Table of Contents
1. Introduction
2. Background
2.1 Rock, paper, scissors
2.2 Displaying images on the screen
2.2 ImageView and Android layout
2.3 Saving the activity state
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
This lab deals with the game ‘Rock, Paper, Scissors’. This is a game played by two people in which both people choose from one of three symbols (rock, paper or scissors) at the same time. When both players show their selection, the winner is chosen as follows: paper beats rock, rock beats scissors, scissors beats paper. Normally when people play the game they use their fingers to indicate the symbol that they are selecting. Rock is depicted as a closed fist. Paper by an open palm. Scissors by the index and middle fingers forming a ‘V’ shape. Sometimes its not possible to find someone to play Rock, Paper, Scissors with. That is where this week’s lab comes in. In this lab you will write an application for the Android platform that plays against a human opponent.
Practically, what this lab requires you to do is to modify an existing skeleton of the code. Once you have the basic functionality complete, work on the ‘C’ exercises for potential extensions to the basic application. Exercise your creativity.
As with all labs in EECS 1022, each lab is laid out as an ePub. It is expected that you will have read the lab electronic book prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. Nor will you receive grade credit for this lab if the pre lab exercises are not completed properly. Exercises in the lab are to be documented in your ePortfolio.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.
2.1 Rock, paper, scissors
Rock, paper, scissors is an ancient game, typically played by children. In the traditional version of the game played in the west, two opponents play a game of rounds. In each round, each player chooses simultaneously one of three symbols: rock, paper or scissors, and a winner of that round is declared based on the symbols used. Paper beats rock. Rock beats scissors. Scissors beats paper. If its a tie, then the round is played again. Try it against a human opponent. You will observe that each symbol is fair, in that it beats exactly one opponents. You might imagine that this is a game without strategy or skill, but it actually turns out that there are powerful strategies that work by analyzing your opponent’s strategy and then optimizing your strategy based on that. Strangely, if the opponent actually plays randomly such a strategy does not work. Fortunately, humans are rarely truly random, even if they think they are trying to be.
The game goes by different names in different cultures and the symbols used to depict the symbols changes as well. There are even extensions to the game, most well known perhaps is the rock, paper, scissors, Spock, lizard game which has been featured on the popular TV show ‘The Big Bang Theory’. In the rock, paper, scissors, Spock, lizard version of the game each symbol beats exactly two other symbols. Specifically, Spock smashes scissors and vaporizes rock but is poisoned by lizard and disproven by paper. Lizard poisons Spock and eats paper but is crushed by rock and decapitated by scissors. And so on. The mathematics of rock, paper, scissors and its variants can get quite complex.
Regardless of the complexity of the game and the development of an effective strategy for playing it, observe what is required of a person to play the game. Some mechanism is required to synchronize the two players so that they choose their symbols at the same time, and some mechanism is required to choose a random symbol and to display it to the user.
In the child’s version of the game, typically the two players count down from three in unison, waving their hands at the same time to the beat of the countdown. When they would get to zero, they instead show their symbol using their hands. Scissors with a V-shape, Rock with a fist, Paper with an open palm. Given that an Android device lacks a hand, the software will have to do something else, perhaps show a picture. Similarly, some mechanism is required to synchronize the count, such as having the user press a button. You will start with these options, and then extend the code in the section ‘C’ exercises.

2.2 Displaying images on the screen
There are many ways of putting imagery into an Android application. One might retrieve the images from the web, have the user draw them, and so on. One very straightforward way of displaying pre-deployed images in an Android application takes advantage of the fact that many user interface elements rely on imagery and thus the Android user interface software has tools built into it that make displaying certain kinds of images (e.g., jpegs) very simple. Figure 1 shows the layout of the Rock,paper,scissors application folder that you can download from the course web site. Images placed in this folder are bundled into the Android application when it is built. Furthermore, Java ‘understands’ these images, both programmatically — you can refer to them in your Java code — and also in terms of the layout of the user interface elements that go into your application — you can just ‘place’ these images within appropriate parts of the user interface.
￼[image: pasted-image.png]
Figure 1. Structure of the Rock,paper,scissors Android Studio structure. Note the drawable folder under the res (resources) folder. It contains jpeg files (images) whose names maps to valid identifier names in Java.

To illustrate this, have a look at the activity_rps.xml layout file associated with the Rock,paper,scissors application (shown in Figure 2). The layout consists of many pieces but one is an ImageView. ImageView’s are Android user interface components for viewing images. One field of the ImageView is the src (source). This is where the image for the ImageView is defined. It can be any image that the Application has built into it. The drop down menu to the right of the src field gives you a list of all of the images that are currently known to the application. If you choose a different image, that one is displayed.

￼[image: pasted-image-1.png]
Figure 2. Playing with image src (source) in an ImageView.
Choose a different image and it will be displayed. Add additional images to the drawable directory and they will be added to the selected list, and so on.
Programmatically, each image in the drawable is assigned an identifier that allows Java code to refer to the drawable image. If the image rock.jpg is in the drawable folder, then the int (integer) identifier R.drawable.rock will refer to it. (One of the reasons that the file names have to be valid Java identifiers is that they get mapped to this. Simple, lower case file names are a good choice here.) the ImageView class defines a method setImageResource() that takes a drawable identifier as its argument, thus to change the imageView to display the rock.jpg image, rather than whatever is being displayed now, the following suffices:
ImageView imageView = (ImageView) findViewById(R.id.imageView);
imageView.setImageResource(R.drawable.rock);

2.2 ImageView and Android layout
The ImageView screen display element (also known as a widget) can display an image in a number of different ways. It can, for example, stretch or shrink an image to fit the space that it has to display it in. It can tile copies of the image within the space it has, and it can choose to centre (or not) the image within the space. These, and other options are controlled by manipulating the xml description of the ImageView. The code that is provided to you in this lab was designed to layout the image so that it is shrunk or expanded as needed. The reason for doing this has to do with the complexity of drawing display assets on a range of different screens.
One of the challenges in user interface design for mobile software development is the range of screen sizes that are possible. Unlike traditional desktop displays where generally there is ample screen real estate, on mobile devices such real estate is often at a premium. This causes a range of problems when displaying text (how big should the text be) and when drawing images. You may have noticed that Android Studio allows you to test your user interface on a number of different devices in different screen orientations. If you try different display devices and different screens you will see that this choice — of scaling the image to fit — works for a wide range of displays, from TV’s to watches. So this choice seems a prudent one.
Getting ImageView to display an image this way is a bit of an art. It turns out that ImageView scales images based on the size of its container. So in order to have ImageView behave well with the button on the display it is necessary to wrap the ImageView inside another container whose size is predicated on how much space is left on the screen after dealing with the size of the button. Hence the relative complexity of the layout xml file for this activity. Try playing around with the layout file to obtain different layout strategies. You can always go back to the one provided with the lab if you are unhappy with your results.

2.3 Saving the activity state
In a traditional (desktop) computing environment, programs start, run for a while, and then stop. Mobile software tends more towards a model in which software starts, runs, then is asked to go dormant for a while. It is then restarted from where it was prior to going dormant. In the Android world, the displayed screen is backed by an Activity class. You may have observed that the UI class in your apps extends an AppCompatActivity, which is an Activity. Activities have a relatively complex lifecycle: they start; they may stop; they may be suspended and restarted; and so on. Each of these lifestyle changes is associated with a callback (a method) that deals with application-specific requirements associated with a lifetime change. The code snippets provided in the labs to date ignore most of these lifetime changes and this explains why they behave poorly when you do things like change the active application or rotate the screen. (When you rotate the screen, the Android OS essentially suspends the program in one screen orientation and then wakes it up in the other.)
When your activity is suspended — for whatever reason — the Android OS calls your activity’s onSaveInstanceState method. This method is supposed to save any and all state information about your application. Similarly, when your application is resumed, the Android OS calls your activity’s onRestoreInstanceState method. In both cases, the callback is passed a reference to a Bundle object. The Bundle object is a dictionary (aka a map) that maintains a relationship between keywords (strings, providing a name for each item that is being stored) and their values. For example, suppose you wanted to remember the image that is currently being displayed on the screen as “image”, and you wanted to remember this as an int (integer). Then the following pair of callbacks would do the work, where curDrawable is an int field that describes the image currently on the screen:
@Override
protected void onSaveInstanceState(Bundle outState)
{
 System.out.println("onSaveInstanceState called");
 super.onSaveInstanceState(outState);
 outState.putInt(“image”, curDrawable);
}

@Override
protected void onRestoreInstanceState(Bundle savedInstanceState)
{
 System.out.println("onRestoreInstanceState called");
 super.onRestoreInstanceState(savedInstanceState);
 curDrawable = savedInstanceState.getInt(ON_SCREEN_DRAWABLE, R.drawable.splash);
 // update the display using curDrawable here …
}

3. Exercises
The goal of this lab is to develop a “rock, paper and scissors” application for an Android device and then to build on this application so that it displays a random colour on the screen in response to user input. Along the way you will develop a number of user interface displays using Android Studio. You will optionally test your application in the simulator as well as deploying it on a real Android device.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercised prior to attending the lab. You will get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the zip file ROCK.zip from the jr site. It is a zipped file (aka an archive) so unzip it and place the unpacked folder (named ROCK) in the AndroidStudioProjects folder in your home directory.

	Launch AndroidStudio from the Applications, Programming menu of your VBox and open the ROCK project.

	Review the structure of the app. Locate the images that the application uses in the drawable folder. (Exciting aren’t they?) If you have access to a paint program on your computer, use these images as templates to produce more personalized versions of these. splash.jpg is a splash screen, image1.jpg, image2.jpg and image3.jpg will do the countdown 3, 2, 1, and rock.jpg, scissors.jpg and paper.jpg will display your images for rock, scissors and paper. Bring these revised jpeg’s to you in class (put them in your dropbox account, on a memory stick, or on your laptop if you are bringing it to class).

	Review the file RPSActivity.java. What methods does it define? Look at the buttonPressed method. This method is invoked when the button on the screen is pressed. What does it do?

	Review the file activity_rps.xml. This is the xml file that describes the screen display associated with RPSActivity.java. What classes does it use to display the screen? Google those classes and learn what they do. What is the name of the button and ImageView used?

	If you will be using your own laptop in the lab then run the code as provided. It will compile and run, although as provided it has little functionality.

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain An android tablet and a USB cable. Ensure that the Android device is properly charged (in any event, plug it in when you get it so that it is charging when not being used).

	You should ideally use your own laptop but if you forgot to bring it then borrow one from the lab monitor.

	You will also need to take videos of your results for your ePortfolio. Use your phone for that or borrow a camera and tripod from the lab monitor.

	Connect the Android device to the laptop using the USB cable.

	Start your VBox; launch Android Studio; and open the ROCK project that was downloaded in the pre-lab.

	Run the application, as provided, on your tablet. What does it do?

	The on screen display was designed to work on a range of different devices. Using Android Studio try out a few different devices as the display and in different orientations. Does the display (more or less) work on the devices shown? Which device does it display the most poorly on?

	You are now going to start the process of turning the code provided into an application that plays rock, paper, scissors. Basically your program is going to display a sequence of images, one after the other, as the button is pressed. The basic idea is shown in in Figure 3.

￼[image: pasted-image-2.png]
Figure 3. Basic flow of the application. Basically the application needs to display one five different screens. A splash introductory screen, then a countdown of screens, 3, 2, 1, then the applications’ choice of between rock, paper or scissors. The motion between the screens is controlled by a button press.
	Somehow your program is going to have to maintain what its current ‘state’ is. That is, is it displaying the splash screen, or one of the counting screens, or the guess screen at the end. We could do this in many different ways in Java. One simple way would be to have an integer (int) field called curState which is 0 if the splash screen is being displayed, 1 if the 3 screen is being displayed, 2 if the 2 screen is being displayed, and so on. Then in the buttonPressed callback, the value of curState would be updated appropriately (increasing by 1 each time the button is pressed and wrapping around when the button is pressed on the answer screen. Modify the code provided so that your code updates the value of curState as described above. Your code should also change the image being displayed on the screen so that it matches the proper state as shown in Figure 3. For the moment, always assume that the rock image will be shown as the answer. Did the choice of using an int for curState ‘work’?

	Augment to solution you arrived at above by not choosing just the rock image for the answer, but rather choosing an image randomly. Declare a field random of type Random in your class, and initialize it to be a new Random() object. Don’t forget to import java.util.Random in your code. Then when you are about to display the rock image, call random.nextInt(3) to obtain a random number that is either 0, 1 or 2 with equal probability. Use this ‘three headed coin toss’ to choose which one of rock, paper or scissors to display. Run the resulting code. And test it. How would you know that your code is running correctly?

	Record your experiences in your eReport. What problems did you encounter when working through this code? Did you make it run on your own device or on of the department’s? What ‘bugs’ exist in your application? What happens when you rotate the screen or close the application in the middle of testing? What should happen?

C. Advanced
	Modify the images stored in the application so that they are more exciting than those provided. In particular, change the splash image so that it provides instruction to the user. Record your modified program’s behaviour in your eReport.

	Modify the text in the button so that it makes (more) sense than ‘start’. For example, when the splash screen is being displayed it might say ‘start’. When the countdown screens are displayed, it might say ‘continue’, and when the result screen is being displayed it says ‘Play again?’. Record your modified program’s behaviour in your eReport.

	Modify the code so that it plays rock, paper, scissors, lizard, spock. If you create new images in the drawable directory, they can be added to the Java code quite easily. Record your modified program’s behaviour in your eReport.

	Save the state of the game so that the game does not reset if you rotate the screen. Record your modified program’s behaviour in your eReport. Demonstrate that your code ‘works’.

	Rather than using a collection of integers (ints) to represent the state of the game, a more principled approach would be to use an enumeration (enum in Java). An enum in Java is a type that restricts variables of that type to one of a finite number of symbols (an enumeration of symbols). So for example:

private enum States {SPLASH, THREE, TWO, ONE, ANSWER};
private States curState = States.SPLASH;
The text above declares a new enumeration ‘States’. Variables of type ‘States’ can only have one of the five values States.SPLASH, States.THREE, and so on. Modify your code to use an enumeration like this, rather than an int to represent states. What changes did you have to make in your code as a result of this? Record this in your eReport.

4. Further Reading
There are many tutorials on Android programming on the web. The following links may be useful
https://developer.android.com/index.html
The image on the front cover of this ePub is from an 1820’s print of geisha playing kitsune-ken, a variant of Japanese rock-paper-scissors. Image from the Victoria and Albert Museum. Image is in the public domain.

	

5. Credits￼[image: Collage1022.png]

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 Rock, paper, scissors

		2.2 Displaying images on the screen

		2.2 ImageView and Android layout

		2.3 Saving the activity state

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
= ROCK, PAPER, SCISSORS Loris

Mobile Development
Rock, Paper,

Scissors

o

Version 0.1. Copyright © 2015 by:

m _Jenkin + h Roumani

OPS/images/pasted-image-1.png
© RPSActivity.java % | [activity_rps.xml x

Palerte %1 [Le ENexusa- - @appTheme
£ Layouss &-
] FrameLayout

[T inearLayout (Horizontz
[~ LinearLayout (Vertical)
[TableLayout
= TableRow
7] GridLayout
RelativeLayout
[widgets

Plain TextView

Large Text

Medium Text

Small Text

o Button

o1 small Button
RadioButton
CheckBox
Switch

— ToggleBution

& imageButton
Bl imageview

RPSACtivity -

B

Component Tree

. v Device Screen

“ RelativeLayout

elativelayout
2l imageView - @drawable/splash

o4 button - Start

|

Properties.

v

» padding i
paddingénd
paddingstart
scaleType
src @drawable/splash
stateListAnimator
textalignment
theme
tint

OPS/images/pasted-image.png
Android ~ O & | B

v Ciapp
> Clmanifests

ec51022.rockpaperscissors
(€ % RPSActivity
» Eljr.eecs1022.rockpaperscissors (androidTest)
v Cares
v Eldrawable
i image Ljpg
[image2.jpg
[i] image3.jpg
il paper.jpg
[rock jpg
B scissors.jpg
il splash.jpg
v [Ellayout
& activity_rps.xmi
> Elmenu
» Elmipmap
> Elvalues
» (@ Gradle Scripts

OPS/images/Collage1022.png
5) MOoBILE DEVELOPMENT

Copyright © 2015 by: $
m Jenkin + h Roumani

OPS/images/pasted-image-2.png
SPLASH

Bution
Press

Bution
Press

Bution
Press

Bution
Press

Bution
Press

RANDOM
IMAGE

