Table of Contents

1. Introduction
All labs in this course involved writing Java applications made up of several classes. The main class, aka the app, creates an object by instantiating some other class in the application, and that object, in turn, creates other objects, and these objects work together in order to realize the goals of the application. In this lab, we take a look at how objects within an application can be organized so as to simplify code and produce reliable and scaleable software. We will do so by examining an access control application that controls physical access to a building using RFID tags.

As with all labs in EECS 1021, each lab is laid out as an ePub. It is expected that you will have read the lab electronic book prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. Exercises in the lab are to be documented in your ePortfolio lab book.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.

2.1 Aggregation
The Worker class represents a worker in a company. It contains such information as the worker’s ID and name, and has methods such as toString() that allows to display information about the worker. The RFIDTag class represents a tag. It also has basic information about the card, such as its unique ID, but in addition, it knows who is the holder if this card; i.e. which worker has this card. Hence, these two classes are related. We say that RFIDTag aggregates Worker and depict this relation diagrammatically like this:
[image: Aggregates.png]

This UML (Unifined Modelling Language) diagram says that each RFIDTag object aggregates (the diamond symbol) one worker object. Such aggregation shows up in the API of RFIDTag through the getHolder method that returns the worker object that owns this tag. Note that the diagram specifies that each tag must be owned by one worker, but it does preclude one worker from having several tags.

Aggregation is not limited to one object containing a fixed number of other objects for it may involve a collection of an arbitrary number of elements. In our application, the DataCollections class has two collections: one containing an arbitrary number of workers and one containing an arbitrary number of tags:
[image: Aggregates-1.png]

Let us take a look at the API of the one of these two collections. The tag collection is obtained like this:

DataCollections dc = new DataCollections();
Map<String, RFIDTag> tags = dc.getTagsCollection();

The tags map contains all the tags used in the company and it allows to easily find a tag given its string ID. For example, if the ID of one of the tags is 4d004b05e4, then the following code fragment allows you to get information about the tag and its owner:

RFIDTAG tag = tags.get("4d004b05e4");
Worker worker = tag.getHolder();

Moreover, the map API allows us to traverse all tags contained in it using the following special loop:

for (Tag tag : tags.values())
{
 // use the tag object
}

2.2 Inheritance
The hypothetical company has three kinds of workers: regular ones who can come in anytime they want and enter using their tag and passwords, shift workers who also have tags and passwords but may enter only during their shifts (e.g. from 12 noon to 8 pm or “12-20”), and temp workers who can enter anytime using their tags but with an empty string as password. We clearly need three separate classes to represent these categories but these classes will have lots of redundancy (duplicate code) because, despite their differences, they have many features in common. For example, they all have ID and name attributes and methods such as getName. To avoid duplicating code, we implement those three as a hierarchy as depicted in this diagram:
[image: Inherits.png]

The Worker class contains all features needed for regular workers. The ShiftWorker class contains only the features that make shift workers different from regular workers. The rest of the features are said to be inherited from Worker superclass. The diagram shows that a TempWorker object is also a Worker by inheritance. This organization not only removes redundancy, it also makes using these classes a lot easier as demonstrated in the following code fragment:

RFIDTAG tag = tags.get("4d004b05e4");
Worker worker = tag.getHolder();
System.out.println(worker.getName());
boolean allow = worker.auth("secret");

Pay special attention to this seemingly simple but actually profound piece of code. The second line obtains a worker object from the tags collection. This worker could be a regular worker, a shift worker, or a temp worker, yet the third line obtains the worker’s name without worrying about this! This works because the getName method is inherited and hence is available in all three classes (even though it is present only in one). The fourth line attempts to authenticates the worker in question assuming the password is “secret”. Authentication involves not only checking the password but also the time of day for shift employees but this complexity is hidden from the code. Each of the three classes has its own auth method and the runtime system will automatically pick the correct method to call based on the actual class category of the worker.

2.3 Usage
Another possible relation between two classes is usage: when one class uses another by invoking a method in it or instantiating it. This is depicted in UML by a line with an arrow (rather than a triangle or diamond) ending:
[image: Uses.png]

This diagram shows that AccessControl (the class that monitors the hardware) uses DataCollections. This completes the picture: Tapping the RFID tag triggers an event in AccessControl and that event uses the tags collection of DataCollections in order to lookup the tag, find its owner, and prompt for password.

3. Exercises
The goal of this lab is to develop an application that controls access to a company’s building using RFID tags, passwords, and the employee category.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. A backup lab is scheduled each week for students who miss/were unprepared for their normal lab time. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
1.Download the zipped project EECS1020Lab7.zip from the JR web site. The process is the same as in previous labs:
a)Launch the Firefox browser of your VBox and visit the JR site. Click the Java icon next to Lab #7 to see the available files. Click the file named EECS1021Lab7.zip and have the browser open it using the archive manager. This will unzip the file and open a new window. Click the extract button at the top of that window and then click the workspace folder to indicate that the extract target location should be /home/user/workspace.
b)Launch Eclipse and choose Import… from the File menu. Select Existing Projects into Workspace in the General and click Next >. In the Import window, click the Browse… button and select EECS1021Lab7 that we have just downloaded and unzipped into the workspace. Click Finish.
2.Start by looking at the data files in the dataStore folder of the project. The workers.txt file contains one record per worker, and each record contains several comma-separated fields. For regular workers, the record contains three fields: the worker’s unique ID, name, and password. For temp workers, no password is present (because it is the empty string), and for shift workers, a fourth field specifying the from-to shift is present.
3.Examine next the softwareObjects package. It contains a class for every kind of object in the application. Note, in particular, the populate method of DataCollections.
4.Finally, look at the AccessControl class in the lab7 package and attempt to supply the missing statements.

B. In-lab
1.Obtain an experimental kit from the lab monitor. The kit should contain
•An RFID board and its USB connecting cable
•Three RFID tags.
•LED of various colours.
2.Obtain a laptop from the lab monitor, along with video camera and tripod. (You can certainly use your own laptop for this lab.)
3.Connect the RFID board to your laptop and insert a red LED and a green one (or any other two colours) across the red/black post pairs on the board
4.Start VBox and launch Eclipse.
5.Set debug to true in the ControlAccessApp.
6.Run the app and tap one of the RFID tags (i.e. bring it close to the RFID board and then move it away from it). This should trigger a tag gain event followed by a tag loss event. Record the tag ID.
7.Repeat for the other two tags and fill this table:
	TAG	TAG ID
	Circle	

	Tear Drop	

	Nail-shape	

8.Edit the tags.txt file in the dataStore folder. It starts with these three records:
4d004b05e4,73320
520056332f,32015
4300cfe7db,85902
Each record contains a comma separated tag ID and a worker ID. Replace the tag IDs in these three records with the IDs of your three tags as determined above. Make sure you don’t change the employee IDs or modify the record format.
9.Take a look at the workers.txt file in the dataStore folder. It starts with these three records:
73320,Adam York,adamy,2-23
32015,Jim Howard,jimh
85902,Eve Powers
The first field in each record is the worker ID. You will notice that these three workers will be the holders of your there tags. Note that Adam is a shift worker with password “adamy” and shift from 2 to 23. For debugging purposes, we will simulate this as follows: Adam may enter only between the 2nd and the 23rd second past the minute. Jim is a regular worker and Eve is a temp.
10.Revert debug back to false in the ControlAccessApp.
11.Remove the block comment (the line with many asterisks) before and after the tagLost method in AccessControl. The uncommented method contains lines that you need to complete. Read the comment next to each to help you do that.
12.Test your work by running the app. If everything was done correctly, the application should behave as follows:
a)The built-in green LED on the board should be on.
b)You tap a tag and then move it away (note that we are capturing the tagLoss event, not the tagGain).
c)The application prompts you to enter a password.
d)For Adam and Jim, you enter the password and click OK (or ENTER). For Eve, you just click OK.
e)For Jim and Eve, and if the password were correct, the green LED should turn on signifying opening the door and the “Hello” message is displayed. If the password is wrong, the red LED will light and an “Unauthorized” message should be displayed.
f)For Adam, the result will also depend on when the password was entered compared to the shift interval.
g)In all cases, you are prompted to continue or exit the app with continuing being the default if you press ENTER.
13.Test your app by using a tag from some other student.

C. Advanced
1.Add the missing code to the log method so that when the user selects to exit the app, a complete listing of all tags in the system is displayed.
2.Modify the log so that it only shows tags that were used; i.e. suppress tags that were never tapped.
3.What changes need to be done if the password of the temp worker is to become “temp” instead of the empty string?

4. Further Reading
•Using dialogs instead of the console for I/O.
•Using the Map collection.
•Inheritance Hierarchies in Java.

5. Credits
[image: Collage1021.png]

OPS/toc.xhtml
		1. Introduction

		2. Background

		2.1 Aggregation

		2.2 Inheritance

		2.3 Usage

		3. Exercises

		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
I SOFTWARE OBJECTS. rors

Object oriented programming from sensors to actuators

Software Objects

DataCollections

TempWorker

ShiftWorker

Version 0.1. Copyright © 2015 by:
m Jenkin + h Roumani

OPS/images/Aggregates-1.png
%

RFIDTag

OPS/images/Aggregates.png
W RFIDTag

OPS/images/Uses.png
AccessControl
A

OPS/images/Inherits.png
ShiftWorker TempWorker

OPS/images/Collage1021.png
OBJECT-ORIENTED PROGRAMMING
FROM SENSORS TO ACTUATORS

Copyright © 2015 by:

m Jenkin + h Roumani

