Table of Contents
1. Introduction
2. Background
2.1 Mobile (Autonomous) Robots
2.2 Robot Kit
2.3 Continuous Rotation Servos
2.4 Phidget Servo Controller
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
“The Encyclopedia Galactica defines a robot as a mechanical apparatus designed to do the work of a man. The marketing division of the Sirius Cybernetics Corporation defines a robot as “Your Plastic Pal Who’s Fun to Be With”
				- Douglas Adams
This lab deals with the control of an autonomous vehicle — a Robot. The term Robot was introduced by the writer Karel Capek in his play Rossum’s Universal Robots in 1920. In this play the term robot was used to describe artificial factory workers. Today the term robot is used to refer to a mechanical device capable of performing complex tasks automatically or through supervised human control.
The development of software systems to control autonomous robots is extremely complex. Such software was deal with sensor input, modelling the external world and capabilities of the vehicle, and then combine sensor input with intended purpose to develop instructors to motors and other controllers in real time. In this lab you will explore one aspect of this task, actually getting a robot to move in a planned fashion. This is the problem of locomotion — getting from place to place.
Imagine designing the system that enables a device to move around its environment. The set of possible strategies seems almost endless. The device might fly, or swim, or crawl or hop. It might use wheels or treads or flippers. And indeed these strategies — and many others — have been explored in the design of autonomous systems. Each approach has its advantages and disadvantages. Wheeled devices require a relatively flat and compact ground surface. Flying and swimming robots require an appropriate medium within which to operate. And so on. Although there are many options here a common strategy is to build an a device based on having a collection of simple rolling wheels similar to that found on a car. There are many reasons for this choice: Much of the environment within which one might wish to deploy a robot will possess a flat surface; Wheeled robots are relatively easy to control; And perhaps most importantly, if power is removed from the device the device remains stationary. This is not the case for other locomotion choices. A flying robot may crash or a swimming robot might sink if power is removed. Given these and other reasons, in this lab you will deal with what is known as a differential drive vehicle. Similar in basic design to the robot found on the cover of this ePub, the robot you will control in this lab has two wheels arranged on a common axis. You will write software to cause this robot to make straight line and turing motion, and combine these motions into longer more complex motion sequences. Although the robot may seem toy like, the basic motion planning strategies that you develop in this lab are directly applicable to larger and much more complex autonomous systems.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.
2.1 Mobile (Autonomous) Robots
This lab deals with the problem of providing motion control for an autonomous or mobile robot. The particular kind of robot that you will deal with is known as a differential drive robot. It uses two wheels mounted along a common axis to drive the vehicle. You control the vehicle by turning each of the two wheels in a controlled manner. Depending on the velocities at which you turn the two wheels the robot will move in different directions. So how does this vehicle move under different wheel velocities?
Let us start with the motion of an individual wheel as illustrated in Figure 1. Wheels have a preferred rolling direction. That is, as the wheel revolves around its axis, a wheel in contact with the ground will prefer to move in the y direction and not move in the x direction. You can thus make this individual wheel move along very complex paths in space. It can move in a straight line, it can follow curved trajectories, and it can even spin like a top. But it will not move along the x axis and remain in contact with the ground. This property of a simple rolling wheel is the fundamental reason why parking a car requires complex maneuvering. If simple wheels did not have this property then you could make a car move in any direction you wanted. But they do not, and given how the wheels are set up in a car it is necessary to train new drivers how to execute complex tasks such as parallel parking.

￼[image: droppedImage.png]
Figure 1. A rolling wheel.
Given this property of a single rolling wheel, what happens when a wheeled device has more than one wheel in contact with the ground? Geometrically, we can describe the fact that an individual wheel has a preferred rolling direction as the property that each individual wheel will follow a curved trajectory. That is, at each instant in time each wheel will follow a circular path around some origin. This origin (the instantaneous centre of curvature) lies along the axis of rotation at some distance from the wheel. The instantaneous centre of curvature or ICC may change from moment to moment. But for a given instant this point exists. So if all of the wheels on the vehicle are in rolling contact with the ground they must share this ICC, as illustrated in Figure 2.
￼[image: droppedImage-1.png]
Figure 2. The instantaneous centre of curvature.
For any wheeled mobile robot with ideal wheels, it is possible to work out the ICC. Try it for a tricycle, wagon or car. The ICC is that point where the axis of all wheels intersect. It may be a single point, as is the case for the examples above or it may be larger, as is the case for differential drive vehicles as shown in Figure 3.
￼[image: droppedImage-2.png]￼[image: unknown.jpg]

Figure 3. ICC for a differential drive vehicle. Left shows the geometry, right shows the vehicle you will use in this lab.
So suppose you have a differential drive vehicle with two wheels a distance l apart. Let us call the wheels left (subscript l) and right (subscript r). Let us start with the left wheel. It rolls on the ground and follows a curved path which we can describe as a circular path about some point ICC that lies on the rotational axis of the left wheel. The same argument works for the right. Now as the two wheels are part of the same physical structure (the robot), they must remain in a fixed configuration with respect to each other. That is, the entire vehicle must revolve around the ICC. The distance of the ICC from the origin, the midpoint between the two wheels, is determined by the left and right wheel velocities vl and vr.
￼[image: droppedImage-3.png]
Figure 4. The ICC and robot motion.
If we take a small moment of time dt, and rotate the robot around a given point in space given by ICC, we have the situation shown in Figure 4. We can solve for R in this image by considering how vl and vr influence the rotation of the robot about the ICC. As the entire robot rotates as a rigid object the left and right wheel velocities are related to the rotation of the entire robot about the ICC by
￼[image: droppedImage-4.png]
Which can be re-arranged to solve for R and w
￼[image: droppedImage-5.png]
Now this relationship works in general. At every instant in time you can control the velocity of the left and right wheels, this generates an instantaneous centre of rotation a distance R from the robot and the robot revolves around this at a given rotational speed 𝜔. But we can identify two special cases that are of particular interest.
Straight-line motion. Suppose that vl and vr are equal. Then R goes to infinity and 𝜔 goes to zero (the robot moves in a straight line). The robot moves at velocity vl = vr in a straight line.
Rotation about the centre of the robot. Now suppose that vl = -vr. Now R goes to zero and the robot rotates with rotational velocity 2 vr/ l. That is, the robot rotates in place. Note that depending on the signs of the wheel velocities the robot rotates either clockwise or counter-clockwise.
2.2 Robot Kit
The differential drive robot kit provided to you in this lab consists of a number of different pieces that must be connected together in order to drive the robot. Specifically, you should find in your kit
	An autonomous differential drive robot equipped with two wheels each of which is drive by an RC servo motor.

	A serial cable that connects to the robot base itself and a Phidget servo controller.

	A Phidget servo controller along with a USB cable and power supply.

Note that as soon as you connect all of the various pieces together it is possible (likely!) that the robot will begin to move. Prior to connecting the pieces together you should place some object under the robot so that its wheels are not in contact with the ground. In that way you will be able to play with the device without it moving anywhere. Furthermore, when actually moving the robot you will need to be acutely aware of the cable or tether connecting the robot to the servo controller. If the robot starts to do something unexpected/unusual/dangerous, you should be ready to pick this robot up so that it does not damage itself or something else. For larger robots this is not possible and larger devices are typically provided with some sort of dead man switch that allows the operator to stop the motion of the device should it fail.
2.3 Continuous Rotation Servos
The differential drive robot used in this laboratory is based on continuous rotation DC servomotors. In an earlier lab (in EECS1011 and in the Flag lab in this course) you may have encountered standard RC (radio controlled) servo motors. These devices are deployed widely in the RC hobby environment. Electrically, each motor is connected via three wires to a motor controller board which provides both power and data to the device. The motor controller also exposes an API to external software to control the device. Internally, each motor assembly contains a DC motor, an orientation sensor, and a small gearbox that reduces the speed of the motor in exchange for enhanced motor torque. DC servo motors can generally be back-driven. This means that you can turn the output shaft by hand, causing the gears to back drive the motor. (Note, this is not always true for a given motor, so avoid trying this with an arbitrary motor and gearbox.) Standard RC servo motors have a limited range of travel. You may remember this from earlier labs. Continuous rotation servos are just that, they can revolve continuously. However, unlike standard RC servo motors in which you can control the position to which the motor should go, the continuous rotation servos allow you to only control the speed and direction in which they turn.
2.4 Phidget Servo Controller
The Phdiget servo controller board used in this lab is identical to the servo controller that you encountered previous labs. It is a usb device manufactured by Phidgets and supports up to eight RC servo motors. As each individual motor can consume more power than is provided through the USB connection, the controller requires an additional power source provided by a AC-DC brick that converts standard 110 volt AC power to DC. The motor controller will appear to operate, but will not provide sufficient power to the motors unless the brick is plugged into the wall and connected to the motor controller board. The Phidget servo controller API is provided through the c4e library. The HardwareInterface class defines a number of useful methods that interact with the servo controller. Note that the servo controller was “designed” to operate with standard servo motors, so some of the names of the methods match the actions of regular servos, not continuous rotation servos. Two very useful methods are given below.
	void setServoPosition(int index, double position) - this sets the velocity (not the position) of the continuous rotation servo connected to port “index”. These positions correspond to positive and negative rotational speeds. A speed of zero, however, may, or may not, correspond to a stationary output shaft of the device.

	void setServoEngageState(int index, boolean state) - this engages or disengages the servo connected to port ‘index’. Note that for a servo to rotate, it must be engaged.

3. Exercises
The goal of this lab is to write a software library that enables a differential drive robot to follow a simple motion patterns and then to combine these patterns to make the robot move follow more complex paths.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. A backup lab is scheduled each week for students who miss/were unprepared for their normal lab time. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the zipped project EECS1020Lab5.zip from the JR web site. The process is the same as in previous labs:

a)Launch the Firefox browser of your VBox and visit the JR site. Click the Java icon next to Lab #5 to see the available files. Click the file named EECS1021Lab5.zip and have the browser open it using the archive manager. This will unzip the file and open a new window. Click the extract button at the top of that window and then click the workspace folder to indicate that the extract target location should be /home/user/workspace.
b)Launch Eclipse and choose Import… from the File menu. Select Existing Projects into Workspace in the General and click Next >. In the Import window, click the Browse… button and select EECS1021Lab5 that we have just downloaded and unzipped into the workspace. Click Finish.
	The code defines a number applications. Two calibration applications (CalibrationApp, CalibrationMotionApp) and a SquareApp that you will work on during the lab. Read through the applications.

a)CalibrationApp is an application that calibrates and determines the zero point of the two continuous rotation servos. How does it do this? What inputs does it expect? How do you inform the software that the zero point has been reached?
b)CalibrationMotionApp is an application that helps you calibrate the motion of the robot. How does it do this? What inputs does it expect? How do you inform the software that you have identified the appropriate velocities for your robot? Review the CalibrationMotionApp and SquareApp. What do they do?
c)SquareApp is for code that you will have to write in the lab. Think about what this code should make the robot do.
	As you will discover as you read the lab exercises below, you will require some way of measuring the distance that your robot has gone and some way to measure its current orientation. It might be prudent to bring some measuring device (tape measure, piece of string, etc.) to simplify this estimation in the lab.

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain

	A small differential drive vehicle —the robot.

	A servo controller board.

	A power supply for the servo controller board.

	An USB cable for the servo controller board.

	A DB9 serial cable that connects the servo controller with the robot.

	A power extension cable long enough to reach the floor.

	Obtain a laptop from the lab monitor, along with video camera and tripod. (You can certainly use your own laptop for this lab.)

	Download the zipped project EECS1020Lab5.zip from the JR web site. (If you are using your home laptop during the lab, you will have already completed this step.) The process is the same as in previous labs:

a)Launch the Firefox browser of your VBox and visit the JR site. Click the Java icon next to Lab #5 to see the available files. Click the file named EECS1021Lab5.zip and have the browser open it using the archive manager. This will unzip the file and open a new window. Click the extract button at the top of that window and then click the workspace folder to indicate that the extract target location should be /home/user/workspace.
b)Launch Eclipse and choose Import… from the File menu. Select Existing Projects into Workspace in the General and click Next >. In the Import window, click the Browse… button and select EECS1021Lab5 that we have just downloaded and unzipped into the workspace. Click Finish.

When you perform the following tasks, ensure that the robot is not in contact with the ground. Hold it in your hand or put it on something so that the wheels do not touch the table.

	Ensure that the robot is not in contact with the ground; i.e. hold it in your hand or put it on something so that the wheels do not touch the table. Use the CalibrationApp application within the project to determine the zero position values for each of the left and right wheel motors. Use the application to answer the following questions:

4.1)Which motor axis corresponds to the left wheel?
4.2)Which motor axis corresponds to the right wheel?
4.3)What ‘position’ correspond to the left wheel having a maximum forward and backward velocity?
4.4)What ‘position’ corresponds the right wheel having a maximum forward and backward velocity?
4.5)What ‘position’ ranges correspond to the left wheel rotating so that the robot would move forward?
4.6)What ‘position’ ranges correspond to the right wheel rotating so that the robot would move forward?
4.7)Perhaps most critically: what is the ‘zero point’ for the left and right wheels?
4.8) Document this calibration process in your e-Portfolio.

For the rest of the tasks, you will have to operate the vehicle on the floor in order to reduce the potential for disasters (the robot may fall off the table and pull your gear with it).￼
[image: PastedGraphic-3.png]
	Move the robot and servo controller to the floor and use the supplied extension cable to power your servo. You should also want to put the laptop on the floor. This working arrangement is typical for tethered robots. Even larger scale robots are secured with a tether for communication or power. The figure above shows the AQUA robot, a tethered amphibious robot, and some of the problems associated with its tether. Tether management, and dealing with poor tether management, is a practical problem for these types of robots. When running your robot on the floor it is important that you have one of your team members keep track of the robot. If things start to go poorly — the robot takes off and stretches the tether, it gets caught in itself, etc., pick up the robot. You will find it useful to sort out the tether before you turn the robot on.

	The CalibrationMotionApp is an application that you can use to determine the appropriate velocities for linear (i.e. translational) and rotational motion for your vehicle. It is intended that your vehicle should move forward at 20cm/sec. That is, that it runs at 1m every five seconds, and that when commanded to rotate 90 degrees either clockwise or counter clockwise, the robot will do this in two seconds. Use the CalibrationMotionApp to determine the appropriate speeds for rotation and translational motion for your vehicle.

	What left and right speeds did you find as appropriate in order to make this happen. Document the motion of your vehicle once you have tuned it.

	The program SquareApp is a program that you will complete to cause the robot to move in a square. Read through the code. You will observe that the program is based upon three methods: moveStraight(double distance), turnLeft() and turnRight(). (The method turnRight() is not used, but you will need it to complete the advanced exercises.) You will need to complete these methods. moveStraight() should move the robot in the direction it is currently facing a distance (in meters) given as the argument. It should do this at 20cm/sec. turnLeft() and turnRight() should rotate the robot 90 degrees in 2 seconds either counter-clockwise (turnLeft) or clockwise (turnRight).

Hint: You should be motivated by the code provided in the calibration applications and use the calibration constants you determined in steps 3 and 4 above. Document your efforts in your eReport and include a video of the robot executing a square path around a square with sides that are 1m long.

	Did you find it difficult to make the robot move in a straight line? Why do you think that was? If you try to make your robot move slower or faster, does that introduce problems? If it does, why do you think your robot had problems?

	If you are feeling adventurous, attach a cell phone camera to the robot with an elastic band and record a ‘robot’s eye view of your robot moving’.

C. Advanced
	Revise the SquareApp so that rather than driving the robot around one 1m square, it runs it around the same 1m square ’n’ times (where the number ’n’ is input by the user). Document the operation of your robot in your e-Portfolio.

	Revise the SquareApp so that it prompts the user for the length of the side of the square, and then executes it. Once it has completed the square, prompt the user for another size and execute that. Continue this until the user inputs a size that is less than or equal to zero. Document the operation of your robot in your e-Portfolio.

	Have your robot move in a square in one direction (turing left) and then in the other (turning right).

	One of the potential sources of drift in terms of the robot moving straight ahead is that the two servo’s might not have the same velocity for the same set point. You could adjust for this by having not a single velocity value for the two wheels, but rather slightly different ones. Modify your ‘moveStraight’ so that the left wheel is driven by the commanded velocity and the velocity of the right wheel is adjusted so that the robot moves straight, rather than moving off slightly to the left or right.

4. Further Reading
Mobile Robots
	Computational Principles of Mobile Robotics by G. Dudek and M. Jenkin.

Phidget Documentation
	Javadoc documentation on the Phidget

	

5. Credits
￼[image: Collage1021.png]

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 Mobile (Autonomous) Robots

		2.2 Robot Kit

		2.3 Continuous Rotation Servos

		2.4 Phidget Servo Controller

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
1Y MOBILE ROBOTS. roris

Object oriented programming fiom sensors to actuators

Mobile Robots

Version 0.2. Copyright © 2015 by:

m Jenkin + h Roumani @

OPS/images/droppedImage-1.png

OPS/images/droppedImage.png
-

ion

xaxis

yaxis

yaxis

OPS/images/unknown.jpg

OPS/images/droppedImage-2.png

OPS/images/droppedImage-4.png
W(R+1/2) =,
W(R—1/2)=u

OPS/images/droppedImage-3.png
2 H

OPS/images/PastedGraphic-3.png

OPS/images/droppedImage-5.png

OPS/images/Collage1021.png
OBJECT-ORIENTED PROGRAMMING
FROM SENSORS TO ACTUATORS

Copyright © 2015 by:

m Jenkin + h Roumani

