Table of Contents
1. Introduction
2. Background
2.1 The Pulse Sensor
2.2 Graphics and Java
2.3 Graphics and Sensors
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
This lab builds upon work that you did on Medical Devices in EECS 1011. In that lab you worked with a particular medical device, a heartbeat monitor. The heartbeat monitor that you used in that lab relied on observing physical changes associated with the beating of the heart; specifically, the motion of blood through arteries in your finger. The resulting signal is known as a photoplethysmogram or PPG. As blood moves through your arteries, the actual amount of blood in an artery changes. It is like water being pumped through a hose. With each pump there is a sudden increase in water volume that decreases as the pump is cycled to pump again. We can monitor this change in fluid volume in some convenient location — such as in your fingertip — in order to monitor your heart. Perhaps the simplest way of doing this is by measuring the amount of blood currently in an artery by shining a light on it and measuring how much of it is reflected back. The amount of light reflected back depends on the amount of blood in the artery. By observing how this changes with time we can monitor the actions of the pump (your heart) that is pumping blood through your finger.
In the lab in EECS 1011 you used Matlab to capture and then process a heartbeat signal (likely yours) in an offline manner. One of the reasons for processing the data in an offline manner is that Matlab is quite slow in terms of its ability to process signals in real time. Java, on the other hand, runs somewhat more quickly and thus can process signals such as the PPG in close to real time. Certainly quickly enough to do simple signal processing such as plotting the signal and computing the heart beat rate in an online fashion. Doing this is the goal of this lab. This lab will also introduce you to the idea of understanding a complex API. In particular the API associated with drawing complex scenes in a windows-based application.
At the end of the lab you will build an application similar (and perhaps identical) to that shown in the video given below. Building an application like this in a short period of time requires being able to exploit software written by others. Doing this involves understanding what software written by others does, and how to exploit such software effectively.

￼heartrate.m4v

As with all labs in EECS 1021, each lab is laid out as an ePub. It is expected that you will have read the lab electronic book prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. Exercises in the lab are to be documented in your ePortfolio lab book.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.
2.1 The Pulse Sensor
This lab uses hardware developed by pulsesensor.com. Formally, the kind of pulse sensor you are going to use is known as a photoplethysmogram. Physically, the pulse sensor consists of a small round sensor head with three lead wires. The sensor is designed to clip onto your finger or earlobe in order to measure your heartbeat. If you examine the sensor, you will see that one side contains a small hole with an LED behind it. Adjacent to that is a light sensor that will detect the light reflected back to it from the LED. This is the front surface of the sensor — the side that will be in contact with your finger. On the back side of the sensor are the electronics.
Like many other analog sensors, three wires are connected to our sensor: power (red), ground (black), and the output signal (purple). This sensor requires between +3 and +5V on the power line. As extraneous light can impact the performance of the device, the sensor has been equipped with a small cuff that holds the sensor in close contact with your finger and at the same time reduces the amount of ambient light that might fall on the sensor.
In order to use a computer to monitor the heart beat, it is necessary to acquire the heart beat signal. The pulse sensor is an analog device. Its output will thus vary continuously with the amount of light being reflected from your finger. When you plug this monitor into any of the 8 analog inputs of our Interface Board, the board will do an analog-to-digital conversion in order to translate this signal to one that the computer can understand. This is accomplished by sampling the analog signal (taking snapshots of it) at regular intervals. The higher the sampling rate the more accurate the conversion. It is recommended to sample at 500 times a second (aka 500 Hz) to correctly capture heart beats in the 60-100 range.

2.2 Graphics and Java
Java supports a range of different display models. For windowing display systems such as that found on Linux, Windows and Mac OS computers, two standard display models are the AWT (abstract window toolkit) and Swing. The AWT was designed to map directly on the host operating system’s display primitives while the Swing toolkit was designed to be independent, or as independent as possible, for the underlying display system. In this lab we will use Swing.
Swing is a graphical user interface. It displays information in windows, that display information and which are interacted with using a mouse and keyboard. Each window is rectangular and interactions are defined in terms of high level operations: closing a window, painting a window, and so on. Swing is an object-oriented windowing system. The set of primitives that define Swing are organized in a complex collection of object hierarchies. Fully comprehending Swing is a complex task, and certainly not something that can be accomplished effectively in a first year course. Fundamentally, within Swing for each rectangular region of the display there is a corresponding object instance that is responsible for drawing it. Some objects contain other objects, but wether or not an object is a container of other objects or is a “leaf” that contains no other objects, the process of rendering a piece of screen real estate is performed by some object’s paintComponent method:

public void paintComponent(Graphics g)
{
	…
}

The argument “g” is an instance of a Graphics object that represents all of the information needed to actually draw graphics in a rectangular region. This region is a rectangular array of pixel elements (pixels) of some width and height. Each pixel has an address (row, column) where location (0,0) is the upper left hand corner of the region. The paintComponent method’s job is to render using g whatever is required. There are a large number of methods available for a graphics object (see here). Useful methods defined on a Graphics object include:
	setColor(Color c) - sets the colour for later operations

	fillRect(int x, int y, int width, int height) - fill a rectangular region of the graphics object. The upper left hand corner is at (x,y) and the region is of width ‘width’ and height ‘height’.

	drawLine(int x1, int y1, int x2, int y2) - draw a line from (x1,y1) to (x2, y2).

The Color class defines the colour used for various operations. You can create a colour with a particular amount of red, green and blue using the Color constructor
	Color myColor = new Color(r, g, b)

where r, g and b are float values in the range 0..1 that indicate the amount of red, green and blue in myColor. Color also defines a large number of constants that represent ‘standard’ colours. See the definition of java.awt.Color for the complete list.

2.3 Graphics and Sensors
As we have seen in earlier labs, our Java application consists of two parts: the app that gets the process going and a class that monitors the hardware and reacts to events. In this lab, these two parts are represented by the classes HeartMonitorApp and HeartMonitor. But unlike earlier labs, this lab produces its output graphically rather than on the console, and hence, a third component is needed. We will call this component the view and we will represent it by three classes:
	ViewMain
This is the main view class and it is responsible for creating a window on the screen with the usual minimize, maximize, and close capabilities, for displaying a label that shows an estimate of the heart rate, and for hosting the other two classes.

	ViewBeatStatus
This class is responsible for displaying an image (within the main window) that shows a heart and for having methods that enable us to change this image to an alternate one (so as to simulate a pulsating heart).

	ViewStripChart
This class is responsible for displaying a chart (within the main window) showing the pulse signal strength versus time.

Hence, our application will consist of five classes and they will work together to achieve the desired functionality. Note that we will only focus on drawing the chart. The other features (creating a window; estimating the heart rate, and the pulsating her image) are already implemented, and while you are welcome to see how they were implemented, the exercises will only ask you about the strip chart. The sequence of events for the strip chart is as follows:
	You launch the app. It starts the ViewMain class as well as the HeartMonitor class. This means we will end up with a window on the screen and with the pulse monitor being captured.

	The pulse monitor detects a change and sends a signal. This signal manifests itself as an event that gets passed to the analogInputChanged method of the HeartMonitor class.

	The analogInputChanged method invokes the setValue method in ViewStripChart and passes the received signal to it. The received value is scaled so that it can fit within the rectangular WIDTH x HEIGHT graphical area set aside for the chart, and it is also inverted so that higher values appear higher in the chart (in graphics, the origin is at the upper left corner of the window and the y-axis points downward). The resulting value is stored in the sensorValue attribute.

	The ViewStripChart class has a timer that ticks every 10 ms (the UPDATE_FREQUENCY constant). Whenever this timer ticks, the paintComponent method is called.

	The paintComponent method advances the x-value, stores the captured sensorValue in an array, and then plots the chart.

The diagram below captures this sequence and depicts the architecture of the application.

[image: Untitled.png]

3. Exercises
The goal of this lab is to complete the template HeartMonitorApp found on the course web site. As provided to you, the HartMonitorApp compiles and runs. It does not, however, draw the strip chart as shown in the video above. Rather it just draws a large X on the strip chart as shown below
￼[image: pasted-image.png]
During the lab you will enhance the application so that it draws the heart beat signal as shown in the video.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. A backup lab is scheduled each week for students who miss/were unprepared for their normal lab time. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the zipped project EECS1020Lab6.zip from the JR web site. The process is the same as in previous labs:

a)Launch the Firefox browser of your VBox and visit the JR site. Click the Java icon next to Lab #6 to see the available files. Click the file named EECS1021Lab6.zip and have the browser open it using the archive manager. This will unzip the file and open a new window. Click the extract button at the top of that window and then click the workspace folder to indicate that the extract target location should be /home/user/workspace.
b)Launch Eclipse and choose Import… from the File menu. Select Existing Projects into Workspace in the General and click Next >. In the Import window, click the Browse… button and select EECS1021Lab6 that we have just downloaded and unzipped into the workspace. Click Finish.
	Review the code. If you have a copy of the virtual machine running on your home computer, try running it.

	Walk through the operation of the code. Where is the main method defined? What classes are defined in this application. In general, what does each class do?

	The only class that you will modify in this lab is the ViewStripChart class. And in this class the only method that you will need to modify is the paintComponent method. This is printed below. What does it do now? If you were to have to modify this code so that rather than drawing in white, it was to draw in red and green, how would you modify the code?

	public void paintComponent(Graphics g)
	{
		this.xValue = (this.xValue + 1) % WIDTH;
		this.yValues[this.xValue] = sensorValue;

		g.setColor(Color.BLACK);
		g.fillRect(0, 0, WIDTH, HEIGHT);
		g.setColor(Color.WHITE);
		g.drawLine(0, 0, WIDTH-1, HEIGHT-1);
		g.drawLine(0, HEIGHT-1, WIDTH-1, 0);
	}

	Note how the method starts by advancing the x value. Each x value corresponds to a pixel, and since there are WIDTH pixels in the chart area, we must reset the x to 0 if it reaches WIDTH.

	Note also that the method records the captured sensor value in yValues array. Hence, all array elements up to the current xValue are available in the array. Elements beyond the current xValue contain older values captured in the previous sweep of the chart area. Watch the video given at the beginning of this ePub document to better understand this point.

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain

	An interface board and USB cable

	A heart beat sensor with connecting cable

	Interface cables connected to analog inputs 1 and 2 on the Phidget interface board.

	Obtain a laptop from the lab monitor, along with video camera and tripod. (You can certainly use your own laptop for this lab.)

	Connect the heartbeat monitor up to the interface board to analog input port 1

	Within the virtual machine, start up Eclipse and open the Lab6 project. Attach the heart beat sensor to your finger. The console should show the values from the sensor, and assuming that you have the sensor adjusted properly to your finger your heart rate should be displayed along with the heart graphic pulsing in time with your heart beat.

	Modify the paintComponent method in ViewStripChart so that it draws two rectangles as follows:

5.1. Rectangle one should start at (0,0) and be of height HEIGHT and width this.xValue. This rectangle should be drawn in Color.BLACK.
5.2. Rectangle two should start at (this.xValue,0) and be of height HEIGHT and width WIDTH-this.xValue. This rectangle should be drawn in Color.DARK_GRAY.
Attach the heart beat sensor to your finger and run the program. A black region should move across the StripChart (hiding a dark grey region). Once the black region makes it all the way across the region, the process should reset and start again from the left. (This duplicates the change in colour of the background region in the video at the beginning of this ePub.) Record a video of the operation of your application at this point for your ePortfolio.
	You will now add code to the end of the paintComponent method so that it draws a line between the points in the yValues array from the beginning of the array to this.xValue in Color.WHITE. To do this, add the following code at the end of the method:

6.1. Add a for loop with loop variable i having values 0 through this.xValue-2.
6.2. Within this loop create int variable x1 that is equal to i, int variable x2 that is equal to i+1, int variable y1 that is equal to this.yValues[x1], and int variable y2 that is equal to this.yValues[x2]. What do these four variables represent?
6.3. Within the loop draw the line (using the method g.drawLine between (x1,y1) and (x2,y2).
6.4. Now re-run your application with the sensor attached to your finger. You should now have the heart beat signal appearing in the ‘live’ half of the strip chart.
	You will now add more code to the end of paintComponent so that it draws a line showing the ‘old’ portion of the strip chart. This basically involves repeating the instructions of the step above for points in the values array between this.xValue and WIDTH using Color.GRAY.

	Now re-run your application with the sensor attached to your finger. You should now have the heart beat signal appearing throughout the entire strip chart

	Record a video of your heart beat sensor in action and document the problems your encountered in completing this application in your electronic journal.

C. Advanced
	If you look at heart beat monitor (ECG) screens on the web — Google is your friend here — you will see that many of them use black backgrounds and green screen colours. Here you will modify your code so that the strip chart portion of the display uses shaded of green, rather than different intensities of grey. If you look at the drawing code in paintComponent you will see that you used four colours to draw the region:

1.1.Color.BLACK for the background of the ‘live’ portion of the display.
1.2. Color.DARK_GRAY for the background of the ‘old’ portion of the display.
1.3. Color.WHITE for the signal in the ‘live’ portion of the display.
1.4. Color.GRAY for the signal in the ‘old’ portion of the display.
You can create a (new) colour using new Color(float, float, float) rather than using one of the pre-defined colours. Replace Color.WHITE with a bright green, Color.DARK_GRAY with a dim green, and Color.GRAY with a mid-bright green. You can do this replacement ‘in place’ in the paintComponent method, although this will require Java to create new colours every time the screen is updated. A more efficient method is to create new fields in the class of type Color that represent these four colours and then define them once in the class constructor. You can then use these fields in the paintComponent method. Play with different colours. What colours would be most appropriate for a medical device? Green? Amber? Grey? How would you make an informed decision if you were designing such a device? Make a video of your revised application and include it in your e-Portfolio.
	When you execute this program you do so within the Eclipse environment. It is also possible to deploy Java program so that they run as stand-alone programs. Such programs are represented as stand alone executable jar files. To create a standalone executable jar file from a project within Eclipse, select ‘Export’ from the ‘File’ menu, and select the export type as a Runnable JAR file. Eclipse will then prompt you for the Launch Configuration (which project to use) and a destination file for your project. In terms of libraries, extract the required libraries into the generated JAR file. Eclipse will then package the application as a runnable jar file in the file you specified. Using the Terminal window, you can run this file using the shell command ‘java -jar filename.jar’ where filename.jar is the name of the file you asked java to export to. For many operating systems (including windows, OS X, Linux) there exist standard tools to package executable jar files so that they are ‘double clickable’.

	Although the strip chart region of the application is useful in monitoring a patient, the displayed heart beat and rate are also important. The displayed heart beat is generated by ViewBeatStatus class. Review the code. Similar to the ViewStripChart class, ViewBeatStatus redraws a rectangular region of the screen. For the BeatStatus class its paintComponent method contains the code:

if (state)
{
 g.drawImage(onImage, 0, 0, this.getWidth(), this.getHeight(), null);
}
else
{
 g.drawImage(offImage, 0, 0, this.getWidth(), this.getHeight(), null);
	}

In essence this method draws one of two images on the rectangular portion of the screen that corresponds to the beat status. If you look higher up in the class you will see that onImage and offImage are loaded from the files given by
	private static final String ONHEART = "resources/onheart.jpg";
	private static final String OFFHEART = “resources/offheart.jpg";

‘Source’ versions of these files can be found in the resources sub-directory of the src folder of the Lab3 application. Use a paint program to edit these files to customize the heartbeat signal display in the application. Note: Once you have edited these files you will have to instruct Eclipse to re-build the application (choose clean from the project menu). Eclipse will then copy the source versions of these files to the bin directory, which is where Java will look for them when the application runs. Take a video of your revised application running. What symbols did you use for the beat signal? Why?

4. Further Reading
Photoplethysmogram
	Wikipedia page

	Youtube video

Phidget documentation
	Javadoc documentation on the Phidget

	

5. Credits
￼[image: Collage1021.png]

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 The Pulse Sensor

		2.2 Graphics and Java

		2.3 Graphics and Sensors

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
= HEART MONTTOR Lo

Object oriented programming from sensors to actuators

Heart Monitor

Version 0.3 Copright © 2014, 2015 by:

m Jenkin + h Roumani @

OPS/images/Untitled.png
The App

Hardware Interface

The View

analoglnputChanged(Event) pulSe
h \ v

}

paintComponent(Graphics)

{
}

()]
[V
5

—
%

OPS/images/posterImage.png
Heart Monitor V1.0

Rate 63

Quit

OPS/images/Collage1021.png
OBJECT-ORIENTED PROGRAMMING
FROM SENSORS TO ACTUATORS

Copyright © 2015 by:

m Jenkin + h Roumani

OPS/images/pasted-image.png
Heart Monitor VL.0

Rate 000

Quit

OPS/media/heartrate.m4v

