Table of Contents
1. Introduction
2. Background
2.1 An Initial Specification of Pig Latin
2.2 A More Complete Specification of Pig Latin
2.3 String Processing in Java
2.4 Text Input and Output on the Android
2.5 Spoken Output
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
This lab deals with the language ‘Pig Latin’. Pig Latin is a fictional language based on English that is designed to obfuscate English in such a way that the resulting language sounds like ‘classic latin’, but is easily understood by an English speaker. The actual process of converting one language into another is incredibly difficult, as subtle meanings in one language can often be very difficult to translate into another. That being said, word by word translation can be straightforward. There is a simple rule on how one word should be translated into another, and machines are very good at applying this type of syntactic substitution.
At the end of this lab you will build an app that performs English->Pig Latin translation. It accomplishes this by applying a very simple set of rules to the input text. As you will discover in the lab, actually defining this set of rules so that it covers every possible input can be very difficult. Indeed, a common task in software development is taking what the user thinks is a complete specification of the problem and converting this into what is a more formal specification of the problem. (Solving this typically pays somewhat more than solving the problem in some programming language.)
As with all labs in EECS 1022, each lab is laid out as an ePub. It is expected that you will have read the ePub prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. During your lab session, you will perform a number of in-lab and advanced exercises, and you will document your results in your ePortfolio.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.

2.1 An Initial Specification of Pig Latin
If you look on the web you will find that there are many different specifications of the process of turning English language sentences into Pig Latin. But the basic set of transformational rules can be found on the web:
	The input consists of a sequence of words.

	The output consists of the same sequence of words in which individual words are changed according to the following rules

-If the word starts with a consonant, then all the letters up to the first vowel are moved to the end of the word and the sequence ‘ay’ is added at the end of the word.
-If the word starts with a vowel, then the sequence ‘way’ is added to the end of the word.
So, given the above set of rules, the input ‘hello egg’ would be translated into Pig Latin as ‘ellohay eggway’. Try following the rule set above on some English phrases of your own choosing. Are the set of rules ambiguous? Complete?
In many software projects the initial specification of the problem is incomplete, ambiguous, inconsistent or even just plain wrong. The schoolyard specification of the process of translating English into Pig Latin is silent on a wide range of issues, including
	What are the set of vowels? Is ‘y’ a vowel?

	What is a word? Are words separated by blanks? punctuation?

	What do you do with capitalization?

	What do you do with punctuation?

	What do you do with words that lack a vowel?

And you can probably think of more questions beyond these.

2.2 A More Complete Specification of Pig Latin
The task of developing a formal specification for a particular problem is a crucial component of the software development process. If you don’t know exactly what it is the software is supposed to do, how can you possibly know if your solution is doing it correctly? So, here is a somewhat more complete specification of the problem of converting ‘English’ into Pig Latin.
-The input consists of a sequence of non-blank characters separated by whitespace (blanks, tabs, etc.). Call each non-blank character sequence a word.
-The output consists of a sequence of words separated by a single space character, for every word in the input there is a corresponding word in the output, such that the order of the input sequence matches the order of the output sequence.
-If the input sequence is empty (no words), then the output sequence should be empty.
-In the input, a word will only contain characters in the range ‘a-z’ and ‘A-Z’. If a character in an input word is upper case (‘A’-‘Z’) convert it to lower case.
-If the input word contains no vowel (one of ‘a’, ‘e’, ‘i’, ‘o’ or ‘u’) the corresponding output word is the input word with ‘ay’ appended to it. So the input word ‘kk’ becomes ‘kkay’.
-If the input word starts with a vowel, the corresponding output word is the input word with ‘way’ appended to it. So the input word ‘egg’ becomes ‘eggway’.
-If the input word does not start with a vowel, the corresponding word is the input word with all of the letters up to the first vowel moved to the end of the input word, with ‘ay’ appended to it. So the input word ‘truck’ becomes ‘ucktray’.
Is this specification complete? Can you think of an input sequence that is not covered by the rules given above? How do you think this input sequence should be treated in terms of a Pig Latin translator?
2.3 String Processing in Java
For reasons related to performance and efficiency, Java provides two different classes to represent sequences of characters: String and StringBuffer. Objects created from the former are immutable (their state cannot be changed after creation) while instances of the latter are mutable. It is straightforward to convert from a String to a StringBuffer (StringBuffer has a constructor that takes a String as an argument) and from a StringBuffer to a String (StringBuffer has a toString() method.
Java provides a very rich API for processing strings. This includes:
	Powerful methods such as: length, charAt, substring, indexOf, toLower / UpperCase, trim, replace, and split.

	The operator + which concatenates strings.

	Regular expressions to detect and extract patterns in a string.

	The StringTokenizer class to break a string into ‘tokens’ (strings) based on some way of recognizing the start/end of a token.

2.4 Text Input and Output on the Android
Mobile devices such as phones and tablets are not really the best devices for text input. Many lack proper keyboards, and hence, must simulate keyboards using on screen icons. Others, such as many BlackBerry devices, provide small keyboards but even these are not really well suited for large amounts of text input. That being said, text input is often necessary and thus the user interfaces of such devices provide some mechanism for input. On the Android platform, the EditText widget provides basic text input functionality. When you click on an EditText this will (by default) bring up a soft keyboard through which you can enter information. While the keyboard is being displayed most other input is disabled, and one of the keys on the soft keyboard is reserved to enable the user to indicate that text input has finished. The template program provided for this lab demonstrates how EditText can be used in an Android app.
Text output on a mobile device is also complicated by the relatively small form factor associate with the device. On workstations, windows are typically quite large and scrolling text is the norm. Although it is possible to have similar structures in a mobile app, it can be difficult to read large amounts of text on such devices. The TextView widget, used in the skeleton application provided for this lab, is the standard mechanism for displaying text in an Android application. In order to allow for substantive text output, the TextView widget is enclosed within a ScrollView widget. This ‘scrolls’ the text so that larger amounts of text can be viewed than might normally be viewed in the small window available on the device.

2.5 Spoken Output
Printed (displayed) text is not the only way of communicating text output to the user. Many mobile devices provide a text to speech (TTS) mechanism to automatically convert text output to audio. The Android platform utilizes the Google Text to Speech engine. Essentially, the TTS engine provides a method that takes a string representation of an English (or Pig Latin) utterance, and then reads it to the user. Although the process of setting up the TTS engine is involved, actually using it is quite straightforward. One caveat with using it on the Android device is that the entire engine can be disabled by the user. To check that your Android device is properly set up for TTS, go to the ‘Settings’ application. Under the ‘Accessibility’ setting, click on the ‘Text-to-speech output’. The ‘Google Text-to-speech Engine’ should be selected. You can test that everything is working properly, by clicking on ‘Listen to an example’. If your device talks to you, then everything is working normally.

3. Exercises
The goal of this lab is to develop an application for an Android device that translates English input into Pig Latin.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercises prior to attending the lab, nor will you receive credit for the lab itself. You will get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the file PIG.zip from the jr site. It is a zipped file (aka an archive) so unzip it and place the unpacked folder (named PigLatin) in the AndroidStudioProjects folder in your home directory. Every Android project you build will appear as a sub-directory of AndroidStudioProjects. Hence, you can easily back up your project, or copy it to your cloud drive, by simply zipping its subdirectory.

	Launch AndroidStudio from the Applications, Programming menu of your VBox and open the PigLatin project.

	Examine the project’s structure as it appears in the left pane. Note in particular the items under the app heading.

	Locate PigLatinActivity.java and examine its content in the editor pane. This file contains code that links the translation engine to the UI and to TTS.

	Locate PigLatinTranslator.java and examine its content in the editor pane. This file contains code that translates English to PigLatin.

	Locate activity_pig_latin.xml and examine its content in the editor pane. This file contains the UI and you can view it as XML (by clicking the Text tab at the bottom of the editor pane) or as a simulation on an Android device (by clicking the Design tab at the bottom of the editor pane and selecting any desired device from the drop-down list at the top of the editor pane). Examine both views and note, in particular, how the Translate button is linked to the activity code. Note also the IDs of the input and output views and how the input text edit is sandwiched in a scroll view container.

	Complete the quiz associated with this lab on Moodle. You must receive 80% on this quiz in order to take part in the lab. You are expected to complete the pre-lab evaluation on your own but you are encouraged to complete the lab with the textbook, lab ePub, the web, and the files associated with the lab as resources. You may take the test many times, but you will not be able to participate in the lab without completing the online lab, nor will you receive a grade for this lab if you have not completed the pre-lab quiz successfully. You must bring proof that you have obtained 80% or better on the pre-lab quiz with you to the lab. You can, for example, bring a screenshot of the course Moodle page that shows your name and quiz results (quiz completion date, time taken, and grade).

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain

	An android tablet and a USB cable

	You should ideally use your own laptop but if you forgot to bring it then borrow one from the lab monitor.

	You will also need to take videos of your results for your ePortfolio. Use your phone for that or borrow a camera and tripod from the lab monitor.

	Connect the Android device to the laptop using the USB cable.

	Start your VBox; launch Android Studio; and open the PigLatin project that was downloaded in the pre-lab.

	Turn the tablet on (by pressing the upper button) and unlock it (by dragging the lock).

	Make sure your device is captured by the VBox: From the Devices menu, click on USB Devices, and then select your device (e.g. Asus Nexus 7).

	Click on the green arrow at the top to run the app. There will be a delay while the code is compiled and bundled.

	We are going to run our app directly on the device. Hence, select the connected Android device and click OK. If your device prompted you to allow USB debugging then do so.

	Your app is now on the device and it should start automatically.

	Test out the various input possibilities in the application. Try out each of the buttons. Enter text, and push the various buttons.

	Ensure that the TTS system is operating properly.

	In your ePortfolio, describe

13.a)What this app is supposed to do.
13.b)How the process of converting English text to Pig Latin is being performed.
13.c)The formal definition of how a sequence of characters is to be translated into Pig Latin
13.d)Include a video of the application running without translation working (aka as the application was provided to you).
	You are now going to start the process of turning the code provided into an application that translates the input (assumed to be English) into Pig Latin.

	Add a main method to the PigLatinTranslator.java class so you can test your work. In it, create a PigLatinTranslator instance based on some test case English text and output its pig translation to the screen. Right-click the main method and run. Capture the Logcat in your ePortfolio.

	Try supplying an empty input. What happens? What happens with words with punctuation? Multiple blanks?

	How does the translate method ensure that there is exactly one space in between words in the translation? Does it also append a space after the very last word?

	Implement the translateWord method based on the rules provided in this ePub.

	Test your implementation using the main method. What sorts of words would be good to test? Words with no vowels? Words with a vowel at the beginning? end? both? What tests would convince you that the int variables capture the position of the first vowel in the word?

	Run the app on the device and make sure the translation is done correctly in all cases.

	

	Record your experiences in your ePortfolio. What problems did you encounter when working through this code? Did you make it run on your own device or on of the department’s? What ‘bugs’ existed in your application? How did you find them? What tests did you design? Were there ones that you missed?

C. Advanced
	Personalize the icons used in your application.

	Explain why the CLEAR button is not working. What do you think this button should do?

	Implement this CLEAR behaviour that you specified above.

	Augment your application so that the contents of the edit window and text window remain unchanged when the application is rotated or terminated.

	Document these tasks in your ePortfolio and capture their results in video.

4. Further Reading
There are many tutorials on Android programming on the web. The following links may be useful
https://developer.android.com/index.html
The image on the front cover of this ePub is from an 1820’s print of geisha playing kitsune-ken, a variant of Japanese rock-paper-scissors. Image from the Victoria and Albert Museum. Image is in the public domain.

	

5. Credits
￼[image: Collage1022.png]

OPS/images/cover-image.png
= PG LTI ror1s

Mobile Development

Pig Latin

Version 0.2. Copyright © 2015 by:

m _Jenkin + h Roumani

OPS/images/Collage1022.png
5) MOoBILE DEVELOPMENT

Copyright © 2015 by: $
m Jenkin + h Roumani

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 An Initial Specification of Pig Latin

		2.2 A More Complete Specification of Pig Latin

		2.3 String Processing in Java

		2.4 Text Input and Output on the Android

		2.5 Spoken Output

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

