Table of Contents

1. Introduction
In the first part of this two-lab sequence, we saw how the world-wide web is evolving into a network that connects us not only to people and web servers, but also to other “things” such as sensors and actuators. The underlying technology is known as the client-server architecture and it involves a request-response interaction between two programs: a client program that makes requests, and a server program that responds to these requests. We learned in the first part how to write a client that connects to a server (being a servo actuator) and controls the movement of a flag post connected to it. In this part we learn how to write the server program.

Recall that your client program starts by establishing a socket that connects your machine to the server given its IP address and port. Once established, your program can send and receive messages (according to some protocol) through the input and output streams of the socket. In a server program, establishing a socket is more complex because (1) the process is initiated by the client, not the server, so the server needs to be in a stand-by loop that waits until a client connects, and (2) other clients may connect to the server while it is serving the first request, so the server needs to either queue them up or be able to serve them in parallel. We will learn how to establish a server socket in the next chapter. Once the socket is established, the rest of the server program proceeds exactly as in the client; i.e. it extracts input and output streams from the socket and use them to send and receive messages.

2. Background
In order to establish a server socket, we need to select a port for the server and then announce that port, along with the IP address, so that clients can connect to it. The following sections explain the steps needed to achieve this.

2.1 Selecting a Server Port
The port number is a 16-bit unsigned integer, which means it can be any integer between 0 and 216 – 1 = 65,535, inclusive. Some protocols, however, reserve certain port numbers for their exclusive use. For example, http (world-wide web) uses port 80 and smtp (email) uses port 25. Hence, we must ensure that the port we choose for our server does not conflict with other programs that may be running on our server machine. In general, if you avoid using low-lying numbers (say less than 1024) then you are not likely to collide with a port used by your operating system or some other application.
For this lab, we will select a port number in the 50,000-55,000 range, and we will start with 55,000. Our server software will tell us if this port is already in use, and in that case, we will select a different number in the range.

2.2 Punching a Hole in the Firewall
When a computer is connected to the Internet, a piece of software (known as a firewall) is normally inserted between it and the outside world. The firewall protects the computer by blocking access to it from the outside while allowing outbound connections. This is a problem for a server because a server, by definition, is meant to receive connections initiated by clients outside it. To solve this problem, we need to add an exception to the firewall rules so that it allows incoming connections to our server’s port. This process is referred to as punching a hole in the firewall.
In our case, the firewall is provided by the VBox software, so we need to punch a hole using the VBox network menu. Specifically, click the Devices menu of the VBox software and select Network, then Network Settings. This leads to the following screen:
[image: Screen Shot 2015-01-29 at 4.45.25 PM.png]

Click the Port Forwarding button. In the window that pops, click the green plus (+) image on the right to insert a new firewall rule. The rule should indicate that any external connection coming to port 55000 in the host should be forwarded to port 55000 in the guest, as shown below:
[image: Screen Shot 2015-01-20 at 4.40.37 PM.png]

Click OK on the windows to apply this rule.

2.3 Finding the IP Address
The IP address of our server is the IP address of our host machine. (The IP address of our Linux guest is for internal use only and is not visible to the outside world.) In order to find the IP of the host, visit a web site that provides such a service. There are several such sites out there; in fact, we encountered one of them in the previous lab and used it to find the square root of a number:
http://www.eecs.yorku.ca/~jr/IOT.cgi?sender=Jim&square=9
Enter this in your browser and the page will display, among other things, the IP address from which the request came; i.e. your external IP address.

2.4 Establishing a Server Socket
The following two statements create a server socket on port 55000:
ServerSocket server = new ServerSocket(55000);
Socket client = server.accept();

The first statement prepares a server object, and ties it to port 55000, but does not do anything else; i.e. it does not listen on that port. The magic happens when the accept method is invoked. This method causes the server object to suspend the execution of the program until a client makes a connection to that port. In other words, accept blocks indefinitely in a waiting loop. Once a client connects, accept creates a socket with it and returns it to us. The returned object is an instance of the Socket class, the same class we encountered in the previous lab.

2.5 Handling Exceptions
When we write programs that interact with the outside world (e.g. write to a file on disk or communicate with another computer), all kinds of things may go wrong. A disk may be write-protected, a network cable may come loose, or a server may be offline. Since these errors are unpredictable in nature, Java insists that we handle them in our code. Exception handling is done via the try-catch construct, as shown below:
try
{
 ServerSocket server = new ServerSocket(55000);
 Socket client = server.accept();
 ...
}
catch (Exception e)
{
 System.out.println(e);
}

In other words, we sandwich the code that we normally write in a try block. If an exception occurred anywhere in that block, control is transferred to the catch block. You can take any action you deem appropriate in the catch block to handle the exception. The above fragment simply prints out the exception.

2.6 String Patterns
We will use the same protocol as in the last lab; namely, the client must send us a string like this:
FLAG sender=Jim&waves=1

When we receive the client’s request, we need to be able to:
1.Determine if the request is valid.
2.Extract the sender’s name and the desired number of flag waves.
Java has powerful methods for dealing with strings, detecting if they have given patterns, and extracting substrings from them. The ones we will use in this lab rely on a pattern definition technique known as regular expressions. We start by creating a string that defines the pattern we are looking for in the client request:
String regex = "FLAG sender=([a-zA-Z]+)&waves=([1-3])";

The expression [a-zA-Z] means any lower or upper case letter, and the plus sign after it means one or more such letters. Similarly, [1-3] means any digit between 1 and 3. The parentheses (not the brackets) that surrounds the name and the number of waves will make it very easy for us to extract these substrings. Now suppose the client sent us some string ‘request’. To determine if it is valid, we do this:
Pattern pattern = Pattern.compile(regex);
Matcher match = pattern.matcher(request);
if (!match.find())
{
 // an invalid request
}
else
{
	String sender = match.group(1);
	int waves = Integer.parseInt(match.group(2));
}

Note that regular expressions not only enable us to detect if a pattern is present in the request, it also enables us to extract any parenthesized part of the request. The first such part if group(1), the next is group(2), and so on.

3. Exercises
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
1.We will build a simple server to familiarize ourselves with its operation before involving the flag protocol and the servo actuator.
2.You can download the server app from the jr site or you can copy and paste the code below (note that since no hardware is involved here, we only need to write an app):
import java.io.PrintStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Scanner;

public class SimpleServerApp
{
 public static void main(String[] args)
 {
 try
 {
 ServerSocket server = new ServerSocket(55000);
 while (true)
 {
 System.out.println("Waiting for a connection ... ");
 Socket client = server.accept();
 System.out.println("Client IP = " +client.getInetAddress());
 PrintStream out = new PrintStream(client.getOutputStream(), true);
 Scanner in = new Scanner(client.getInputStream());
 String request = in.nextLine();
 String msg = "I received: " + request;
 System.out.println(msg);
 out.println(msg);
 out.close();
 in.close();
 }	
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

3.Run the simple server on your computer. Note that it has an infinite (do while true) loop, which means it will keep running unless an exception occurred. In order to terminate it manually, simply click the red square in Eclipse’s console.
4.Run your client software from the previous lab but replace the server’s IP address with “localhost”. This special hostname means that you are connecting to a server running on the same machine as the client.
5.Send any request string from the client and ensure that the server console shows that same string. Note that Eclipse maintains separate consoles for each program you run and you can select which one to view using a drop-down selector at the top right of the console window.

B. In-lab
1.Inspect the tackle box that was given to you for this lab and check its inventory. It should contain the items listed below. Let the TA know if anything is missing because you will be asked to return these items when you finish your session):
1.1.A servo controller board.
1.2.A power adaptor for the servo board.
1.3.A USB cable to connect the servo board to your laptop.
1.4.A flag board.
1.5.A DB9 cable to connect the servo controller board to the flag board.

2.Connect the two boards to each other and plug the power adaptor in a power outlet.
3.Start VBox and then connect the servo controller to your laptop.
4.Determine your (external) IP address as explained in Chapter 2.
5.Download the zipped project EECS1020Lab4.zip from the JR web site. The process is the same as in previous labs:
a)Launch the Firefox browser of your VBox and visit the JR site. Click the Java icon next to Lab #2 to see the available files. Click the file named EECS1021Lab4.zip and have the browser open it using the archive manager. This will unzip the file and open a new window. Click the extract button at the top of that window and then click the workspace folder to indicate that the extract target location should be /home/user/workspace.
b)Launch Eclipse and choose Import… from the File menu. Select Existing Projects into Workspace in the General and click Next >. In the Import window, click the Browse… button and select EECS1021Lab4 that we have just downloaded and unzipped into the workspace. Click Finish.
6.The provided Server program is a template that you need to complete based on what you read in Chapter 2.
7.Ask another student to connect to your server from their machine.
8.What happens if two or more students connected to your server at the same time?

Note that the flag server is single-threaded; i.e. it can service one request at a time. If a request arrived while the server is serving an earlier one, the request may time out.

C. Advanced
1.Add validation to ensure the sender’s name is at least three character long. If not, display an error message in the server’s console and, in addition, send the message back to the client.
2.Modify the program so that if the sender’s name is “stop” then the server must exit the infinite loop and close the server’s object; i.e. the following statement should be placed after the while loop:
server.close();

3.Add a firewall to your server so that it allow requests only from a particular IP address. Requests from other IPs are ignored with no messages displayed or sent back.

4. Further Reading
•Port numbers and their usage
•What are Firewalls
•Socket Programming

5. Credits
[image: Collage1021.png]

OPS/toc.xhtml
		1. Introduction

		2. Background

		2.1 Selecting a Server Port

		2.2 Punching a Hole in the Firewall

		2.3 Finding the IP Address

		2.4 Establishing a Server Socket

		2.5 Handling Exceptions

		2.6 String Patterns

		3. Exercises

		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
23 wrn Loru

Object oriented programming from sensors to actuators

The Internet of Things II

Version 0.1 Cofyright © 2014, 2015 by:

m Jenkin + h Roumani @

OPS/images/Screen Shot 2015-01-20 at 4.40.37 PM.png
Rule 1

Protocol
| Tep

Host 1P

Host Port

Guest 1P

Guest Port

55000

Cancel

oK

OPS/images/Screen Shot 2015-01-29 at 4.45.25 PM.png
BEEHE QP @‘@
= e oy o G % e

Adapter Adapter2 Adapter3 Adapter 4

| Enable Network Adapter
Attached to: | NAT

Name:

o

< Advanced
Adapter Type: | PCnet-FAST lll (Am79C973)

o

Promiscuous Mode: | Deny

o

MAC Address: 0B0027B44EE4. ®
| Cable Connected

B Cancel oK

OPS/images/Collage1021.png
OBJECT-ORIENTED PROGRAMMING
FROM SENSORS TO ACTUATORS

Copyright © 2015 by:

m Jenkin + h Roumani

