Table of Contents
1. Introduction
2. Background
2.1 Sound and Music
2.2 Real Time Audio Generation
2.3 Mary Had A Little Lamb
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
This lab deals with real time audio generation on mobile devices. In many ways, the desire to play music on portable devices drove the development of personal electronic devices. Long before the development of PDA’s and iPods, Sony developed the ‘Sony Walkman’. Almost exactly 35 years ago, Sony introduced a portable cassette tape player known as the Sony Walkman. This device, which freed music playback from back breaking (and power consuming) ‘boomboxes’, did indeed revolutionize the way people listened to music.
Music, indeed any audio signal, can be decomposed into a collection of sine waves that are modulated in terms of their phase and amplitude. This collection, when mixed together and properly presented to the listener, is what forms the music that we listen to. Whereas early technology — such as the Sony Walkman described above — relied on representing the signal as an analog recording, more recent mobile devices typically store audio signals in a digital form. They record the signal as a sequence of intensities which when played through speaker or headphones produces the sounds that we listen to.
This lab explores the process of generating audio signals on mobile devices. Specifically, you will write an app in which a simple sine wave is generated and you will enable the user to modulate this sound wave by changing the amplitude (volume) and frequency (note) of the wave being generated. All of this generation takes place in real time, as the sound is always being generated.
As with all labs in EECS 1022, each lab is laid out as an ePub. It is expected that you will have read the lab electronic book prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. Nor will you receive grade credit for this lab if the pre lab exercises are not completed properly. Exercises in the lab are to be documented in your ePortfolio.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should skim the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.

2.1 Sound and Music
Sound, and music in particular, is the result of oscillations in air pressure being detected by your ears. In a computer the device that generates this change is a speaker, often a small piece of coated paper that is vibrated forward or backwards using a controllable magnet. The simplest model of a music sound is a sine wave, where the pressure is a function of time.
P = A sin(2 * pi * f * t)
where
	P is the pressure, typically measured in Pascals or decibels.

	t is the time, typically measured in seconds.

	A is the amplitude or volume in decibels.

	f is the frequency or pitch, measured in hertz, the number of waves per second.

The period of the signal, measured in seconds, is the duration of one wave T = 1/f.
Sound has two characteristics: pitch and volume. Notes with a high pitch have a high frequency. Notes with lower pitches have lower frequencies. Volume corresponds to the amplitude or the pressure of the sound wave being generated. Sound is typically measured in a unit such as a Pascal or decibel.
Pascals are a measure of force per unit area (N/m2). The decibel scale is a log pressure scale, which is used to highlight lower amplitude sounds — those relevant to human hearing. Pascals are converted to decibels using
decibels = 20 * log(pascals/2x10-5)
The constant 2x10-5 was chosen because 2x10-5 Pascals is the hearing threshold for humans.
In order to describe and play music, it is necessary to develop a notation (a language) that can be used to represent a given sequence of sounds that are to be played. In music, the frequencies that occur between some base note and a frequency twice as high as the base note is known as an octave. This octave is divided into a scale of seven notes as shown in the figure below. Here we have used a frequency of 262hz (this corresponds to middle C on a piano) for our base note, and we have labelled the notes in the sequence C, D, E, F, G, B and A which corresponds to the notation used in western music.
The figure below shows frequencies, and frequency ratios relative to the base note C for one octave. The frequencies and frequency ratios have been overlaid on a normal keyboard, with the base frequency chosen as C.

￼[image: pasted-image.png]

In general instruments do not generate just a single frequency when a note is played. Instead they generate a complex collection of frequencies at multiples of the base frequency known as harmonics. For example, if one was to play the note C with base frequency of 262 Hz, the instrument will actually play a collection of different frequencies with different amplitudes. The frequencies will all be multiples (harmonics) of the base frequency of 262 Hz and with different amplitudes. The pattern of amplitudes characterize the tone of the instrument.
Note that when notes are played on a device such as a piano, striking a key on the keyboard does not generate ‘just’ a sine wave. Rather, it generates a complex set of sounds whose mixture changes over time. (This effect is what makes the same note played on different musical instruments sounds different.)

2.2 Real Time Audio Generation
Consider the problem of playing digital music through a speaker on a computer.. The actual device that generates the music moves (vibrates) a small cone of coated paper using an electromagnet. Using a digital to analog circuit — the inverse of the analog to digital input circuit that you have seen already — the voltage supplied to the electromagnet is modified as a function of time. Clearly, the more frequently you can change the position of the cone, the more frequently you can change the position of the speaker. This corresponds to being able to accurate synthesize sounds of higher and higher frequencies. Modern digital sound generating systems typically provide an update rate to the speaker at over 44,000 times a second (44.1 kHz is a very common update rate or frequency). So if we were to play some pre-recorded music through a speaker, we might take the sound — represented as a continuous signal of air pressures — and sample it at 44.1 kHz and store this amplitude as a sequence of numbers. Then, to play the sounds we would simply have to pass these samples to the speaker at the appropriate rate, and the speaker would play the sound. Observe what is necessary technically to do this. We require some way of presenting to the speaker sound samples at a very high frequency and we have to do this presentation at a consistent rate. If our software slowed down, or sped up, then the sound coming out of the speaker would become distorted. Solving this technical problem in a general purpose digital computer is actually quite difficult. Most operating systems are not designed to do things in real time. Rather they are designed to take advantage of not having to do things in real time in order to provide equitable resources to a wide range of tasks operating on the computer. Fortunately there exist libraries for many programming languages and operating systems that support real time audio generation. In this lab you will use the java.sound library to deal with real time audio out. In this library the actual audio device is modelled as a queue of instantaneous sound amplitudes in which the output device consumes desired sound amplitudes as they are required to be generated, and the user queues additional instantaneous amplitudes in order that the queue does not go empty.

2.2.1 Software API
Associated with this lab is a ToneEmitter class. This class supports real-time audio generation. The entire source code is available for download, and browsing through it (this is described in some detail below) can be informative in terms of looking ‘under the hood’ in terms of how sounds are actually generated in modern computers.
The following constructor/methods may be useful for this lab.
	ToneEmitter() - a constructor that builds a ToneEmitter. This allocates (obtains unique access to) audio generation on the Android device. You cannot expect this to work if your device lacks the ability to generate sound, or if you are already using the audio output on the Android device in some other way. The Emitter class will begin to emit a single sine wave immediately. Fortunately, it will emit it with zero volume. Note: The actual sound generated by your Android device is modulated by the volume switch on the device. If you have the device in ‘mute’ mode, or with the volume turned all the way down, not much is going to happen.

	void setFrequency(double frequency) - This causes the emitter to emit a sine wave at the given frequency (in hertz).

	void setAmplitude(double volume) - This causes the emitter to emit a sine wave at the given volume (in the range 0 - off, to 1 - maximum).

	void shutdown() - stop the emitter.

2.2.2 Under the Hood
The actual process of generating the audio signal is relatively straightforward, but is complicated by the need to ‘feed’ the audio generation system the sequence of intensities in real time. Sound (like video playback) must be generated in real time and this process cannot be easily interrupted without impacting the user’s playback experience. Furthermore, although it might be possible to queue up a large buffer of sounds for some device to playback, this is not possible in the application here as we want the user to be able to manipulate the sound as it is generated. Essentially this means that we want to buffer as little as possible of the audio signal, and then to manipulate the contents of the buffer just prior to it being passed on to theThis cannot be easily done in terms of the user’s code, you would have to call a routine over and over to check to see if the speaker needed more audio to be generated. Worse, if you did not do this often enough the speaker would run out of sounds to play, and you would be left with ‘dead air’.
2.3 Mary Had A Little Lamb
Suppose you have a working music instrument. The next thing that you need is a tune to play (and possibly the skill to play it). Lets address the first issue. The second is not something that can be accomplished in a single EECS laboratory session.
There exists a standard notation for music. Details on musical scores can be found here. As your device only plays one note at a time, we can dispense with more formal musical notation and deal with something a little less rigorous. The table below shows a sequence of notes — corresponding to the notes and frequencies given earlier in this document — that encodes a recognizable tune. Each note should be played for the same duration. This does make the tune sound a bit stilted. Feel free to experiment once you have mastered the basics.

Ma-	ry	had	a	lit-	tle	lamb
A	F	F	G	A	A	A

lit-	tle	lamb	lit-	tle	lamb
G	G	G	A	C	C

Ma-	ry	had	a 	lit-	tle 	lamb
A	G	F	G	A	A	A

his	fleece	was	white	as	snow
A	G	G	A	G	F

3. Exercises
The goal of this lab is to construct an app that enables a user to generate specific sine wave audio tones on the device, and then to use the device to play ‘Mary Had a Little Lamb’ using the device. Fortunately, you will not have to write this application from scratch, rather you will be provided with a template or framework upon which to build.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. A backup lab is scheduled each week for students who miss/were unprepared for their normal lab time. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the zip file TONE.zip from the jr site. It is a zipped file (aka an archive) so unzip it and place the unpacked folder (named ToneGenerator) in the AndroidStudioProjects folder in your home directory.

	Launch AndroidStudio from the Applications, Programming menu of your VBox and open the ToneGenerator project.

	Examine the project’s structure and note in particular that it contains two java files: ToneGenerator.java and ToneEmitter.java. The first is the usual activity file that handles the user interface while the second is a ready-made library file that handles real-time audio generation. When users want to generate a tone, they interact with the first file (e.g. by moving a slider on the device) and this causes it to interact with the second file (e.g. by invoking a method in its Application-Program Interface or API) and this causes sound to be emitted.

	Examine the layout of the activity as rendered by the simulator. You should see something similar to the figure below.

￼[image: pasted-image-1.png]

	Re-examine the layout file and note the types of controls used. This is most easily done by looking at the Text tab (to see the ra XML) rather than the Design tab. Note in particular that the control used to create a slider is called a SeekBar.

	The beauty of Object-Oriented Programming (OOP) is that you don’t have to understand how a class works in order to use it. You only need to know its API, e.g. the names of its methods and the signature of each. Based on this, review the API of ToneEmitter. How would you set the volume and frequency of the sine wave being generated given a desired frequency and volume?

	Complete the quiz associated with this lab on Moodle. You must receive 80% on this quiz in order to take part in the lab. You are expected to complete the quiz on your own but you are encouraged to consult the textbook, this ePub, and the Web. You may take the quiz many times, but you will not be able to participate in the lab without completing it, nor will you receive a grade for this lab if you have not completed it. You must bring proof that you have obtained 80% or better on the pre-lab quiz with you to the lab.

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain An android tablet and a USB cable. Ensure that the Android device is properly charged (in any event, plug it in when you get it so that it is charging when not being used).

	You should ideally use your own laptop but if you forgot to bring it then borrow one from the lab monitor.

	You will also need to take videos of your results for your ePortfolio. Use your phone for that or borrow a camera and tripod from the lab monitor.

	Connect the Android device to the laptop using the USB cable.

	Start your VBox; launch Android Studio; and open the ToneGenerators project that was downloaded in the pre-lab.

	Turn the tablet on (by pressing the upper button) and unlock it (by dragging the lock). Make sure your device is captured by the VBox: From the Devices menu, click on USB Devices, and then select your device (e.g. Asus Nexus 7).

	Run the app on your tablet through USB debugging.

	Play with the application on the device while monitoring the Logcat window. Can you move the two sliders around? What happens when you do? Can you move them both at the same time? What happens when your rotate the device? When you turn the device off or suspend the application. Document your findings in your ePortfolio.

	The onProgressChanged method of the ToneGenerator class gets invoked whenever the user moves either of the two sliders. Verify this by running the application connected to your laptop and use the logging window to follow the onPress messages obtained from the log. What is the progress value obtained when the slider is all the way to the left and all the way to the right?

	Since the same method is invoked regardless of which slider was moved, how can we determine the one that was moved? Hint: examine the parameters of the method.

	One of the parameters sent to the method is seekBar, an object reference that points at the slider that was moved. Determine the ID of this object by using a method in its API (AndroidStudio helps with this once you type the object reference followed by a dot). Add a print statement at the top of the method to display this ID in Logcat.

	Save the app and re-run it on the device. Move the sliders and note the displayed ID in the log.

	The actual ID of any control can be obtained from the layout view. Add a second print statement at the top of the method to display the ID’s of both sliders. Recall that you must prefix the XML ID with “R.id.” when you refer to it in Java.

	Save the app and re-run it on the device. Move the sliders and note the displayed IDs in the log.

	Add an if/else statement to the onProgressChanged callback (inside the existing if statement) so that if the method is called on the amplitude SeekBar, one message is printed out, and that a different message is printed on if the callback is called on the frequency SeekBar.

	Save the app and re-run it. Test your code and verify that it behaves as expected.

	In the change Amplitude branch of the if/else statement introduced above, invoke the setAmplitude method so that if the progress value is zero then setAmplitude is called with zero, and if the progress value is 100 then setAmplitude is called with one. Linearly interpolate between these two extremes for other values).

	In the change Frequency branch of the if/else statement introduced above, invoke the setFrequency method so that if the progress value is zero then setFrequency is called with the value ToneEmitter.NOTE_C, while if the progress value is 100, then setFrequency is called with the value ToneEmitter.NOTE_C_ABOVE_MIDDLE_C. Linearly interpolate these two extremes for other values.

	Test your code and observe the log file. (This will not generate any sound, rather you should see appropriate values being displayed in the log from the setAmplitude and setFrequency methods.)

	You will now modify the setAmplitude and setFrequency methods so that they actually generate sounds. In the setAmplitude method add a call to toneEmitter.setAmplitude(amplitude) and in the setFrequency method add a call to toneEmitter.setFrequency(frequency).

	Test your code on your Android device. You should be generating audio. Record your app in action in your ePortfolio. Document any difficulties you encountered in the process in your ePortfolio.

	The one remaining task is to have the app display to the user the amplitude (in the range 0..1) and the frequency (in hertz) of the signal being generated. In the layout xml file, identify the id’s of the fields that should display the frequency and amplitude of the sine wave being emitted. In the setAmplitude method, use the findViewById method obtain a reference to the TextView instance associated with the amplitude value. Each TextView has a method setText that can be used to update the text in the TextView. In order to display the amplitude, which is a double in the range 0..1, it must be converted to a String that fits in the available space. Perhaps the best way of accomplishing this here is through the use of the java.text.DecimalFormat class. This class has methods that provide very precise control on the conversion process from doubles to Strings. Use an instance of the DecimalFormat class to convert the amplitude to a String that will be displayed with a leading zero and two positions after the decimal point.

	Repeat the basic approach above for the setFrequency method to display the frequency (in hertz) in the appropriate location adjacent to the frequency SeekBar. Display only the first three digits before the decimal point of the frequency.

	Test your application to make sure that it is working.

	Use your application to try to play Mary Had a Little Lamb. Record your efforts for your ePortfolio.

	Document in your ePortfolio the difficulties you encountered. Describe the classes you used in order to solve this lab.

C. Advanced
	Your app plays a range of frequencies, not just notes in the standard scale. Modify your app so that it only plays the notes between C and one octave above C. Trying play Mary Had a Little Lamb now. Was this easier or more difficult? Document this process using your electronic journal.

	Observe that your application uses string resources (defined in string.xml) to define all of the strings in your user interface. This makes it easy to change the user’s language, and indeed Android devices support localization — a single application can work in multiple languages. Change the text that is displayed on the screen to some other language of your choice. Do you think that localizing text that will be presented to the user in a single location is a good idea?

	Change the icon’s associated with your application to something else. The icons are located in the res/mipmap/ic_launcher.png directories. Ensure that you change all of them.

4. Further Reading
A good review of the theory of music can be found on wikipedia.
There are a large number of real-time audio libraries available for Java including the standard Java audio library.

	

5. Credits￼[image: Collage1022.png]

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 Sound and Music

		2.2 Real Time Audio Generation

		2.3 Mary Had A Little Lamb

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
Mobile Development

Tone Generation

Version 0.2. Copyright © 2016 by:

m _Jenkin + h Roumani

OPS/images/pasted-image-1.png
Tone Generator

VA VAV,

Amplitude
0000 —e

Frequency
0000 —e

Use the sliders to adjust
frequency and amplitude.

OPS/images/pasted-image.png
Frequencyratio 1 98 54 43 32 5B 158 2

Frequency (Hz) 262 204 330 349 392 440 494 523

OPS/images/Collage1022.png
5) MOoBILE DEVELOPMENT

Copyright © 2015 by: $
m Jenkin + h Roumani

