Table of Contents

1. Introduction
In an earlier lab in this course you developed a graphical user interface for a heart beat monitor. In that lab you discovered that the process of developing a user interface involved writing code that rendered portions of the screen in response to the user’s interaction with different interface elements (buttons, switches and the like). In that lab you developed the user interface programmatically. That is, you used code written in Java that organized the various user interface elements on the screen. You even wrote your own new user interface element and added it to the set of widgets that were being rendered and you tied actions, such as button presses, to changes in the way the display was rendered. This approach of developing a user interface is very powerful. You can make the user interface do almost anything you want. This provides great flexibility but it becomes difficult to ensure that the user interface has a consistent ‘look and feel’ from one application to another. It can also be very difficult to ensure that user interfaces render properly across a wide range of display types as the details required to ensure that things are ‘centred’ or ‘in the lower left hand corner of the display’ can be quite subtle and difficult to ensure that they are performed correctly. In order to assist with the development of user interfaces, many computer environments provide a graphical tools to layout your user interface. These tools help you lay out the user interface elements on the screen and then enable you to connect your code to the graphical elements.
This approach to user interface design has a number of desirable properties. First, it lets graphical designers and user interface specialists design the user interface. Second, it helps to ensure that the user interface is built around standard interaction devices that provide the user with a consistent look and feel to their interaction experience with the software. And finally, it can substantively decrease the time it can take to develop a user interface.
In this lab you will develop a graphical user interface for a very simple ‘quote of the day’ program. This program has a button that the user pushes, and when they do, a message is displayed on the screen. You will use a user interface toolkit to develop this interface graphically, and finally, you will deploy your application and run it. One thing that will make this lab different from previous ones is that the deployment environment that you will be working towards is an Android tablet. The lab provides both a simulated version of the tablet, as well as a real tablet to deploy your application to. If you have access to your own Android phone/tablet you may wish to use it instead.
As with all labs in EECS 1021, each lab is laid out as an ePub. It is expected that you will have read the lab electronic book prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. Exercises in the lab are to be documented in your ePortfolio lab book.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.

2.1 Programming for lightweight devices
It is expected that in 2015 more tablet-based computers will be sold than laptops, and more laptops will be sold than desktop computers. Lightweight devices present a number of interesting challenges in terms of programming. Often they have limited computing/memory resources. They also typically lack permanent keyboards; can be held in various orientations; and their application life cycle is different from that found with applications running under more traditional operating systems. That being said, there are considerable similarities. On the Android platform for example, the principle programming language for the development of applications is Java, and in many instances, Java code written elsewhere will run on the Android platform unchanged.
One issue that you will encounter in this lab in terms of programming for the Android platform is that you will edit and compile your application on a standard computer (within a virtual machine) and then either run your application in a simulator running on the virtual machine or deploy it on a real Android tablet. This notion of developing on one machine and then deploying on another is a common approach to developing for smaller memory devices. This process is also known as cross compiling.

2.2 Android Studio
In other labs in this course you worked with Eclipse. Eclipse is a powerful integrated software development environment and it can indeed be used for the development of software for the Android computing platform. That being said, the standard development platform for Android devices is known is “Android Studio”. Like Eclipse, Android Studio is free, so it can be downloaded and installed in your virtual machine or any other machine that you might wish to develop on.
As you have probably discovered with Eclipse, Android Studio has a wide range of possible options and customizations that are available to you. You will certainly not have to learn all of them in order to complete the lab. When you start up Android Studio with a new project it will present you with a rather complex screen similar to the one shown below.
[image: pasted-image.png]
Figure 1. Android Studio screen shot
This display will change significantly depending on what you are editing. As shown in the figure above, the user is editing the layout ‘activity_main.xml’. If you select to edit part of the java description of the application, a standard code editing window will be displayed. These are selected on the left hand side of the display.
On the Android device, screen layouts are stored in xml files. You can edit these files as text files but much more commonly they are edited graphically

3. Exercises
The goal of this lab is to develop an application that displays random ‘quote of the day’ messages on an Android device. Along the way you will develop a number of user interface displays using Android Studio. You will test your application in the simulator as well as deploying it on a real Android device.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. A backup lab is scheduled each week for students who miss/were unprepared for their normal lab time. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
1.Launch the Firefox browser of your VBox and visit the JR site. Click the Java icon next to Lab #8 to see the available files. Download MainActivity.java and activity_main.xml.
2.In Android, each screen the user sees has two files supporting it: An xml file that describes its content, and a Java file that describes its behaviour. These are the two files you have just downloaded.
3.Review the java file. What methods does it define?
4.Look at the xml file. What do you think it displays?
5.If you will be using your own laptop in the lab then update its VBox. You do that from the Application —> System Tools —> EECS Vbox Image Update menu. This update is rather large as it involves downloading and installing the Android Studio IDE. Do not close the update window until it says it is done.

B. In-lab
1.Obtain an experimental kit from the lab monitor. The kit should contain
•An android tablet and a USB cable.
2.Obtain a laptop from the lab monitor, along with video camera and tripod. The lab laptops have already been updated. If you will use your own laptop and you haven’t updated its VBox yet then do so now (instructions in the Pre-Lab exercises).
3.Start up Android Studio from the Applications —> Programming menu. It will automatically locate and open ‘MyFirstApplication’.
4.Using the interface element on the left hand side of the screen (see Figure 1), locate activity_main.xml under app —> src —> main —> res —> layout. The screen should look much like figure 1.
5.Start the Android tablet by pressing the button in its corner.
6.If this is the very first time this tablet is used, you will be prompt it to set it up. This involves accepting the English US language default and connecting to the York WiFi (Airyork Plus) using your credentials. Tap “No” for the Google A/C prompt and “Not Now” / Next to skip the remaining prompts until the setup is complete. You can tap home to go to the home screen.
7.Go to the tablet’s Settings menu (by swiping from the top or from its apps screen). The Settings screen has several categories with the last one being “About tablet” and one before it being “{} Developer options”. If you don’t see the latter then tap the former seven times. This will enable the developer category. Go back to the previous screen (“About tablet”) and you should see the new developer category in it. Tap it and check the box to allow USB debugging. A warning dialog will ask you to confirm that you want to allow this. Tap OK.
8.Connect the Android device to the laptop using the USB cable. Verify that the VBox sees it by looking at the Devices —> USB Devices menu. You should see a check mark next to “asus Nexus”. If not, you will need to add this device using Devices —> Shared Folder Settings… —> USB and then clicking the green plus sign on the right and selecting this device. After you click OK, disconnect and then reconnect the tablet and verify (through the Devices menu) that VBOx now captures it.
9.The tablet will display a dialog asking if you “Allow USB debugging”. Touch OK.
10.Click on the Green arrow (the run arrow) on the screen. There will be a delay while the code is compiled and bundled. You will then be presented with a dialog
[image: pasted-image-1.png]
Figure 2. Device selection
11.Click OK to run the application on the connected tablet.
12.If this is the first time you run the application on this tablet from this laptop, the app will run on the tablet and you should see “Hello world!” displayed. If not, Studio will first ask for your permission to uninstall the app from the tablet. Once you accept, the app will be deployed on the tablet.
13.Back in Android Studio, run the application again. This time, choose to run it on an emulator rather than a running device. Select the Nexus 7 API 17 (which emulates a Nexus 7 tablet with an ARM CPU). There will be a delay (up to a minute) while the simulator is started (but if you leave the simulator running all the time, this delay will only occur once). You will have to unlock the screen by clicking on the circle, but once done, you will see a complete Android device with your application running. You can close it, and run other applications, but you will see ‘My First Application’ running on the device.
14.You are now going to design your user interface for the application you are building. Return to Android Studio. Your application needs a button with the label “New Quote” on it. To create a button, choose a button from the palette of widgets and drag it onto the screen of the simulated Android device (it is currently a Nexus 4, but if you want a different screen, choose one from the drop down menu). Move the button to the bottom of the screen and centre it. The button will appear under the ‘Component Tree’ on the right hand side of the screen with a collection of properties in a window under the tree . Change the ‘text’ property to ‘New Quote’ and the ‘id’ property to ‘newQuoteButton’. Save your application and re-run it either on the simulator or the real Android hardware. Can you interact with the button? What does clicking it do?
15.Under the ‘Component Tree’ select the TextView. Change it so that it spans the entire width of the screen, and is aligned with the top of the screen, and wraps around the text within it. You can accomplish this by dragging the edges of the text view around or by setting its layout:width and layout:height to ‘wrap_content’ and ‘layout:alignParent’ to ‘top’. Set the ‘id’ property to ‘quoteText’. Save your application and run it. Do you see any change in the operation of the application?
16.You are now going to tie the user interface to java code within your application. Specifically, you are going to change the text that is drawn in your ‘quoteText’ TextView whenever someone pushes the ‘newQuoteButton’. One of the properties of a button is ‘onClick’. It has no value at the moment. Change this to ‘requestNewQuote’. Whenever this button is pressed, the method ‘requestNewQuote’ defined in the currently active Activity class will be invoked. You don’t have one yet, so we will define one. Using the interface element on the left hand side of the Android Studio application, select ‘MainActivity’ which can be found under ‘app/src/java’. This will replace the editing portion of the screen with a program editor. Add the following code snippet to the MainActivity class
public void requestNewQuote(View view)
{
	TextView quote = (TextView) findViewById(R.id.quoteText);
	quote.setText("new quote here");
}

Note: You will have to ensure that the following classes are imported
import android.view.View;
import android.widget.TextView;
Save your application and re-run it. What does it do now when you push the button? The Android user interface toolkit supports programmatic development of user interfaces but the more convenient mechanism is to use the graphical user interface to design the layout. Actions, such as clicking a button, are tied to specific callbacks in your code through the layout file (you set the onClick field to ‘requestNewQuote’ — so when you click the button the ‘requestNewQuote’ method is invoked). Your code can obtain references to classes that define user interface elements through the ‘findViewById()’ method.
17.All that remains to make your program choose different random quotes every time you push the button is some code to generate random quotes. There are a number of easy ways of doing this. One straightforward way would be to add the following code to the MainActivity class
private static final String[] quotes =
 {
	"Of all the things I've lost I miss my mind the most",
	"Not all those who wander are lost",
	"Damn it Jim, I'm a doctor not an engineer",
	"A computer once beat me at chess, but it was no match for me at kick boxing."
 };
private Random rand = new Random();
private String newQuote()
{
	return quotes[rand.nextInt(quotes.length)];
}

Note: Be sure to include an import statement for java.util.Random in order to access the Random class. Build and run your application.

C. Advanced
1.Add additional quotes to the set of quotes that your program provides.
2.If you rotate the Android device you will see that the text always resets to ‘hello world’. This happens because when an android device is rotated the application ‘restarts’, and by default the program restarts to the state of the activity’s layout file. We can address this by programmatically setting the quote text at the end of the onCreate method in the MainActivity class. Do this. At the end of the onCreate method add text that sets the quoteText TextView to a random quote. What happens to your quote when you rotate your Android device?
3.Add an image to be displayed on the screen. To do this, add an ImageView widget to the activity_main.xml layout. The ImageView widget will display just about any image you might have associated with your application. You already have some images associated with your application. Set the ‘src’ property of this image view to ic_launcher (it will be available from the pull down menu associated with the ‘src’ property). Put the ImageView in the lower right hand corner of your application.

4. Further Reading
There are many tutorials on Android programming on the web. The following links may be useful
https://developer.android.com/index.html

5. Credits
[image: Collage1021.png]

OPS/toc.xhtml
		1. Introduction

		2. Background

		2.1 Programming for lightweight devices

		2.2 Android Studio

		3. Exercises

		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
23 USER INTERFACES Loru

Object oriented programming from sensors to actuators

User Interfaces

Version 0.1. Copright © 2015 by:

m Jenkin + h Roumani @

OPS/images/pasted-image-1.png
Choose a running device

Device Serial Number State Compatible
[LGE Nexus 4 Android 5.0.1 (API 21) 00841b7349494fd3 Online Yes

Launch emulator

Android virtual device: | nexus7.

(] Use same device for future launches

[cancel | [ok

OPS/images/pasted-image.png
s/MyFirstApplication] - Android S

OHO] <« Q
2 MyFirstappl % activity_main.xml |
| & Android (© MainActviyjava x | B actviey_mainxmi x
a m
g '-‘-gﬂ ; Palerte %1 [Le ENexusa- - @appTheme Component Tree Tzie|E
& 2 H
A Dimniess & tavoms = B g E e s]
~ I [0 Frametayout v [RelativeLayout g
B T sramable (1] LnearLayout (Horizont: @ Tesview - @string/hello_world 4
2 v Ealayout [LinearLayout (vertical)
H [Z] TableLayout @
3 5 activity_main.xmi =
~ [ElTableRow 2
v > Elmenu g
> EImipmap [GridLayout 5
> Elvalues 5 ::;"’““V"“‘ -
» @ Gradle Scripts o o
Plain TextView g
78 Large Text 3
Medium Text 2
8] Small Text b
o Button
o1 small Button
Properties ?2 97
(® RadioButton
layoutwidth
@ switch layoutheight match_parent
— ToggleBution style
& imageButton accessiiliyLiveRegion
== ProgressBar (Large
== ProgressBar (Normal) background
== ProgressBar (Small) backgroundTint
g == ProgressBar (Horizonta backgroundTintMode
] <01 SeekBar clickable =]
= ‘¥ RatingBar contentDescription
N Spinner elevation
O Webview focusable =]
Y £ Text Fields o
£ Plain Text focusablelnTouchMode (]
3 Person Name > gravity i

A Bui

Password,
[T Paccwnrd (Numaric

Design | Text

id

[Terminal § &:Android 5 0: Messages.

& To00

Eventlog [5] Gradie Console 44 Memory Monitor

Gradle build finished in 9 sec (5 minutes ago)

nfa

nfa

B

OPS/images/Collage1021.png
OBJECT-ORIENTED PROGRAMMING
FROM SENSORS TO ACTUATORS

Copyright © 2015 by:

m Jenkin + h Roumani

