Table of Contents
1. Introduction
2. Background
2.1 Using the collections framework
2.2 Dealing with input in Hexapawn
2.3 Representing the board
2.4 Hexapawn game play logic
2.5 Your Strategy
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
This lab deals with the game Hexapawn. Hexapawn is a game for two players invented by Martin Gardiner and described in a 1962 article in Scientific American. Hexapawn is a famous for a number of reasons, not the least of which is that it has been used as an example to demonstrate how machines can learn strategies for various games. Although developing a learning strategy for Hexapawn is not particularly difficult, in this lab you will develop an application that plays Hexapawn based on a strategy that you will derive yourself.
Hexapawn is played on a three by three chessboard. The two players sit on either side of the board and move their pieces in alternating turns. One player moves the white pieces, the other the black pieces. The goal of the game is to be the first player to move one of their pieces from one side of the board to the other side of the board. As in chess, the player with the white pieces always moves first. The individual pieces move like pawns in the game of Chess. The specific moves that the pieces are allowed to make are:
	A piece can move forward one square if the destination square is empty.

	A piece can capture an opponent's piece by moving diagonally. That is, if there is an opponent's piece diagonally adjacent then the player can move diagonally and take the opponent's piece. The captured piece is removed from the board.

Note that these moves are the same moves as pawn moves in chess, except that no double move or en passant capture is possible. The valid moves are illustrated in Figure 1.
A player wins when one of the player’s pieces makes it to the other side of the board. A player looses when it is their turn to move and they are unable to make any legal moves. (This includes having no pieces left to play.)
The initial board position has all of the white pawns on one row of the board (typically the bottom), with all of the black pawns on the other side of the board. The white pawn player moves first. This player has exactly three possible opening moves, each one of the pieces can be moved forward exactly one square. There are no possible capturing moves. Then the player playing black gets to move. This player will be able to move some pieces forward and to capture with some pieces. Eventually one or the other player will win.

￼[image: pasted-image.png] ￼[image: pasted-image-1.png]
(a) Moving forward (b) Capturing piece
Figure 1. Valid moves in Hexapawn

Try playing the game with one of your team mates. Can you develop a winning strategy for the white player or for the black one? Why? Do you think a winning strategy exists for other classic games such as chess or checkers?
This lab requires you to build an Android application that plays Hexapawn as the black player. Fortunately, you will be provided with a skeleton application that deals with much of the details involved in developing an appropriate user interface (UI) for the application. Unlike earlier labs in this course, the UI for Hexapawn is relatively complicated. The pre-lab portion of this week’s lab involves walking through the relatively large code base that makes up the lab, and understanding the portions of the code you will be manipulating, and how the various parts of the code go together to solve the Hexapawn problem.
As with all labs in EECS 1022, each lab is laid out as an ePub. It is expected that you will have read the ePub prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. During your lab session, you will perform a number of in-lab and advanced exercises, and you will document your results in your ePortfolio.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.

2.1 Using the collections framework
Java provides a number of extremely useful classes — defined in the java.util package — that are used to deal with collections of things. In this lab you will be dealing with two different Interfaces defined in this collection, the java.util.List interface and the java.util.Map interface.
List provides a mechanism for representing an ordered collection (a list) of similar things. Given a list, you can add things to the list, search through the list for things, and so on. In the Hexapawn application, the List interface is used to group together possible moves that the human or the machine might make.
Map provides a mapping (a map) between a key and a value. Maps occur in many applications. In the Hexapawn application, you will use a map to represent the BLACK’s strategy; i.e. the appropriate move that the machine should make for a given board configuration.
In Java, interfaces are implemented using specific classes. In this laboratory you will use the java.util.ArrayList class to implement the List interface and the java.util.HashMap to implement the Map interface.
The full set of methods defined on Maps and Lists can be found in their APIs. Maps and Lists are very generic mechanisms. This makes their use open to abuse, and the introduction of complex and subtle errors in programming with them. Fortunately, Java, and the collections framework, supports the notion of generics. Generics are language structures that allow the user of a general purpose representation, such as a Map or a List, and to restrict the scope of the representation. In Java, Generics also enables the compiler to save the programmer effort in terms of casting returns from generic containers back to more restrictive classes. (Generics also provide substantive advantages in terms of maintaining code bases for general purpose representations, but more on this in later courses.)

2.2 Dealing with input in Hexapawn
In designing an interface for Hexapawn, a key requirement is providing the user with the ability to select which piece to move next, and to where. Now there are certainly many ways of doing this. It would be possible, for example, to have the user enter (row, column) pairs for the piece to move and its destination. But that would be difficult for a user on a mobile device. A more reasonable approach for a portable device would be to have the user indicate the location of the piece to move, and the location to move to, by touching those locations. In order to make that work, the app needs to allow the user to select both of these locations; to first select the location of the piece to move, and then select the destination.
In this app, this is accomplished by representing the board using nine buttons, one corresponding to each possible board location. Each button press triggers its callback. If the buttons are to be used for both selecting which piece to move, and where to move it, it becomes necessary to think of two states for the input process: one for initial piece selection, and one for selecting where to move the piece to. This suggests that the design of the button callback code will require at least two states: one for the user selecting which piece to move, and a second to select where that specific piece should move to. (The code uses a third state when no input is possible from the user.) Furthermore, in order to simplify the eventual code and to guide the user, we can design the user interface so that the user is restricted to only selecting pieces that have a valid move and only highlighting the locations that the selected piece can move to. (This has the added bonus of avoiding having to validate the user’s input, the user will be prohibited from entering invalid moves.)
The bulk of the interaction logic in the Hexapawn application takes place in the onClick method. Each of the piece locations are represented as Button’s in the Android user interface framework and each has its onClick method bound to the same method in the Java code.
The buttons array, defined near the top of the HexapawnActivity class maps play board row and column positions to the corresponding buttons in the Android user interface. Specifically, board[row][col] identifies the Button at board position (row, col). Observe how this array is manipulated. For example, the deselectAll method makes all of the buttons inactive. It accomplishes this by iterating over all of the combinations of row and column and setting the enabled state of the corresponding button to be false. This method is utilized by the makeListSelectable method which makes a list of board locations selectable. makeListSelectable first deselects all board positions and then iterates through the list of board positions and makes only those positions found in the list selectable. A slightly more complex method makeWhitePiecesSelectable iterates over all of the board positions and only makes selectable those locations that contain white pieces that have valid moves. The line of code that does the work here is:
boolean enabled = (curBoard.getContents(pos) == Board.Contents.WHITE_PIECE) && (curBoard.validWhiteMoves(pos).size()>0);
Observe what this line of code does. It sets the boolean variable enabled to either true or false. Java evaluates expressions from left to right. So first Java compares the contents of the board at the position pos. Board positions are either black, white or empty. If the location is not Board.Contents.WHITE_PIECE then the equality test is false. Java does not evaluate the right hand side of the && operator if the left hand side is false, so if the location does not contain a white piece, then the statement is done. Now suppose that the location contains a white piece. Then the set of possible moves for a white piece at pos is evaluated, and if the number of moves is greater than zero, the right hand side is also true, and the entire expression is true.

2.3 Representing the board
A key question in designing any large complex piece of software is the nature of the representation to be used to represent concepts in the code. In a game like Hexapawn a key question is “how to represent the board?” In the code provided you will find the board is represented by the class Board. It uses a BoardPos class to define positions on the board. If you read through the Board class you will find a range of methods (hasWhiteWon(), hasBlackWon(), canBlackMove(), canWhiteMove()) that lets you ask questions about the current board state. The method validWhiteMoves(BoardPos pos) is worth reading through. It produces a List of moves that the white piece at ‘pos’ can move to.

2.4 Hexapawn game play logic
In the end, your task in this lab is to figure out how to get the machine to play Hexapawn. Now in the original Martin Gardiner Hexapawn paper, Martin showed how it would be possible to have a collection of matchboxes1 learn how to play Hexapawn. Here we take a somewhat simpler approach. Hexapawn is sufficiently simple that we can enumerate all possible board positions. How bad could it be? Well, it can’t be any worse than 3^9 (every square could be empty, or contain a white piece or a black piece). 3^9=19,863, so that’s a fair number of possible board positions. Of course, that overestimates the size of the problem. Most of these positions are impossible, or correspond to positions where one player or the other has won. To see this, observe that white (the human) moves first and black (the machine) responds. There are only three possible human moves, so there are only three possible situations that the machine has to content with. Assuming that black’s move is deterministic (not random in any way) then then at most there are 9 possible board positions at the second move, and 27 moves after that (and after that someone will have won). But its not even that bad, as you will see.

2.5 Your Strategy
Your contribution to the codebase will consist of three things:
	The constructor of the Strategy class must initialize the state based on your strategy for winning. Remember that the machine plays the BLACK side so you need to enumerate every possible board state and indicate, for each, how BLACK should play. For example, if the board’s state is

"BBBW WW”
which occurs when WHITE moves the leftmost piece up; i.e. from (2,0) to (1,0), then the best BLACK move could be to capture it; i.e. move from (0,1) to (1,0). This can be accomplished in code by a statement like:
this.blackLogic.put("BBBW WW", new BoardMove(0, 1, 1, 0));
	The move method (also in the Strategy class) must determine the best move based on the passed board’s state, key, and return it.

	The blackMoves method of the HexapawnActivity class must make the move by first determining the move (using the black instance) and then updating the board’s state (using the curBoard instance). Finally, it needs to update the UI to inform the user textually how BLACK has moved.

3. Exercises
The goal of this lab is to develop an application for an Android device that plays Hexapawn as the black player.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercises prior to attending the lab, nor will you receive credit for the lab itself. You will get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the file HEX.zip from the jr site. It is a zipped file (aka an archive) so unzip it and place the unpacked folder (named Hexapawn) in the AndroidStudioProjects folder in your home directory.

	Launch AndroidStudio from the Applications, Programming menu of your VBox and open the Hexapawn project.

	Examine the project’s structure as it appears in the left pane. Note in particular the items under the app heading.

	Examine the provided Java classes and acquaint yourself with the overall role that each plays.

	Examine the user interface by looking at the XML file and the emulated view.

	 Complete the quiz associated with this lab on Moodle. You must receive 80% on this quiz in order to take part in the lab. You are expected to complete the pre-lab evaluation on your own but you are encouraged to complete the lab with the textbook, lab ePub, the web, and the files associated with the lab as resources. You may take the test many times, but you will not be able to participate in the lab without completing the online lab, nor will you receive a grade for this lab if you have not completed the pre-lab quiz successfully. You must bring proof that you have obtained 80% or better on the pre-lab quiz with you to the lab. You can, for example, bring a screenshot of the course Moodle page that shows your name and quiz results (quiz completion date, time taken, and grade).

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain

	An android tablet and a USB cable

	You should ideally use your own laptop but if you forgot to bring it then borrow one from the lab monitor.

	You will also need to take videos of your results for your ePortfolio. Use your phone for that or borrow a camera and tripod from the lab monitor.

	Connect the Android device to the laptop using the USB cable.

	Start your VBox; launch Android Studio; and open the Hexapawn project that was downloaded in the pre-lab.

	Turn the tablet on (by pressing the upper button) and unlock it (by dragging the lock).

	Make sure your device is captured by the VBox: From the Devices menu, click on USB Devices, and then select your device (e.g. Asus Nexus 7).

	Click on the green arrow at the top to run the app. There will be a delay while the code is compiled and bundled.

	We are going to run our app directly on the device. Hence, select the connected Android device and click OK. If your device prompted you to allow USB debugging then do so.

	Your app is now on the device and it should start automatically.

	Play the game and note the various possibilities for the game state.

	Start adding rules one by one to the strategy by adding lines in the Strategy constructor. Note that the move method will return null if the map does not contain a given key (i.e. if your strategy has not yet considered that board’s state). In that case, the blackMove method would not be able to make the move and would only output a message indicating failure.

	Add more rules to the black logic for all of the possible initial moves of white. After adding each move verify that it was properly implemented.

	Add more rules to the black logic for all of the possible board positions that can be reached. Note: it is possible to encode all possible moves in the game using 14 rules, so think before adding rules. Once all the rules are added verify that (a) black always wins, and (b) you can not get into a situation where there is no black move for a given board position.

	Create an ePortfolio describing Hexapawn and your solution.

C. Advanced
	Personalize the icons used in your application.

	Make another version of Hexapawn (call it Whiteapawn) which will play for white. (As you already know from above, if black plays properly white can never win.) Use the same logic as provided in the Hexapawn code. Was it more (or less) difficult to code this than the Hexapawn code? Record how you built the Whiteapawn code in your ePortfolio.

	Deploy Hexapawn to one Android device and Whiteapawn to another. Have them play each other and record this process in your ePortfolio.

4. Further Reading
There are many tutorials on Android programming on the web. The following links may be useful
https://developer.android.com/index.html

	

5. Credits
￼[image: Collage1022.png]

1 In olden days, people smoked in public and lighting cigarettes was a common problem. Matches could either be purchased in books or boxes. Hence matchboxes. Some later footnotes will talk about buggy whips. But it should give you an idea about how long people have been looking at programming solutions to problems like these.

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 Using the collections framework

		2.2 Dealing with input in Hexapawn

		2.3 Representing the board

		2.4 Hexapawn game play logic

		2.5 Your Strategy

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

		Footnotes

OPS/images/cover-image.png
= HEXAPWN Lor1s

Mobile Development

Hexapawn

X (il ‘ l»i

Version 0.2. Copyright © 2015 by:

m Jenkin + h Roumani @

OPS/images/pasted-image-1.png

OPS/images/pasted-image.png

OPS/images/Collage1022.png
5) MOoBILE DEVELOPMENT

Copyright © 2015 by: $
m Jenkin + h Roumani

