilt terms. Play with different values of Kd relative to Kp. What does large values of Kd do to the tracking process?

6. Further reading
Image Processing
•There are a number of good tutorials online on using Matlab for image processing, including this one.
•There are a large number of good books on Computer Vision and Image Processing. The classic text is by Ballard and Brown. It is now available on line. There are many more recent books including books on OpenCV, a standard library for doing many computer vision tasks.
•The OpenCV library provides a good implementation of a large number of standard image processing tools.
Active Vision
•The idea that vision can be more effective/strategic if it is not a passive process is known as active vision. There are a number of good books on this concept including Findlay and Gilchrist’s book.
Video Tracking
•There are many examples on the web, including
https://www.youtube.com/watch?v=8luy8jP1UNs
https://www.youtube.com/watch?v=-4P_709YmKY
Signals and Systems
•Oppenheim and Willsky’s book is a classic. Copies of the first edition are available as pdf’s on line. The second edition is available at Amazon.

7. Credits
[image: Screen Shot 2014-08-27 at 8.52.06 AM.jpg]

1 It would be remarkable if you could capture an image without a camera connected to your computer. But its always good to check these things.

OPS/toc.xhtml
		1. Video tracking

		1.1 Getting started

		2. Background

		2.1 Pinhole camera model

		2.2 Image representation

		2.3 Accessing a video source in Matlab

		2.4 Gnu Image Manipulation Program

		2.5 Image Processing

		2.6 Servo Motors

		2.7 Pan and Tilt Assembly

		2.8 Servomotor API

		2.9 Proportional Controller

		3. Lab Equipment

		4. Lab 1: Exercises

		A. Pre-lab

		B. In-lab

		C. Advanced

		5. Lab 2: Exercises

		A. Pre-lab

		B. In-lab

		C. Advanced

		6. Further reading

		7. Credits

		Footnotes

OPS/images/pasted-image-1.png

OPS/images/pasted-image.png
MATLAB R2014a

C4E Camera Window

OPS/images/pasted-image-3.png
. 2k —w?
0t ===

OPS/images/pasted-image-2.png

OPS/images/pasted-image-5.png

OPS/images/pasted-image-4.png
Y3 jximagelil[j] cm,, _ LYiximagelillj]
X Y imagelil(j] ow XY imagelil(j]

CMeop =

OPS/images/pasted-image-6.png

OPS/images/unknown.jpg

OPS/images/pasted-image-7.png
ult) = K elt)+ K, [elo)dt + K., de(t) it

OPS/images/cover-image.png
= VIDEO TRACKING. PAGE10F27

Video tracking

[EECS 1011 Computational thinking through mechatronics

Version 0.9 @

OPS/images/Screen Shot 2014-08-27 at 8.52.06 AM.jpg
COMPUTATIONAL THINKING
THROUGH MECHATRONICS

Copyright © 2014 by:

m Jenkin + h Roumani

