Table of Contents
1. Introduction
2. Background
2.1 Equity Investments
2.2 Yield
2.3 Portfolios
2.4 Representing a Portfolio in Java
2.5 The Stock class API
2.6 Your Part
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
This lab deals with financial investments and their analyses. The financial industry is one of the largest employer of computing professionals, and as such, it is very helpful to be somewhat familiar with their industry and comfortable with the terminology that they employ.
Financial software spans many areas but in this lab we focus on just one: the analysis of a portfolio of equity investments. The following sections introduce you to terms such as portfolio, equity, stock exchange, book value, market value, and annualized yield, and explain the required analyses. They also expose certain aspects of the Android platform (such as dynamic table creation) and of the Java collection framework.
At the end of this lab you will build an Android app named FinPro that takes a portfolio of equity investments; presents it on the device screen; and performs computations that analyze it.
As with all labs in EECS 1022, each lab is laid out as an ePub. It is expected that you will have read the ePub prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. During your lab session, you will perform a number of in-lab and advanced exercises, and you will document your results in your ePortfolio.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.

2.1 Equity Investments
An equity investment involves purchasing a number of shares of a company in the hope that company will prosper and its share price will increase. (There is also the hope that the company will distribute dividend to its shareholders but we will not be concerned with that in this lab.)
The purchase of shares is done in a market known as the exchange and it is there that the stock of companies are traded. For example, the Toronto Stock Exchange (aka TSX) is one of the largest stock markets in the world. For the purposes of this lab, however, a unique stock exchange was created, and you can visit its website at the following URL:
	The Abstract Stock Exchange
Each stock has an associated symbol (aka ticker) and you are invited to visit the above URL and enter a stock symbol such as .QC (a dot followed by two letters) and see the name of the company and its current price. The price may of course fluctuate if you get a second quote a few minutes later. These companies are simulated by this exchange but you can try to enter actual symbols and see actual names and prices.
As an example, suppose you purchased a few shares of the .QC stock for $7.50 each. This purchase price per share is known as the book value of the stock. The book value is the constant and does not change in time. On the other hand, the market value, which is the current price per share on the exchange, is variable and does change in time.

2.2 Yield
The yield of an investment at any given time is defined as the profit or loss made if the investment is sold at market value at that time, divided by the book value of the investment, and then annualized.
As an example, let us assume that we purchased a number of .QC shares at $7.50 each back on Jan. 20, 2003. To compute the yield of this investment on Feb 20, 2016, we start by finding out the market value of that share. Assuming it is $12.34, we compute the yield like this:
[(12.34 - 7.50) / 7.50] * [365 / #of days]
The initial bracket yields 64.5% but this gain needs to be annualized based on the number of days between the purchase and (assumed) sale transactions, which is 4779 days in this case. The second bracket is therefore 0.076, so the investment yield is 4.9%.

2.3 Portfolios
A portfolio is a collection of investments. For example, here is a portfolio that contains two equity investments:

	Portfolio PF	Symbol	Quantity	Book Value	Acquired
	First investment	.QC	78	7.50	20/01/2003
	Second investment	.UR	2679	37.33	14/01/2004

And just like each investment has a book and a market value, these properties can be applied to the portfolio as a whole. For example, the book value of the portfolio is defined as the sum of the book value of each of its investments multiplied by its number of shares. The shown PF portfolio has a book value of $100,592.07. In a similar fashion, one defines the yield of a portfolio is defined as the weighted average of the (annualized) yields of its individual investments, with the weights being the book value of each investment multiplied by its number of shares.
For example, assume that .QC and .UR have yields of 4.9% and 0.4%. In that case, the portfolio yield is computed like this:
(78*7.50*4.9% + 2679*37.33*0.4%) / (78*7.5 + 2679*37.33)
which works out to about 0.5%.

2.4 Representing a Portfolio in Java
We will use four different data structures to represent a portfolio in our app:
	As an XML fragment to hold the input.

	As an array of strings to read the input.

	As a list of equity objects during processing.

	As a table layout upon output.

For storing the input portfolios, we create a resource file (under res/values) named “portfolio.xml” with content like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="tc">
 <item>.QC,78,12.32,20/2/2003</item>
 </string-array>
 <string-array name="sc">
 <item>.QC,78,7.50,20/2/2003</item>
 <item>.UR,2679,37.33,14/9/2004</item>
 </string-array>
</resources>

Each portfolio is stored as a fragment with a name and a number of <item> child tags, one per investment. Each such child holds the investment’s fields (symbol, number of shares, book value, and acquisition date) delimited by commas. The shown fragment contains two portfolios named “tc” and “sc”.
To read the input given the portfolio name x, we use code like this:
Resources res = getResources();
String[] data = res.getStringArray(res.getIdentifier(
 x, "array", this.getPackageName()));
As you can see, this code reads the XML representation of the portfolio into an array of strings.
For processing, it is more convenient to deal with objects. The app therefore creates a PortfolioAnalyzer class which holds the portfolio as a List<Equity> object; i.e. a list of Equity instances, where Equity is another class that represents one equity investment.
Finally for output, we use Table Layout to display our portfolio, with each investment displayed in a able row. Note that since the number of rows varies from one portfolio to the next, we create the rows dynamically within the code. This is done by inflating an XML template named my_row.xml. Finally, we sandwich the table layout in a scroll view to accommodate portfolios that do not fit in the device’s screen.

2.5 The Stock class API
In order to obtain the current market price of an equity investment, we need to connect to the URL of a stock exchange; send the stock symbol; and get a quote. Since our app deals with the special dot-letter-letter equities on the Abstract Exchange, we will employ the API of a library class named Stock. This class is already bundled in your project’s library so you can just use it. Here are the key features of its API:
	Stock(String symbol)
Construct a stock with the passed symbol.

	getName()
Return the name of the company of this stock.

	getPrice()
Return the current market price of this stock.

	toString()
Return a textual representation of this stock.

2.6 Your Part
As given, the app has a number of key pieces already in place. Your contribution to the codebase involves implementing four methods in PortfolioAnalyzer:
	getPortfolioSize

	getInvestmentMarketValue

	getPortfolioMarketValue

	getInvestmentYield

The comment in the body of each method has a hint as to the approximate of lines of code needed.

3. Exercises
The goal of this lab is to complete the development of an Android app that analyzes a given portfolio (given via an xml fragment).
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercises prior to attending the lab, nor will you receive credit for the lab itself. You will get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the file FIN.zip from the jr site. It is a zipped file (aka an archive) so unzip it and place the unpacked folder (named FinPro) in the AndroidStudioProjects folder in your home directory.

	Launch AndroidStudio from the Applications, Programming menu of your VBox and open the FinPro project.

	Examine the project’s structure as it appears in the left pane. Note in particular the items under the app heading.

	Examine the provided Java classes and acquaint yourself with the overall role that each plays.

	Examine also the portfolio.xml file stored under res/values.

	Examine the user interface by looking at the XML file and the emulated view.

	 Complete the quiz associated with this lab on Moodle. You must receive 80% on this quiz in order to take part in the lab. You are expected to complete the pre-lab evaluation on your own but you are encouraged to complete the lab with the textbook, lab ePub, the web, and the files associated with the lab as resources. You may take the quiz many times, but you will not be able to participate in the lab without completing the online lab, nor will you receive a grade for this lab if you have not completed the pre-lab quiz successfully. You must bring proof that you have obtained 80% or better on the pre-lab quiz with you to the lab. You can, for example, bring a screenshot of the course Moodle page that shows your name and quiz results (quiz completion date, time taken, and grade).

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain

	An android tablet and a USB cable

	You should ideally use your own laptop but if you forgot to bring it then borrow one from the lab monitor.

	You will also need to take videos of your results for your ePortfolio. Use your phone for that or borrow a camera and tripod from the lab monitor.

	Connect the Android device to the laptop using the USB cable.

	Start your VBox; launch Android Studio; and open the FinPro project that was downloaded in the pre-lab.

	Turn the tablet on (by pressing the upper button) and unlock it (by dragging the lock).

	Make sure your device is captured by the VBox: From the Devices menu, click on USB Devices, and then select your device (e.g. Asus Nexus 7).

	Click on the green arrow at the top to run the app. There will be a delay while the code is compiled and bundled.

	We are going to run our app directly on the device. Hence, select the connected Android device and click OK. If your device prompted you to allow USB debugging then do so.

	Your app is now on the device and it should start automatically.

	When prompted to enter the portfolio name, enter tc and then push the ANALYZE button. Observe the output that will be produced and relate it to the content of the portfolio xml data.

	Repeat the above step to analyze the other two portfolios available in the xml file.

	Now that you have seen how the app behaves for three different portfolios, document your observation in your blog and supplement it with a video clip. In particular, explain what is being displayed; where the data came from; and what is missing.

	The ePub talked about four different representations for the portfolio data. Explain in your blog these four representations and point out the locations (within the provided codebase) in which one representation is transformed to another.

	Implement the getPortfolioSize method. Document in your blog how you implemented and take a before-and-after video that shows how the display has changed after your implementation was put in place.

	Implement the getInvestmentMarketValue method. Document in your blog how you implemented and take a before-and-after video that shows how the display has changed after your implementation was put in place.

	Implement the getPortfolioMarketValue method. Document in your blog how you implemented and take a before-and-after video that shows how the display has changed after your implementation was put in place.

C. Advanced
	Implement the getInvestmentYield method. Document in your blog how you implemented and take a before-and-after video that shows how the display has changed after your implementation was put in place.

	Personalize the icons used in your application.

4. Further Reading
There are many tutorials on Android programming on the web. The following links may be useful
https://developer.android.com/index.html

	

5. Credits
￼[image: Collage1022.png]

OPS/images/cover-image.png
I FINANCIAL INVESTMENTS ror1s

Mobile Development
Financial
Investments

SELX
e |ﬁ'

Version 0.1 Copyright © 2015 by:
m Jenkin + h Roumani @

OPS/images/Collage1022.png
5) MOoBILE DEVELOPMENT

Copyright © 2015 by: $
m Jenkin + h Roumani

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 Equity Investments

		2.2 Yield

		2.3 Portfolios

		2.4 Representing a Portfolio in Java

		2.5 The Stock class API

		2.6 Your Part

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

