Table of Contents
1. Introduction
2. Background
2.1 The Theremin
2.2 Sound and Music
2.3 Real Time Audio Generation
2.5 Mary Had A Little Lamb
2.6 c4e.media.ToneEmitter API
2.7 Playing A Note
2.6 Glove Sensor
2.8 Analog Input Changed API
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
This lab deals with real time signal processing.. Rather than dealing with it in the abstract, it deals with a specific task — that of real-time music generation using a device that operates in a manner similar to a Theremin.
￼[image: pasted-image.jpg]
Figure 1. A Theremin

A Theremin is a music generation device which is played without actually touching it. Developed by Leon Theremin, the Theremin is played by modulating radio fields near the device. Motion of one hand manipulates the volume of the music generated by the device. Motion of the other hand manipulates the frequency.
A history of the Theremin can be found here, and this site provides a wide range of resources related to the Theremin including links to where you can purchase one1.
Playing a Theremin involves manipulating the volume and frequency of the sound being generated by the device. In a traditional Theremin, this is accomplished by moving your hands near the device. In this lab you will use a glove instrumented with a variable resistors as a substitute for the Theremin. (You may recognize the instrumented glove from the previous course.) In the basic part of the lab you will implement a Theremin that generates a single tone for a given combination of finger states. In the advanced section you will enhance your ‘virtual Theremin’ so that it produces more complex sounds and you will practice playing a classic nursery song using the device.
Technically, generating sounds from your Theremin involves generating, in real time, an audio signal based on the state of some input — here a glove-based interface. You may have encountered this device before in an earlier course.
As with all labs in EECS 1021, each lab is laid out as an ePub. It is expected that you will have read the lab electronic book prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. Exercises in the lab are to be documented in your ePortfolio.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should skim the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.
2.1 The Theremin
The Theremin was invented by Leon Theremin in 1919. Theremin observed that the human body influences the capacitance of an electric circuit, and that by moving his body in and out of an electric field, he could influence a sound associated with the circuit. This basic concept provided a novel mechanism for sound generation. Theremin’s are one of very small number of musical instruments that can create arbitrary notes — unlike a piano, for example, a theremin can generate sounds that fall in between the notes in the music scale. You can listen to the music generated by a Theremin online.
There are many different versions of Theremin, but typically a Theremin consists of an electronic control box and two antenna. These antenna sense the relative positions of the player’s hands: one is used to control the loudness of the acoustic signal generated by the Theremin, the other is used to control the frequency of the signal generated. Unlike devices like the piano, the Theremin can generate continuous musical notes (frequencies) as well as continuous changes in loudness. If you wish to purchase a Theremin, Moog manufactures them. Note, however, that Theremin’s are notoriously difficult instruments to play. Some basic instruction on how to play a Theremin can be found here.
The critical observation about a Theremin is that the artist has control over two independent input parameters: the volume of the signal being generated, and its frequency.

2.2 Sound and Music
Sound, and music in particular, is the result of oscillations in air pressure being detected by your ears. In a computer the device that generates this change is a speaker, often a small piece of coated paper that is vibrated forward or backwards using a controllable magnet. The simplest model of a music sound is a sine wave, where the pressure is a function of time.
P = A sin(2 * pi * f * t)
where
	P is the pressure, typically measured in Pascals or decibels.

	t is the time, typically measured in seconds.

	A is the amplitude or volume in decibels.

	f is the frequency or pitch, measured in hertz, the number of waves per second.

The period of the signal, measured in seconds, is the duration of one wave T = 1/f.
Sound has two characteristics: pitch and volume. Notes with a high pitch have a high frequency. Notes with lower pitches have lower frequencies. Volume corresponds to the amplitude or the pressure
Pascals are a measure of force per unit area (N/m2). The decibel scale is a log pressure scale, which is used to highlight lower amplitude sounds — those relevant to human hearing. Pascals are converted to decibels using
decibels = 20 * log(pascals/2x10-5)
The constant 2x10-5 was chosen because 2x10-5 Pascals is the hearing threshold for humans.
In order to describe and play music, it is necessary to develop a notation (a language) that can be used to represent a given sequence of sounds that are to be played. In music, the frequencies that occur between some base note and a frequency twice as high as the base note is known as an octave. This octave is divided into a scale of seven notes as shown in the figure below. Here we have used a frequency of 262hz (this corresponds to middle C on a piano) for our base note, and we have labelled the notes in the sequence C, D, E, F, G, B and A which corresponds to the notation used in western music.
Figure 2 shows frequencies, and frequency ratios relative to the base note C for one octave. The frequencies and frequency ratios have been overlaid on a normal keyboard, with the base frequency chosen as C.
￼[image: pasted-image-1.png]
Figure 2. Music scale.
In general instruments do not generate just a single frequency when a note is played. Instead they generate a complex collection of frequencies at multiples of the base frequency known as harmonics. For example, if one was to play the note C with base frequency of 262 Hz, the instrument will actually play a collection of different frequencies with different amplitudes. The frequencies will all be multiples (harmonics) of the base frequency of 262 Hz and with different amplitudes. The pattern of amplitudes characterize the tone of the instrument.

2.3 Real Time Audio Generation
Consider the problem of playing digital music through a speaker on a computer.. The actual device that generates the music moves (vibrates) a small cone of coated paper using an electromagnet. Using a digital to analog circuit — the inverse of the analog to digital input circuit that you have seen already — the voltage supplied to the electromagnet is modified as a function of time. Clearly, the more frequently you can change the position of the cone, the more frequently you can change the position of the speaker. This corresponds to being able to accurate synthesize sounds of higher and higher frequencies. Modern digital sound generating systems typically provide an update rate to the speaker at over 44,000 times a second (44.1 kHz is a very common update rate or frequency). So if we were to play some pre-recorded music through a speaker, we might take the sound — represented as a continuous signal of air pressures — and sample it at 44.1 kHz and store this amplitude as a sequence of numbers. Then, to play the sounds we would simply have to pass these samples to the speaker at the appropriate rate, and the speaker would play the sound. Observer what is necessary technically to do this. We require some way of presenting to the speaker sound samples at a very high frequency and we have to do this presentation at a consistent rate. If our software slowed down, or sped up, then the sound coming out of the speaker would become distorted. Solving this technical problem in a general purpose digital computer is actually quite difficult. Most operating systems are not designed to do things in real time. Rather they are designed to take advantage of not having to do things in real time in order to provide equitable resources to a wide range of tasks operating on the computer. Fortunately there exist libraries for many programming languages and operating systems that support real time audio generation. In this lab you will use the java.sound library to deal with real time audio out. In this library the actual audio device is modelled as a queue of instantaneous sound amplitudes in which the output device consumes desired sound amplitudes as they are required to be generated, and the user queues additional instantaneous amplitudes in order that the queue does not go empty.
2.3.1 Software API
Within the c4e library there is a class c4e.media.ToneEmitter. This class supports real-time audio generation. The following constructor/methods may be useful for this lab. The full description of the API is available through the standard javadoc documentation of the c4e library.
	ToneEmitter() - a constructor that builds a ToneEmitter. This will use the standard audio out of the device.

	void setFrequency(double frequency) - cause the emitter to emit a sine wave at the given frequency (in hertz).

	void setVolume(double volume) - cause the emitter to emit a sine wave at the given volume (in the range 0 - off, to 1 - maximum).

	void shutdown() - stop the emitter.

	play(double frequency) - cause the emitter to emit the frequency and return control to your code after one second.

2.5 Mary Had A Little Lamb
Suppose you have a working music instrument. The next thing that you need is a tune to play (and possibly the skill to play it). Lets address the first issue. The second is not something that can be accomplished in a single EECS laboratory session.
There exists a standard notation for music. Details on musical scores can be found here. As your device only plays one note at a time, we can dispense with more formal musical notation and deal with something a little less rigorous. The table below shows a sequence of notes — corresponding to the notes and frequencies given earlier in this document — that encodes a recognizable tune. Each note should be played for the same duration. This does make the tune sound a bit stilted. Feel free to experiment once you have mastered the basics

Ma-	ry	had	a	lit-	tle	lamb
A	F	F	G	A	A	A

lit-	tle	lamb	lit-	tle	lamb
G	G	G	A	C	C

Ma-	ry	had	a 	lit-	tle 	lamb
A	G	F	G	A	A	A

his	fleece	was	white	as	snow
A	G	G	A	G	F
2.6 c4e.media.ToneEmitter API
The ToneEmitter class provides control over the frequency and volume of a sine wave being emitted from the default audio output of the computer.
There is an empty constructor that creates a link to the standard output device.
	void setFrequency(double frequency) - set the frequency being generated in hertz

	void setVolume(double volume) - set the volume of the sine wave being generated in the range 0 (off) to 1 (maximum volume).

	void play(double frequency) - set the output frequency to the frequency provided, and then wait for one second.

	void play(double frequency, double seconds) - set the frequency to the frequency provided and then wait for the number of seconds provided.

	void shutdown() - stop using the audio channel.

In addition to the constructor and methods, the class also provides constants for a number of useful notes including
	NOTE_C - middle C on the piano

Full details of the API can be found using the c4e javadoc description.

2.7 Playing A Note
The following code (available on the course moodle site. This code is available within a complete Eclipse project. Planning forward to the project being completed in this lab, this code defines a class that extends InterfaceAdapter, and within this class uses a timerCallbackHandler to play the note C over and over again.
package lab2;

import c4e.media.ToneEmitter;
import c4e.phidget.Event;
import c4e.phidget.HardwareInterface;

public class NotePlayer extends HardwareInterface
{	
	public ToneEmitter emitter;
	private long delay;
	
	public NotePlayer(boolean debug, long delay)
	{
		super(debug);
		this.emitter = new ToneEmitter()
		this.delay = 1000;
		this.setTimer(delay);
	}
	
	@Override
	public void timerCallback()
	{
		System.out.println("Playing C");
		emitter.setVolume(1.0);
		emitter.play(ToneEmitter.NOTE_C);
		emitter.setVolume(0.0);
		this.setTimer(this.delay);
	}
	
	@Override
	public void analogInputChanged(Event ae)
	{
		System.out.println("analogInputChange event " + ae);
	}
}

2.6 Glove Sensor
A Theremin uses radio-magnetic fields associated with the device to control the frequency and volume generated by the device. In this lab you will use a glove sensor — which you may remember from EEC 1011 — as an input device. The glove sensor utilizes a flex sensor to assign a resistance to different finger bends. In order to detect the movements of a finger, the sensor attached to it must be able to change its electrical properties as it is bent and stretched. In this chapter we look at how materials react to stress in general and then focus on stresses that change the Ohmic resistance of an object.
We are all familiar with the fact that if you apply a force on an object, the object moves. But what if the object is constrained such that it cannot move? In that case, the object is said to be under stress. For example, if you squeeze an object, it will experience compressive stress, whereas if you pull it apart, tensile stress will result. An object reacts to stress by what is known as strain. For example, if you pull on a string, it reacts by stretching. Here, strain manifests itself by a deformation.
The stress-strain relationship is a central field of study in material science and engineering. For small stresses, the resulting strain is also small and the process is reversible; i.e. if you remove the applied force, strain will go away and the object will return to its original state. This is the elastic region of the stress-strain curve and is exemplified by a weight hanging on an elastic spring. But if the stress increases beyond a certain point, we enter the plastic region in which the object does not return completely to its original state when the stress is removed. In addition to deformation, strain can manifest itself in a number of other ways such as an increase in temperature, production of electricity, or a change in the Ohmic resistance. A stress-induced change in the Ohmic resistance of a material is known as the piezoresistive effect and it enables us to build strain sensors.
In this lab we will use a sensor made up of a piezoresistive material. The so-called flex resistor is packaged as a strip, and we will use two such strips: one attached to the index finger and one to the thumb finger of a glove.
￼[image: pasted-image-2.png]
When the strip is flat, its resistance is lowest (typically in the 15 KΩ range) but as you bend it, the resistance increases. Now in order to capture the change in resistance, we need to transform it to a change in voltage so we can feed it as analog input to our Interface Board. The circuit below does that:
￼[image: pasted-image-3.png]
The blue load on the right represents the flex sensor and we have added a resistor of 27 KΩ on the left. As the finger bends and the flex resistor increases, the voltage between the 5V source (red) and the output wire (white) decreases accordingly. Such a circuit is known as a voltage divider.
2.8 Analog Input Changed API
Whenever one of the analog inputs of the Interface Board changes its value, an event is generated through the method analogInputChanged. The event is generated with an Event argument that encodes details about the event. The Event class provides a number of methods that are useful (see the c4e documentation for full details). In particular:
	double getValue() - this returns the value of the sensor.

	int getId() - this returns the index of the input that triggered this event.

3. Exercises
The goal of this lab is to construct a Theremin-like musical instrument using a collection of bend sensing resistors attached to a glove as an input device. An example video of such an instrument being played is shown below.
￼Theremin.mp4
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. A backup lab is scheduled each week for students who miss/were unprepared for their normal lab time. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the zipped project EECS1020Lab2.zip from the JR web site. The process is the same as the previous lab:

a)Launch the Firefox browser of your VBox and visit the JR site. Click the Java icon next to Lab #2 to see the available files. Click the file named EECS1021Lab2.zip and have the browser open it using the archive manager. This will unzip the file and open a new window. Click the extract button at the top of that window and then click the workspace folder to indicate that the extract target location should be /home/user/workspace.
b)Launch Eclipse and choose Import… from the File menu. Select Existing Projects into Workspace in the General and click Next >. In the Import window, click the Browse… button and select EECS1021Lab2 that we have just downloaded and unzipped into the workspace. Click Finish.
	The newly created project contains (in the lab2 package) two Java files NotePlayer and NotePlayerApp. These two form a prebuilt application that plays a note. Review the code.

Note: If you do not have access to Eclipse on your home machine, the two files are available on the jr web site as straight text files. If you have a copy of the virtual machine running on your home computer, try running it. (This will be a good test of the audio generation process on your hardware.)

	This algorithm logic in NotePlayer uses a timer driven callback to repeatedly play the note “C”. How would you change the code so that it plays a different note? How would you change the code so that it plays the note for a shorter period of time? How would you change the code so that it plays the note with less of a delay in between notes?

	Review the real time audio generation API supported in c4e. How would you set the volume and frequency of the sine wave being generated given a desired frequency and volume?

	Review the API of the Event class. Given an Event corresponding to an analog input, how would you determine which sensor input has changed and what is its current value?

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain:

	An Interface Board and USB cable

	A glove with variable resistors attached to the thumb and first finger, and with cables to be connected to the Interface Board.

	Obtain a laptop from the lab monitor, along with video camera and tripod. You can alternatively use your own laptop.

	Using the supplied cables, connect the glove to analog inputs #1 and #2 of the Interface Board.

	Run the NotePlayerApp. In addition to playing a note, verify that this app responds to analog input changes from the glove.

Note that since NotePlayer has no logic that invokes stopMonitoring, you will need to click the red square (as explained in the previous lab) to terminate the run manually.

	Examine the output and identify the maximum and minimum input values for the thumb and index finger. Record these four figures in NotePlayer by adding one attribute for each, e.g.

 private int thumbMin;

and initialize these attributes in the constructor, e.g.

 this.thumbMin = 480;

	Modify the NotePlayer application so that it no longer plays a note based on timer events. Instead, it should continuously generate a tone. The volume of the tone being generated is controlled by the thumb input and the frequency is manipulated by the index finger input. The minimum input from the thumb should result in the tone being played with an amplitude of 0, while the maximum input from the thumb should result being played with an amplitude of 1. Volume should change linearly with the input from the thumb. The minimum input from the index finger should correspond to a frequency of ToneEmitter.NOTE_C and the maximum input from the index finger should correspond to a frequency of 2*ToneEmitter.NOTE_C. Frequency should change linearly with the change in input.

	Move your two fingers and verify that the frequency and volume of the generated tone are changing accordingly.

Note that an exception is thrown if you try to set the volume to a value outside the [0,1) range. If this happens, examine the formula that you used to relate the volume to the analog input and verify the min/max input values that you used.

	Use your Theremin to try to play Mary Had a Little Lamb. You may find it helpful to print out the frequency being generated.

	Record a video of your Theremin in action, and document how your Theremin works using your electronic journal.

C. Advanced
	Your Theremin, matching the real device, plays a range of frequencies, not just notes in the standard scale. Modify your Theremin so that it only plays the notes between C and one octave above C. Trying play Mary Had a Little Lamb now. Was this easier or more difficult? Document this process using your electronic journal.

	Add a push button to your circuit and connect it to one of the digital inputs. Monitor that digital input so that you can invoke stopMonitoring() when the button is pushed.

	Starting with your original (continuous) Theremin, start with a different base C. (Choose C/4, C/2, 2C or 4C.) With your lab mates, can you play Mary Had a Little Lamb with different people playing different octaves? Document your process using your electronic journal.

4. Further Reading
The Theremin
	How to play the Theremin (on how stuff works).

	Buy your own Theremin.

Phidget documentation
	Javadoc documentation on the Fidget

	

5. Credits
￼[image: Collage1021.png]

1 Note: You do not have to own a Theremin to complete this lab.

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 The Theremin

		2.2 Sound and Music

		2.3 Real Time Audio Generation

		2.5 Mary Had A Little Lamb

		2.6 c4e.media.ToneEmitter API

		2.7 Playing A Note

		2.6 Glove Sensor

		2.8 Analog Input Changed API

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

		Footnotes

OPS/images/cover-image.png
I THERENIY 1ok

Object oriented programming from sensors to actuators

The Theremin

Version 0.3 Copyright © 2014, 2015 by:
m Jmkm + h Roumani @

OPS/images/pasted-image-1.png
Frequencyratio 1 98 54 43 32 5B 158 2

Frequency (Hz) 262 204 330 349 392 440 494 523

OPS/images/pasted-image.jpg

OPS/images/pasted-image-3.png

OPS/images/pasted-image-2.png

OPS/images/Collage1021.png
OBJECT-ORIENTED PROGRAMMING
FROM SENSORS TO ACTUATORS

Copyright © 2015 by:

m Jenkin + h Roumani

OPS/images/posterImage.png
dUiy

THEREMIN

OPS/media/Theremin.mp4

