Table of Contents
1. Introduction
2. Background
2.1 Programming for lightweight devices
2.2 Android Studio
2.3 Random numbers
2.4 XML
3. Exercises
A. Pre-lab
B. In-lab
C. Advanced
4. Further Reading
5. Credits

1. Introduction
Historically, user interfaces were constructed programmatically. That is, code written in Java organizes the various user interface elements on the screen. This approach to developing a user interface is very powerful because you can make the user interface do almost anything you want. But while it provides great flexibility, it makes it difficult to ensure that the user interface has a consistent ‘look and feel’ from one application to another. It can also be very difficult to ensure that user interfaces render properly across a wide range of display types as the details required to ensure that things are ‘centred’ or ‘in the lower left hand corner of the display’ can be quite subtle and difficult to ensure that they are performed correctly. In order to assist with the development of user interfaces, most modern computer environments provide a graphical tool to help you layout your user interface. These tools help you lay out the user interface elements on the screen and then enable you to connect your code to the graphical elements.
This approach to user interface design has a number of desirable properties. First, it lets graphical designers and user interface specialists design the user interface. Second, it helps to ensure that the user interface is built around standard interaction devices that provide the user with a consistent look and feel to their interaction experience with the software. And finally, it can substantively decrease the time it can take to develop a user interface.
In this lab you will develop a graphical user interface for a very simple ‘quote of the day’ program. This program has a button that the user pushes, and when they do, a message is displayed on the screen. You will use a user interface toolkit to develop this interface graphically, and finally, you will deploy your application and run it. One thing that will make this lab different from previous ones is that the deployment environment that you will be working towards is an Android tablet. The lab provides both a simulated version of the tablet, as well as a real tablet to deploy your application to. If you have access to your own Android phone/tablet you may wish to use it instead.
As with all labs in EECS 1022, each lab is laid out as an ePub. It is expected that you will have read the ePub prior to attending the lab. In order to encourage this, each lab has an associated set of ‘pre lab’ assignments that must be completed prior to attending the lab. The lab monitor will not allow you to participate in the lab if you cannot demonstrate that you have completed the pre-lab assignment prior to attending the lab itself. During your lab session, you will perform a number of in-lab and advanced exercises, and you will document your results in your ePortfolio.

2. Background
It is not intended that you read through all of the background material in your first review of this lab. Rather, you should scan the material presented here and then go to the actual exercises associated with the lab. Some of the material in the Background is just that, background. That being said, you may find that parts of the lab are easier to complete, or make more sense, if you have at least a passing familiarity with the material presented here.
2.1 Programming for lightweight devices
It is expected that in 2015 more tablet-based computers will be sold than laptops, and more laptops will be sold than desktop computers. Lightweight devices present a number of interesting challenges in terms of programming. Often they have limited computing/memory resources. They also typically lack permanent keyboards; can be held in various orientations; and their application life cycle is different from that found with applications running under more traditional operating systems. That being said, there are considerable similarities. On the Android platform for example, the main programming language for the development of applications is Java, and in many instances, Java code written elsewhere will run on the Android platform unchanged.
One issue that you will encounter in this lab in terms of programming for the Android platform is that you will edit and compile your application on a standard computer (within a virtual machine) and then either run your application in a simulator running on the virtual machine or deploy it on a real Android tablet. This notion of developing on one machine and then deploying on another is a common approach to developing for smaller memory devices. This process is also known as cross compiling.

2.2 Android Studio
You may have worked with Eclipse before to develop software. Eclipse is a powerful integrated development environment (IDE) and it can be used for the development of Android software, but the standard IDE for Android is “Android Studio”. Android Studio is free and can be downloaded and installed in your virtual machine or any other machine that you might wish to develop on.
Android Studio has a wide range of possible options and customizations that are available to you. You will certainly not have to learn all of them in order to complete the lab. When you start up Android Studio with a new project it will present you with a rather complex screen similar to the one shown below.

￼[image: pasted-image.png]

This display will change significantly depending on what you are editing. As shown in the figure above, the user is editing the layout ‘activity_main.xml’. If you select to edit part of the java description of the application, a standard code editing window will be displayed. These are selected on the left hand side of the display.
On the Android device, screen layouts are stored in xml files. You can edit these files as text files but much more commonly they are edited graphically.
2.3 Random numbers
It is extremely difficult to actually generate something randomly. Perhaps the most effective way of being truly random is to sample something that is assumed to be really random, like the decay of a star or the emission of radiation from a source. But often it is sufficient to be ‘pseudo random’, that is to have a process that appears random, that has some known and predictable properties (e.g., a known mean and distribution), and this is much easier and portable than sampling some truly random process. Given the utility of such pseudo-random numbers in a variety of applications — from generating random initial passwords to giving a screen a random colour — almost all software systems provide some way of generating random numbers. Java is no exception.
In Java, random numbers can be generated using the java.util.Random class. This class is just a class. It has a constructor and many methods. Just as importantly, it has well written documentation that describes everything you can do with the class and instances of it. In terms of this lab, however, the following details suffice.
In order to create an instance of the Random class, the default constructor is often sufficient. It returns a pseudo-random number generator, which can be used to generate a sequence of numbers that are random, drawn from some range, and whose distribution is uniform over that range. So for example
	Random random = new Random();
will provide a (pseudo) random number generator called random. Random numbers can be obtained from the random object using one of the methods provided. For example, to obtain three random numbers in the range 0..255 inclusive, one could use Random’s nextInt(int n) method which returns the next random number in the sequence with the returned number in the range: from 0 (inclusive) to n (exclusive).
	int x = random.nextInt(256);
	int y = random.nextInt(256);
	int z = random.nextInt(256);

2.4 XML
XML stands for Extensible Markup Language and is a text representation of data. XML has been used to represent many different types of data. In terms of this course, and this lab in particular, XML will be used as a textual representation of the layout of user interface elements on a computer screen or tablet.
The layout of the “Hello world!” screen shown earlier is described by the XML shown below:
[image: pasted-image-1.png]

The basic building block of XML is known as an element. In the above figure, <RelativeLayout> and <TextView> are elements. Elements can contain other elements, known as children, as shown above. Each Element has a start tag and a matching end tag. If an element has no children then the end tag can be omitted and replaced with the sequence /> in the tag itself as for the TextView tag above. Otherwise the tag <foo> will be terminated by the tag </foo>. Elements may have attributes, as shown in the figure above. For example, the <TextView> tag has an element android:text whose value is Hello world!.
In the Android layout scheme, each element describes a rectangular region of screen real estate. Nested elements correspond to nested elements on the screen. This top level element defines how its children are to be displayed on the screen. There are many different user interface elements available, but they all follow the basic structure shown above. On the Java side, each UI element is represented by an instance of the View or ViewGroup class.

3. Exercises
The goal of this lab is to develop an application that displays random colours on an Android device. Along the way you will develop a user interface using Android Studio. You will test your application in the simulator and deploy it on a real Android device.
As with other labs in this course, lab exercises are broken down into three sections, A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises must be completed prior to attending your lab. You will not be allowed to participate in the lab if you have not completed these exercises prior to attending the lab, nor will you receive credit for the lab itself. A backup lab is scheduled each week for students who miss/were unprepared for their normal lab time. You will also get much more out of each laboratory if you spend some time going through the B and C exercises for each laboratory before attending your laboratory session.

A. Pre-lab
	Download the file CLR.zip from the jr site. It is a zipped file (aka an archive) so unzip it and place the unpacked folder (named RandomColours) in the AndroidStudioProjects folder in your home directory. Every Android project you build will appear as a sub-directory of AndroidStudioProjects. Hence, you can easily back up your project, or copy it to your cloud drive, by simply zipping its subdirectory.

	Launch AndroidStudio from the Applications, Programming menu of your VBox and open the RandomColours project.

	Examine the project’s structure as it appears in the left pane. Note in particular the items under the app heading.

	Locate RandomColourActivity.java and examine its content in the editor pane. This file contains Java code.

	Locate activity_random_colour.xml and examine its content in the editor pane. This file contains the UI and you can view it as XML (by clicking the Text tab at the bottom of the editor pane) or as a simulation on an Android device (by clicking the Design tab at the bottom of the editor pane and selecting any desired device from the drop-down list at the top of the editor pane). Examine both views.

	Complete the quiz associated with this lab on Moodle. You must receive 80% on this quiz in order to take part in the lab. You are expected to complete the pre-lab evaluation on your own but you are encouraged to complete the lab with the textbook, lab ePub, the web, and the files associated with the lab as resources. You may take the test many times, but you will not be able to participate in the lab without completing the online lab, nor will you receive a grade for this lab if you have not completed the pre-lab quiz successfully. You must bring proof that you have obtained 80% or better on the pre-lab quiz with you to the lab.

B. In-lab
	Obtain an experimental kit from the lab monitor. The kit should contain

	An android tablet and a USB cable

	You should ideally use your own laptop but if you forgot to bring it then borrow one from the lab monitor.

	You will also need to take videos of your results for your ePortfolio. Use your phone for that or borrow a camera and tripod from the lab monitor.

	Connect the Android device to the laptop using the USB cable.

	Start your VBox; launch Android Studio; and open the RandomColours project that was downloaded in the pre-lab.

	Turn the tablet on (by pressing the upper button) and unlock it (by dragging the lock).

	Make sure your device is captured by the VBox: From the Devices menu, click on USB Devices, and then select your device (e.g. Asus Nexus 7).

	Click on the green arrow at the top to run the app. There will be a delay while the code is compiled and bundled. You will then be presented with a dialog like the one shown below.

￼[image: pasted-image-2.png]

	We are going to run our app directly on the device. Hence, select the connected Android device and click OK. If your device prompted you to allow USB debugging then do so.

	Your app is now on the device and it should start automatically. As is, there isn’t much you can do with it: it has a blank screen with “Hello world!” written in it.

	Note that the app does respond when you rotate the device.

	You are now going to design your user interface for the application you are building. Return to Android Studio. Your application needs a button with the caption “Push Me” written on it. To modify the user interface, make sure the activity_random_colour.xml is shown in the Design tab of the editor pane in the.

	First, get rid of the “Hello world!” text by selecting in the simulated device and hitting delete. This will remove the text element from the screen.

	Next, choose the Button widget from the palette of widgets on the left of the editor pane and drag it onto the screen of the simulated Android device. Move the button to the bottom of the screen and centre it.

	Note that the button will appear in the Component Tree in the pane to the right of the editor pane, and its properties will appear in the Properties list below the tree in the same pane.

	Change the text property to “Push Me” and the id property to “pushButton”.

	Make the button fill the entire screen. You can do so by changing the two properties android:layout_width and android:layout_height to “match_parent”. Switch to the Text tab and examine how your property changes are captured and reflected in XML.

	Save your application and re-run on the Android hardware. Can you interact with the button? What does clicking the button do?

	You are now going to tie the user interface to Java code within your application. Specifically, you are going to change the colour of the button. One of the properties of a button is ‘onClick’. It has no value at the moment. Change this to “processButtonPush”. This way, whenever this button is pressed, the method processButtonPush defined in the currently active class will be invoked. You don’t have one yet, so we will define one.

	Double-click the RandomColourActivity Java file in order to display its content is in the editor pane. Add the following code fragment to the bottom of the class (just before the very last closing brace ‘}’):

public void processButtonPush(View view)
{
 int red = random.nextInt(256);
 int green = random.nextInt(256);
 int blue = random.nextInt(256);
 view.setBackgroundColor(Color.rgb(red, green, blue));
}

This fragment refers to other classes (such as View and Color) and these need to be imported. Android Studio notices this and colours them in red. You can have them auto-imported by selecting each and pressing Alt-Enter. As you do, you will see import statements added at the top of the class. Also appearing in red is the variable random. We need to define it at the top of our class (after the very first opening brace ‘{‘) by adding this line:
		private Random random = new Random();
(As before, you will need to import the Random class.)
	Save your application and re-run it. What does it do now when you push the button? What happens if you rotate the device?

	Examine the code that controls the colour. What is the significance of 256? Try changing it to 1 for red and green and keeping it 256 for blue. See (and record) what happens and explain it.

	Add the following statement at the end of your onCreate method:

		System.out.println("*** In the onCreate method");
Save the app and re-run it. Make sure the Logcat view in the Android pane at the bottom of Android Studio is visible (note that you can filter this view to show only System.out messages). What do you notice on when you rotate the device?
	Add the following statement at the end of your onCreate method:

		Button button = (Button) findViewById(R.id.pushButton);
		System.out.println(button.getText());
Save the app and re-run it. What do you see when you rotate the device? This shows Java can locate the button just like the button can locate Java.
	Film your application in action and write up your report in your ePortfolio. Document in particular how the user interface is tied to the Java code (via things like onClick and findViewById); how the Activity class works (its code structure, syntax, and the methods in it); and how pseudorandom numbers are generated and put to use.

C. Advanced
	If you rotate the Android device you will see that the text always resets the colour of the button shown. This happens because when an android device is rotated the application ‘restarts’, and by default, the program restarts to the initial state of the activity’s layout file. Suppose we want the colour of the button to start in some random state. We can address this programmatically by setting the colour of the button to some random colour at the end of the onCreate method in the RandomColourActivity class. Do this. What happens to the colour of the button when you rotate your Android device?

	Although pushing the button causes the button to change colour, suppose we want to be able to change the colour every time the device is shaken. To do this we have to have our application listen for sensor events and then when an appropriate event occurs, respond to it. The process of actually dealing with the event is straightforward, although a certain amount of housekeeping has to be done in order to make this work. Here is some background.

Capturing a Sensor on the Device
Our activity class is currently tied with the user interface but not with the device sensors, so we need to make it listen to sensor events and do something when they occur:
Step #1
Append the class declaration with implements SensorEventListener and use Alt-Enter for the import. Next, select implement in the Code menu to have Android Studio add the two methods needed to listen to a sensor. The Studio will add these methods to our class but with nothing in their body so it is up to us to add the needed functionality. For the onAccuracyChanged method, which gets invoked when the accuracy of the sensor changes, we don’t need to do anything so keep it empty. As to the onSensorChangend method, which gets invoked when a sensor senses a change, here is the needed code:
public void onSensorChanged(SensorEvent event)
{
	if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)
	{
		double x = event.values[0];
		double y = event.values[1];
		double z = event.values[2];
		double vector = x*x + y*y + z*z;
		if (vector > 15*15)
		{
			this.processButtonPush(findViewById(R.id.pushButton));
		}
	}
}

Since there are a variety of sensors on the device, the code starts by identifying the sensor that triggered the event. We are only interested in the accelerometer. The accelerometer event provides the acceleration acting on the device in each of the cardinal directions; i.e. it provides the components of the acceleration vector. We take the square of the length of the vector and compare that to some tolerance, say 15*15 m/s/s which is well over 1g. If we see such an acceleration, we change the colour of the button.

Step #2
Add the following statements at the end of your onCreate method:
SensorManager sm = (SensorManager) getSystemService(SENSOR_SERVICE);
sm.registerListener(this, sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_NORMAL);

This tells the Android system that we want to be informed of acceleration sensor events.
Save the application and run it on your device. Can you shake the device to change the colours?
Will the app keep running if you minimize it and launch a different app on the tablet? You can tell by adding a print statement to the onSensorChanged method and see if Logcat shows its output even when the app is not in focus.
Record your observations in your ePortfolio.

4. Further Reading
There are many tutorials on Android programming on the web. The following links may be useful
https://developer.android.com/index.html

	

5. Credits￼[image: Collage1022.png]

OPS/toc.xhtml
		1. Introduction

		2. Background		2.1 Programming for lightweight devices

		2.2 Android Studio

		2.3 Random numbers

		2.4 XML

		3. Exercises		A. Pre-lab

		B. In-lab

		C. Advanced

		4. Further Reading

		5. Credits

OPS/images/cover-image.png
23 SHAKE & COLOUR 1or1s

Mobile development

Shake & Colour

Virsion 0.3. Copyright © 2016 by

m _Jenkin + h Roumani

OPS/images/pasted-image-1.png
<Relativelayout xmlns:android="http://schemas
xnlns: tools="http: //schenas
android: layout_widt
android:layout_heigh
android: paddingLeft
android: paddingRigh
android: paddingTop="16dp'
android: paddingBot ton="16dp"
tools: context=".RandonColourActivity">

ndroid. con/apk/ res/androic
indroid. con/tools"

<Textview
android: text="Hello world!"
android: Layout_width="wray
android:layout_heigh

content
‘wrap_content”

</Relativelayout>

OPS/images/pasted-image.png
s/MyFirstApplication] - Android S

OHO] <« Q
2 MyFirstappl % activity_main.xml |
| & Android (© MainActviyjava x | B actviey_mainxmi x
a m
g '-‘-gﬂ ; Palerte %1 [Le ENexusa- - @appTheme Component Tree Tzie|E
& 2 H
A Dimniess & tavoms = B g E e s]
~ I [0 Frametayout v [RelativeLayout g
B T sramable (1] LnearLayout (Horizont: @ Tesview - @string/hello_world 4
2 v Ealayout [LinearLayout (vertical)
H [Z] TableLayout @
3 5 activity_main.xmi =
~ [ElTableRow 2
v > Elmenu g
> EImipmap [GridLayout 5
> Elvalues 5 ::;"’““V"“‘ -
» @ Gradle Scripts o o
Plain TextView g
78 Large Text 3
Medium Text 2
8] Small Text b
o Button
o1 small Button
Properties ?2 97
(® RadioButton
layoutwidth
@ switch layoutheight match_parent
— ToggleBution style
& imageButton accessiiliyLiveRegion
== ProgressBar (Large
== ProgressBar (Normal) background
== ProgressBar (Small) backgroundTint
g == ProgressBar (Horizonta backgroundTintMode
] <01 SeekBar clickable =]
= ‘¥ RatingBar contentDescription
N Spinner elevation
O Webview focusable =]
Y £ Text Fields o
£ Plain Text focusablelnTouchMode (]
3 Person Name > gravity i

A Bui

Password,
[T Paccwnrd (Numaric

Design | Text

id

[Terminal § &:Android 5 0: Messages.

& To00

Eventlog [5] Gradie Console 44 Memory Monitor

Gradle build finished in 9 sec (5 minutes ago)

nfa

nfa

B

OPS/images/Collage1022.png
5) MOoBILE DEVELOPMENT

Copyright © 2015 by: $
m Jenkin + h Roumani

OPS/images/pasted-image-2.png
Choose a running device

Device Serial Number State Compatible
[LGE Nexus 4 Android 5.0.1 (API 21) 00841b7349494fd3 Online Yes

Launch emulator

Android virtual device: | nexus7.

(] Use same device for future launches

[cancel | [ok

