Table of Contents
1. Introduction
2. Background
2.1 Anatomy of a URL
2.2 IP Addresses
2.3 HTTP
2.4 Sockets
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
The world wide web did not exist 25 years ago, yet despite this relatively short period, it has grown to billions of users and almost a billion server, and it managed to change the way we do business; the way we learn, and even the way we live. In this lab we take a glimpse at the infrastructure that underlies the web: The Internet and its infamous IP/TCP protocols that relay packets of information, the HTTP protocol that enables high-level messaging, and finally HTML and browsers that make it easy for humans to interact with information. Understanding these building blocks is not just a scientific curiosity, it also prepares us for the looming revolution of the web, the Internet of Things, in which the web connects not only humans but also everything else, from the milk carton in your fridge to the glasses you wear.
When computer A makes a request to computer B, A is said to be the client of this interaction and B is the server. In this lab we focus on writing client programs. The next lab looks at server programs.
Throughout the Internet, you can find a wide range of different services/devices that you can talk to from your browser. Web resources such as the IMDB (Internet Movie Database) provide access to a large database of films. Beyond access to specific databases, many people have attached devices to the Internet that you can control. If you search the web, you can find cameras, lights, and many other devices that you can control from the comfort of your own browser. How do such systems actually work?
Earlier in this course and in EECS 1011 before it, you have written software that interacts with the outside world. Such software responded to you through key presses or similar events, and then effected some change in the world. If the computer that controlled the device was connected to the Internet, then users (clients) could connect to the server controlling the device in order to control it. In this lab, you will explore the process of writing a client to talk to the remote server.

2. Background
We are all familiar with web browsers and we use them all the time to surf the web. The process starts by typing a URL or searching for one and ends with the browser showing its corresponding page. Let us follow this process step by step and observe what is really happening under the hood. Let us use the following fictitious URL as the starting points of our journey:
http://www.eecs.yorku.ca/~jr/IOT.cgi?sender=Jim&square=9

2.1 Anatomy of a URL
The URL (Uniform Resource Locator) is a string that uniquely identifies a resource on the web through its location. It has the following general format:
protocol://host:port/path?query_string
Various portions of this format can be omitted. If you omit the protocol, most browsers assume http. And if you omit the port, most browsers assume port 80, and so on. In light of this, we can see that in our example URL, the browser is using the http protocol. This Hyper Text Transfer Protocol is the most-commonly used one on the web. In this protocol, the default port is 80; i.e. if the URL does not specify a port, 80 will be used. Hence, our example URL is equivalent to:
http://www.eecs.yorku.ca:80/~jr/IOT.cgi?sender=Jim&square=9
The host identifies the server machine uniquely on the Internet, while the port (an integer) identifies the target program within the server. This means it is possible for a server to have multiple programs as long as they listen on different ports. Based on what we learned so far, we see that the browser’s request should be routed to a particular machine and a particular program in that machine should handle the communication with the browser. The path identifies the location of the resource we are interested in within the host. Finally, the query string (appearing after the ?) is used to hold any information that we may wish to send to the resource. It could be empty or it could consist of several “name=value” pieces separated by &. In our example, we are informing the server that there is a parameter named “sender” with value “Jim” and one named “square” with value 9.
Hence, the first thing the browser does after you type a URL is to parse it into the various pieces identified above.

2.2 IP Addresses
Given around one billion server on the Internet, the most natural way to name them in a unique fashion (such that no two have the same name) would be to assign each a serial number. The host name should thus be an integer rather than a string. This is indeed how hosts are “named” and the integer assigned to a host is known as its IP address (IP stands for Internet Protocol). A 32-bit integer is used for the IP address, which means we can accommodate about four billion hosts. This integer is often written as four 8-bit integers separated by a dot, e.g. 130.63.94.24.
All hosts today use this 32-bit numbering scheme, but given the rapid growth of the web, we are quickly running out of addresses so a new 128-bit version has been rolled out. The new version can accommodate over 1038 different hosts, enough to assign a unique IP address to every atom on the surface of the Earth!
But while integers make it easy for computers to identify other computers, it makes it hard for us, humans, to remember (and type in) these numbers. To solve this problem, the Domain Name System (DNS) was invented. Through a distributed database, this system enables browsers to translate a human-friendly host name such as www.eecs.yorku.ca to its corresponding integer, which for this particular host is: 130.63.94.24.
Hence, the second thing that a browser does is to contact the DNS in order to translate the host string appearing in the URL into an IP address.

2.3 HTTP
The http protocol dictates how requests coming from the client (the browser) should be phrased, and how responses coming from servers should be phrased. The example URL above will be expressed in http lingo as follows:
GET /~jr/IOT.cgi?sender=Jim&square=9 HTTP/1.1
HOST: www.eecs.yorku.ca
 <— (an empty line)

Hence, the third thing a browser does is to compose the http request that corresponds to the URL we typed.

2.4 Sockets
The http request must now be prepared to be sent out to its destination. This process involves other protocols, such TCP (Transmission Control Protocol), which formats the http message in a way that ensures it will arrive safely and enables it to travel safely across various kinds of hardwares and media. We encapsulate all these protocols (that operate below the http level) using the socket construct. The socket can be thought of as a conduit that connects the client with the server. This notion is captured in software as a class, named Socket, that has two methods:
getOutputStream()
getInputStream()

 When the browser needs to send the http message it composed, it establishes a socket that connects it to the desired host and port, and then invokes the first method to get an output stream to which it can send the message. This is very similar to System.out which allows us to send messages to the screen. Similarly, when the browser needs to capture the server’s response, it uses the second method to get an input stream from which it can retrieve the response. Again, this is very similar to System.in which allows us to retrieve what the user types on the keyboard.

3. Exercises
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	You only need a browser and an Internet connection to complete this task. You can use the browser of your home computer or even the one in your phone.

	Launch your browser and visit the URL:

http://www.eecs.yorku.ca/~jr/IOT.cgi

What do you observe? Do you see the server’s IP address and port? Your IP and port? The time your request was received by the server? Read the response to determine why the request was rejected.

	Supply the missing parameter (after replacing “Jim” with your own first name):

http://www.eecs.yorku.ca/~jr/IOT.cgi?sender=Jim

What is missing now?

	Let us now ask the server to perform some action for us:

http://www.eecs.yorku.ca/~jr/IOT.cgi?sender=Jim&square=9

Try this with different numbers and verify the operations. What happens if you provide a negative number? How about a non-numeric value?

	In order to gain more control, we would now like to issue the same request programatically, i.e. using our own program rather than a browser. To that end, we will delve from the HTML/Browser layer to the HTTP layer and talk to the server using the URL class. Read the API of that class and note, in particular, the method openConnection. This method returns an instance of another class, URLConnection, whose API has methods to get the input and output streams of the connection, thus enabling us to carry on a two-way communication with the server.

	Familiarize yourself with these APIs and try to write a program that establishes a connection with the above square root server. Here is a template program to use (note that since no hardware is involved here, we only need to write an app):

import java.net.URL;
import java.net.URLConnection;
import java.util.Scanner;

public class HttpApp
{
 public static void main(String[] args) throws Exception
 {
 int targetPort = 80;
 String targetURL = “http://www.eecs.yorku.ca:” + targetPort;
 targetURL = targetURL + "/~jr/IOT.cgi";	

 Scanner in = new Scanner(System.in);
 System.out.print("Your name ... ");
 String sender = in.nextLine();
		
 // prompt for and read the number to be rooted (a double)
	
 targetURL = targetURL + "put the query string here";
 URL url = new URL(targetURL);
 URLConnection http = url.openConnection();
 Scanner input = new Scanner(http.getInputStream());
		
 // Set up a while loop that repeats as long as there are
 // lines to be read. In it, read a line and display it.
		
 input.close();
 in.close();
 }
}

B. In-lab
You only need a laptop to do this lab. No other hardware is needed.
The HTML/Browser Layer
	Launch your browser and visit the URL:

http://www.eecs.yorku.ca/~jr/IOT.cgi

What do you observe? Do you see the server’s IP address and port? Your IP and port? The time your request was received by the server? Read the response to determine why the request was rejected.

	Supply the missing parameter (after replacing “Jim” with your own first name):

http://www.eecs.yorku.ca/~jr/IOT.cgi?sender=Jim

What is missing now?

	Let us now ask the server to perform some action for us:

http://www.eecs.yorku.ca/~jr/IOT.cgi?sender=Jim&square=9

Try this with different numbers and verify the operations. What happens if you provide a negative number? How about a non-numeric value?

The HTTP Layer
	Download the zipped project EECS1020Lab3.zip from the JR web site. The process is the same as in previous labs:

a)Launch the Firefox browser of your VBox and visit the JR site. Click the Java icon next to Lab #2 to see the available files. Click the file named EECS1021Lab3.zip and have the browser open it using the archive manager. This will unzip the file and open a new window. Click the extract button at the top of that window and then click the workspace folder to indicate that the extract target location should be /home/user/workspace.
b)Launch Eclipse and choose Import… from the File menu. Select Existing Projects into Workspace in the General and click Next >. In the Import window, click the Browse… button and select EECS1021Lab3 that we have just downloaded and unzipped into the workspace. Click Finish.
	The provided HttpApp program attempts to replicate what the browser did in the previous tasks programatically. It visits the same host (using its IP address) and the same port using the same http protocol. Since the query string includes a sender name and a number, this program starts by prompting the user to enter them. Complete the prompt / read section.

	The program uses the information it has to construct a query string. Add that string to the URL based on the entries made by the user. Don’t forget to prefix it with ‘?’.

	Next, a connection to the server is opened and an input stream is extracted from it so that we can read the server’s response.

	You now need to set up a loop that reads the server’s response one line at a time. Use the nextLine method to read a line and the hasNextLine method to determine when no more lines are available (and thus to exit the loop).

	Your loop should display every line it receives. Examine the received response and compare it to what you saw in the browser when you made the same request. What do you observe?

	Capture in your portfolio the difference between the response received and the one displayed by the browser and record your observations.

The Socket Layer
	The provided SocketApp program attempts to connect to a “thing”, a flag connected to a servo and set up in the podium of the lab:

[image: Screen Shot 2015-01-22 at 11.29.47 PM.png]

The flag has an IP address (shown in its projected screen in the lab) and, hence, you should be able to “talk to” it. It uses a special protocol that is similar, but not identical, to http. If you want the flag to wave (up and down), you send it a command like this:
FLAG sender=Jim&waves=1

Replace “Jim” with your name (any string of at least 3 characters and no more than 15). The waves parameter indicates the number of times you want the flag to wave up and down. It can be 1, 2, or 3. The provided program is shown below:

import java.io.PrintStream;
import java.net.Socket;
import java.util.Scanner;

public class SocketApp
{
 public static void main(String[] args) throws Exception
 {
 int targetPort = 55000;
 String targetAddress = "put the ip of the flag here";
		
 Scanner in = new Scanner(System.in);
 // prompt for and read the sender's name
 // and the number of flag waves.
		
 Socket client = new Socket(targetAddress, targetPort);
 PrintStream output = new PrintStream(client.getOutputStream(), true);
 Scanner input = new Scanner(client.getInputStream());
		
 output.println("send your command to the flag");
		
 // read the one line response from the flag
 // and display it.
		
 input.close();
 client.close();
 in.close();
 }
}

	Insert the IP address of the flag at the top of the program and verify that you have the correct port number.

	The next few statements are similar to the ones you used in the http program. They prompt for and read the needed parameters from the user.

	Once a socket connection is established, the program sends the protocol string (shown above) based on the parameters entered by the user. It then reads the response (just one line) and displays it.

	Run the program and supply illegal values, e.g. a very short name or a large number of waves. Examine the received response.

	Notice the projected flag’s screen. It looks like this:

[image: Screen Shot 2015-01-22 at 11.48.35 PM.png]

	Run your program several times, providing legal as well illegal parameters, and observe the responses on the projected screen as well as in your own computer. Capture this in your video and record your observations.

Note that the flag server is single-threaded; i.e. it can service one request at a time. If a request arrived while the server is serving an earlier one, the request may time out.

C. Advanced
	The projected server log shows your IP address when you connect. Can you find this address yourself? Notice that it is the address of the host machine, not the VBox. Your host operating system has tools that allow you to find this address.

	The projected screen displays also the port number of your end of the socket. Can you determine this number yourself? Note that this number changes from one run to the next but the Socket API has a method that allows you to get this number and display it.

	Since the server has only one flag, it seems that it has to be single threaded, serving one request at a time. Is this true? Can you think of a way through which several simultaneous requests can be serviced?

4. Further Reading
	The WWW Wikipedia page

	URLs and Java

	Socket Programming

	

5. Credits
￼[image: Collage1021.png]

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 Anatomy of a URL

		2.2 IP Addresses

		2.3 HTTP

		2.4 Sockets

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
23 Lot Lo

Object oriented programming from sensors to actuators

The Internet of Things I

Version 0.2 Cofyright © 2014, 2015 by:

m Jenkin + h Roumani @

OPS/images/Screen Shot 2015-01-22 at 11.48.35 PM.png
SERVER 10.0.1.26:44000

> Connection from /10.0.1.19:50252 at 15:13:38
> Length of 'sender' must be in [3,15] ... closing the socket.

> Connection from /10.0.1.19:50253 at 15:14:03
> Invalid protocol string ... closing the socket.

OPS/images/Screen Shot 2015-01-22 at 11.29.47 PM.png

OPS/images/Collage1021.png
OBJECT-ORIENTED PROGRAMMING
FROM SENSORS TO ACTUATORS

Copyright © 2015 by:

m Jenkin + h Roumani

