1. Background
The term HCI, or ‘Human-Computer Interaction’, is typically used to describe the space within which interactions between humans and machines occur. These inter-actions take many forms, from the traditional Graphical User Interface (GUI) that is found in mouse-and-window based computer displays, to multiple finger gestures found on phones and tablets, to complex 3D gesture interactions found in Virtual Reality (VR) displays. In VR displays, there has been considerable interest lately in the use of gestures to interact with computer systems. Technologies such as Leap Motion and Kinect have provided software designers with a general purpose tool to capture finger/body/hand motions for general interactions. A wide variety of video game systems (e.g. Sony and Nintendo) now provide support for gesture and motion input as well. Even more sophisticated system exist: Vicon, for example, has developed a range of different technologies that allow users and their movements to be captured in real time to drive animation models.
Regardless of the technology being used, the basic goal is always the same: to provide a ‘natural’ mechanism that enables a human operator to communicate intent to a machine. Developing such a mechanism requires two things: a technology that monitors the human’s gestures, and a language of gestures that the human can use to communicate with the machine.
In this lab, we build such a mechanism in order to enable a disabled person to control a wheelchair. This is a real-life problem and there are a large number of ways to address it depending on the degree of control that the wheelchair user has. For example, some wheelchair users have good control of their hands, and hence, a standard joystick may be an appropriate user interface. Others have only control of their breathing, and hence, sip and puff would be the appropriate interface for them. For our lab, we assume that hand mobility is limited to moving two fingers so we will build a solution that uses flex resistors attached to a glove as the gesture monitoring hardware, and interprets the flexes of fingers as the gesture language that conveys navigational intent.

2. Building the Hardware
In order to detect the movements of a finger, the sensor attached to it must be able to change its electrical properties as it is bent and stretched. In this chapter we look at how materials react to stress in general and then focus on stresses that change the Ohmic resistance of an object. We conclude by presenting a schematic diagram of the sensor that will be used in this lab.

2.1 Stress and Strain
We are all familiar with the fact that if you apply a force on an object, the object moves. But what if the object is constrained such that it cannot move? In that case, the object is said to be under stress. For example, if you squeeze an object, it will experience compressive stress, whereas if you pull it apart, tensile stress will result. An object reacts to stress by what is known as strain. For example, if you pull on a string, it reacts by stretching. Here, strain manifests itself by a deformation.
The stress-strain relationship is a central field of study in material science and engineering. For small stresses, the resulting strain is also small and the process is reversible; i.e. if you remove the applied force, strain will go away and the object will return to its original state. This is the elastic region of the stress-strain curve and is exemplified by a weight hanging on an elastic spring. But if the stress increases beyond a certain point, we enter the plastic region in which the object does not return completely to its original state when the stress is removed. For example, if you bend a metal hanger, its deformation will be permanent. Finally, if the stress is increased further, the material will break.
In addition to deformation, strain can manifest itself in a number of other ways such as an increase in temperature, production of electricity, or a change in the Ohmic resistance. A stress-induced change in the Ohmic resistance of a material is known as the piezoresistive effect and it enables us to build strain sensors.

2.2 Our Flex Resistor
In this lab we will use a sensor made up of a piezoresistive material. The so-called flex resistor is packaged as a strip, and we will use two such strips: one attached to the index finger and one to the thumb finger of a glove.
[image: image.png]

When the strip is flat, its resistance is lowest (typically in the 15 KΩ range) but as you bend it, the resistance increases. Now in order to capture the change in resistance, we need to transform it to a change in voltage so we can feed it as analog input to our Interface Board. The circuit below does that:
[image: Flex.png]

The blue load on the right represents the flex sensor and we have added a resistor of 27 KΩ on the left. As the finger bends and the flex resistor increases, the voltage between the 5V source (red) and the output wire (white) decreases accordingly. Such a circuit is known as a voltage divider.

3. Building the Software
Given the input from two flex resistors that monitor the movements of two fingers, our software must interpret this input to determine what the user intends and then actuate the intent. This chapter explores all elements of the software side.

3.1 Gesture Language
Users will interact with the device by wearing a glove that has flex resistors attached to its index and thumb fingers. Gestures made by these two fingers communicate intent regarding the movement of a wheelchair or similar motorized device.
In this lab we adopt a simplified gesture language in which each finger has only two positions: straightened [S] or flexed [F]. The index finger is used to indicate motion (whether the wheelchair should move forward or not) while the thumb is used to indicate orientation (whether the wheelchair should rotate, say counterclockwise, or not). Based on this, our gesture language has four words in it:

	Command	Thumb	Index Finger	Word
	1	S	S	HALT
	2	S	F	GO
	3	F	S	SPIN
	4	F	F	WALTZ

For example, if the you want the wheelchair to move along some corridor, turn left, move along a second corridor, and then stop, you would gesture SF (GO) until you reach the end of the first corridor; then FS (SPIN) until the chair faces the second corridor; then SF (GO) until you indicate SS (HALT).

3.2 Calibration
The software will determine the state of the finger based on the value of the analog input it receives. Specifically, the event listener:
function aiChange(this, event)
will be notified whenever the state of a finger changes. The event object it receives tells us (through event.getId()) which finger caused the change and whether that finger is straight or bent (through event.getValue()). The former is an integer between 0 and 7 that indicates the port to which the sensor is connected. The latter is a number whose range depends on the received voltage, and hence, on the exact characteristic of the sensor and the degree to which the finger is bent.
Since not all sensors are exactly the same, and since different people wear the glove and flex their fingers differently, we cannot make assumptions about the values that may be received through event.getValue(). Instead, we ask the person to wear the glove; straighten and bend the fingers; and we record the received values. This step ensures that the software is “trained” to react to this particular sensor and this particular user. It is known as calibration.
In order to calibrate your glove you just need to run the Hello.m program. We don’t need to add any logic beyond what is already in it because all what we need is to determine the minimum and maximum values of the inputs per finger. Run the program; wear the glove; and watch the displayed values as you straighten and flex the two fingers, one by one. Note which input number corresponds to which finger and record the maximum / minimum values per finger and their average. Repeat enough times until you have confidence of the results. Here is an example of a calibration (you should replace these values with your own findings):

	
	Minimum	Maximum	Average
	Thumb	500	650	575
	Index	490	700	595

3.3 The Software Logic
Open the Hello.m program in your editor and save it as HCI after making the usual name changes. In addition, add three properties to it:
thumb = 650;
index = 700;
command = 1;
The first two are intended to hold the last values received from the two fingers. You should initialize them to the maximum values you obtained during calibration; i.e. to values that correspond to SS. The third property holds the last command that you gestured and it is initialize it to 1 which corresponds to HALT (see Sec. 3.1).
Next, you need to add logic to the analog input event listener that updates the first two properties above based on the received inputs. Something like this:
if (event.getId() == 3)
 this.thumb = event.getValue();
elseif (event.getId() == 4)
 this.index = event.getValue();
end
This assumes the thumb finger is connected to input #3 and the index to #4. If your connection is different then edit accordingly.
Now that our software is aware of the gestures, let us interpret them; i.e. determine the command. There are four cases here so we will use if/elseif/elseif/else to set the command number and to also display the command word. The conditions depend on the average values you obtained during calibration and recorded in your version of the table of Section 3.2. Here is how the if block should start:
if (this.thumb > 575 && this.index > 595)
 disp('HALT');
 this.command = 1;
elseif (this.thumb > 575 && this.index <= 595)
 disp('GO');
 this.command = 2;
elseif ...

4. Further Reading
•The Stress-Strain relationship.
•The theory behind a voltage divider.
•The Flex resistor data sheet.

5. Exercises
Each lab in this course must be properly documented using your e-Portfolio. Rich media content (e.g., videos) should be converted for publication using YouTube, Vimeo or some similar online video system. You should be aware that all material that you are publishing on these sites will be visible to a large number of people, including people outside of the class and the university. Inappropriate publication can result in penalties beyond those associated with your academic record.
Lab exercises are broken down into three sections, pre-lab, in-lab and advanced. pre-lab exercises must be completed before entering the lab. A Moodle quiz associated with the pre-lab must be completed before attending your lab session. The lab monitor will not allow you to participate in the lab without passing this quiz prior to the lab.

A. Pre-lab
1.Give examples of HCI in everyday life, in assistive technologies, and in the military.
2.What is the stress-strain curve, and in particular, what is the difference between elasticity and plasticity.
3.Describe briefly the piezoresistive effect and explain how it can be used in HCI applications.
4.What is calibration? Why is it needed in the glove device?
5.Why did we need an if statement in the event listener logic? Is it to determine the finger or the degree of flex?
6.What is the if statement syntax? Point out the way it should be written and how is the condition expressed.
7.How can software determine if a finger is straight, semi-flexed, or fully flexed? Is this determination absolute (i.e. works for all users)? How accurate is it?
8.What is the syntax of if/elseif and what is the role played by the terminal else clause?
9.Make sure you complete the Moodle quiz before going to this lab’s session.

B. In Lab
1.Inspect the tackle box that was given to you for this lab and check its inventory. It should contain the items listed below. Let the TA know if anything is missing because you will be asked to return these items when you finish your session):
1.1.A box containing 16 resistors, 16 LEDs, 8 buttons, and a variable resistor.
1.2.A box containing jumper wires of various lengths.
1.3.A bundle of machine pin wires.
1.4.A bundle of alligator clip wires.
1.5.An interface board.
1.6.A prototyping board.
1.7.A multimeter.
1.8.A glove with flex resistors attached to its thumb and index fingers with three wires attached to each.
2.Measure the resistance of the flex resistor. Look at the schematic diagram of Section 2.2 and observe that the resistance in question is between the red and the white wires. Recall that resistance measurement is done without a power supply; just connect the multimeter to the two wires using alligator cables.
3.Record in your e-Portfolio the resistance value (in KΩ) of each finger for the straighten and flexed positions.
4.Connect the interface board to your computer and verify the connection by measuring the voltage on the power/ground posts.
5.Connect the glove to the interface board. Notice that each finger has a sensor cable attached to it, and that cable plugs into one of the cables dangling from the interface board. Notice also that each such cable is made up of 3 wires, black, red, and white, so when you conned them, the colours should align.
6.Start Matlab.
7.Perform a complete calibration of the glove as explain in Section 3.2. Note that you don’t need to write any code for this step; just tun Hello; observe; and create a table similar to the of Section 3.2 and record it in your e-Portfolio.
8.Create the program HCI that was outlined in Section 3.3. This is the central task of this lab. Examine your code carefully noting any red highlights made by the editor as they indicate programming errors.
9.If you encounter an error when you run HCI then read the error to determine what its source could be. In most cases, it is a problem in your own code, and in that case, correct it, save, and re-run. Note that if the error relates to one of the properties then you will need to restart Matlab after the correction to clear the incorrect properties from memory.
10.If the error is not in your own code (e.g. related to how Matlab communicates with the interface board) then here are some actions that you can take to resolve the problem:
10.a.Type these three commands in Matlab’s console:
clear; clear java; c4e.USB.reset()
10.b.Do a soft-disconnect, re-connect of the Phidget by unchecking its name from the VBox Device menu and then re-checking it.
10.c.Do a hard-disconnect by removing/restoring the USB connection.
10.d.Restart Matlab.
10.e.Restart the Vbox.
10.f.Restart your computer.

C. Advanced
1.Rather than just printing the command on the screen, we like the computer to say it. To that end, start by downloading the following four sound clip files and store them in /home/user/mCode:
-HALT
-GO
-SPIN
-WALTZ
2.Open your HCI program and save it as HCIspeak.m after making the necessary name changes and after adding the following property to it:
clip = [c4e.media.Audio('/home/user/mCode/HALT.au'), c4e.media.Audio('/home/user/mCode/GO.au'), c4e.media.Audio('/home/user/mCode/SPIN.au'), c4e.media.Audio(‘/home/user/mCode/WALTZ.au’)];
3.The above property is an array of four elements each of which is an object that can play one of the four clips you downloaded. For example, this line of code will playback the GO clip:
clip(2).play();

4.The playback code should not be placed in the event listener because the event is fired too often. As the fingers move, the event could be triggered a hundred times each second and we need at least a second to play a clip. Hence, we will place the code in the timerCallback event where we can control how often things happen. The timerCallback is like an alarm and you set when it should ring by setting the timerCallbackDelay property.
5.Edit HCIspeak and change its timerCallbackDelay property to 2000 (2000 milli-second means two seconds).
6.Edit the timerCallback event function by commenting out the fprintf line (we don’t need it) and adding the two lines shown below after it. The first line plays the clip based on the last value of the command while the second line winds up the alarm so it will ring again after two seconds.

this.clip(this.command).play();
this.alarm.setTimerCallback();

7.The flex resistor exhibits some plasticity in its deformation. Do you detect a corresponding plasticity in the captured voltage? If so, what kind of error will be introduced because of this plasticity?
8.The gesture language we used was binary in nature: each finger can have one of two values, and that is why the language was limited to four words. Other applications may require three states per finger in order to accommodate, for example, the ability to express speed of movement. Can our glove support three states? Can we distinguish between a straighten, semi flexed, and fully flexed finger? Include your thoughts about this in the e-Portfolio and in your video, and include some comments about accuracy; i.e. is a 3-state glove more prone to errors than a 2-state one?

6. Credits
[image: Screen Shot 2014-08-27 at 8.52.06 AM.jpg]

OPS/toc.xhtml
		1. Background

		2. Building the Hardware

		2.1 Stress and Strain

		2.2 Our Flex Resistor

		3. Building the Software

		3.1 Gesture Language

		3.2 Calibration

		3.3 The Software Logic

		4. Further Reading

		5. Exercises

		A. Pre-lab

		B. In Lab

		C. Advanced

		6. Credits

OPS/images/cover-image.png
= nt Lor1s

Computational thinking through mechatronics
HCI = Human-Computer Interaction

Vision 0.2 Copyright © 2014 by
m Jenkin + h Roumani

OPS/images/Flex.png

OPS/images/image.png

OPS/images/Screen Shot 2014-08-27 at 8.52.06 AM.jpg
$| COMPUTATIONAL THINKING
THROUGH MECHATRONICS

Copyright © 2014 by:
m Jenkin + h Roumani Sl

