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Abstract

Model-Driven Development (MDD) is a new software development technique

in which the primary software artifact is a model which is a collection of views.

A model is more abstract than program code in traditional languages as it is

closer to the problem domain and not tied to the underlying implementa-

tion platform. The main benefit of MDD is that models are executable and

automatically translated to code. Current MDD tools (e.g. Rational Rose Re-

alTime and BridgePoint) use the UML notions of structured classes and state

machines for constructing models. However, many software developers prefer

to also provide a dynamic object communication view of the product (e.g. us-

ing sequence diagrams). However, the problem then arises that the dynamic

view might be inconsistent with the static class view. Current MDD tools

do not provide support for executable dynamic diagrams or the consistency

problems that may arise.
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In this thesis, we develop a theoretical approach for checking the consis-

tency between a BON static and dynamic diagram. Specifically, we concen-

trate on contractual consistency of a system, whose behaviour is described

through the use of contracts in the static diagram. Contractual consistency

is checked via symbolic execution of the dynamic diagram using a theorem

prover to deal with the contracts that occur in the static diagram. We develop

a formal theory and definition of contractual consistency and provide a proto-

type tool BDT (BON Development Tool) for doing the checks automatically.

To our knowledge, this is the first tool to actually check multi-view contractual

consistency for a partial model involving contracts only, without the need to

implement features.

BDT is a prototype and would need substantial work to make it industrial

strength. Nevertheless, our multi-view approach indicates that current single-

view MDD tools can be substantially improved by offering developers the use

of dynamic diagrams and the benefits of contracting.
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Chapter 1

Introduction

Today, computers and computer programs infiltrate our lives as never before.

We use software when checking E-mail, driving a car or simply warming up

food in a microwave. Over a very short period of time, software has become

a very important social and economic factor in our society. This increase in

both the amount and scope of usage has created increased pressure on soft-

ware vendors to produce high-quality reliable software. Creating high quality

software, however, is a very demanding and often costly task. Many differ-

ent development techniques have been suggested to automate many tasks and

therefore lift some of the burden from the developer.

One technique that has evolved recently is that of Model-Driven Devel-

opment (MDD) [MCF03]. In MDD, models are the primary artifact of de-

velopment and are kept and maintained throughout the development process.
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It is argued that using models for development raises the abstraction level

considerably and as a result, simplifies the task of software development for

programmers [AK03]. In MDD, models are executable and the developer works

at the model level rather than at the code level [Sel03].

Modelling in Model-Driven Development is achieved through the use of a

modelling language such as the Unified Modeling Language (UML) [BRJ99,

OMG03]. Currently, UML is the most widely used modelling language in

the software engineering industry. In fact, it has out-grown this field and is

often used in other engineering disciplines as well. It can be argued that this

increase in both size and scope has made the language difficult to understand

and manage [Dou03]. A discussion of UML is, however, beyond the scope of

this work.

UML 2.0 offers nine different views that can be used by the developer to

demonstrate various aspects about a software system. In particular, state

machines, class diagrams and collaboration diagrams can be used to model an

object-oriented system in UML. Using modelling and various views to model

a software system - in the case of this work an object-oriented system - has

several advantages [Sel03]:

• Abstraction: A model removes detail that is irrelevant for a given view-

point and thus increases understandability. The developer has the ability

to show and hide details throughout the development.



3

• Understandability: Abstracting information away is not enough. Models

try to present whatever information is left in a way that appeals to

our intuition. Some models use graphical notation, others use textual

notation.

• Accuracy: A model can be an accurate representation of the modelled

systems’ features of interest. It is important, therefore, that the model

is unambiguous.

• Predictiveness: Models can be used to predict the modelled systems

interesting, but non-obvious properties.

• Inexpensiveness: Construction of models is in general cheaper than that

of the modelled system and code.

To achieve these advantages, however, several conditions must be satisfied

by MDD. Many development techniques such as I-CASE and AD/Cycle have

been proposed in the past [Amb03], but they have failed to become industry-

wide standards either because they were too complex or they were not market-

ready when released. In order for MDD not to follow their dead-end path, the

following requirements must be met [Sel03, SK03]:

• Model consistency: Working with multiple, interrelated, views in a model

requires significant effort to ensure their overall consistency. If we have
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an abstract view A of a system and we construct A by using different ab-

stract views A1. . .An, each corresponding to the concern it models, then

it is possible to transform each Ai into the implementation Ci [KR03].

The main problem with this approach is that inconsistencies between

Ai’s could exist that have to be found before the code is generated. If

these inconsistencies are not found, then the model, and as a result the

generated code, will be inconsistent.

• Model executability: In order to obtain valuable insight into the system

and allow the developer to work at the model level only, model execu-

tion has to be achieved. It is also crucial for incomplete models to be

executable and therefore testable.

• Model-level observability: It is important that model-level error report-

ing and debugging functionality accompanies automatic code generation.

Programmers that are faced with fixing code they do not understand

could easily break it and further become discouraged from relying on

the model in the future.

• Efficient code generation: The code that is automatically generated must

be at least as efficient as hand-crafted code otherwise developers will not

rely on models and MDD.

• Scalability: Model-Driven Development is aimed at large scale software
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development. It is therefore important to support scalability and enable

large development teams to work on a product. Compilation and build-

times cannot be significantly increased if MDD is to be introduced into

the development cycle.

In this thesis we will concentrate on the requirement of model consistency

and as will be evident, we will introduce a theoretical approach that uses

symbolic model execution to check for contractual consistency.

1.1 Consistency of Views in a Model

As mentioned above, the consistency between separately constructed views of

a software system is one of the requirements of MDD for the construction of

error free software. In this section, we will define consistency in more detail

and explain the area that this work will concentrate on. Our discussion will

be based on models of object-oriented systems [Mey97].

Figure 1.1 shows a possible consistency hierarchy that could be used to

define model consistency more precisely. We can divide model consistency

into single-view and multi-view consistency.

1.1.1 Single-View Consistency

Single-view consistency refers to the constraints that must hold within a single

view. A single-view constraint for a class diagram for example, could be to
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Consistency

Single-View Multi-View

Code/Compiler
Assisted ContractualStatic

Figure 1.1: Possible division of consistency in single-view and multi-view con-
sistency.

disallow classes with the same name. Single-view consistency is supported in

most modelling tools. One form of single-view consistency is code/compiler

assisted consistency (other forms of single-view consistencies exist as well, but

are not discussed here). In this kind of consistency, a UML structured class

[Dou03] is used to model the static and dynamic behavior of a class. The

static structure is modelled in the form of a class diagram and the dynamic

behavior in the form of a state machine (both are part of a structured class).

In addition, the UML Action Language is used to specify detailed behaviour

in the state chart.

We consider this model as a single view since the same information can be

described as part of one view (e.g. see the expanded BON contract view in

Chapter 2). Single-view consistency of this model is checked by compiling and
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executing the code specified as transitions in the state chart. Currently, there

are several tools that support this type of consistency. Two of them will be

discussed later in Section 3.1.1 and Appendix B.

1.1.2 Multi-View Consistency

Multi-view consistency refers to the satisfaction of constraints between two or

more different views of a modelled system. In general, views of a system have

overlapping information and we have to ensure that this information is not

contradictory in order to preserve consistency.

Multi-view consistency can be divided up into constraints that can be

checked without a (symbolic) execution of models and those for which exe-

cution is necessary. These two cases are as follows:

• Static Consistency: This form of consistency can be checked statically

without execution of models. Depending on the views that are being

checked several static conditions can be checked. An example for this

type of consistency for a class diagram and collaboration diagram would

be that objects appearing in the collaboration diagram must have cor-

responding classes in the class diagram.

• Contractual Consistency: Contractual consistency is a form of consis-

tency that requires (symbolic) execution of models and is the main focus
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of this thesis. The concept is mentioned in [POB02], but not defined pre-

cisely enough for the purposes of a tool. In the next section, we explain

the idea behind contractual consistency and present a simple example.

Contractual consistency is defined more precisely in Chapter 3.

1.2 Contractual Consistency - An Overview

The purpose of this thesis is to develop a method for checking the consistency of

(static) class diagrams and (dynamic) object collaboration diagrams. We will

consider a class and collaboration diagram consistent if they are contractually

and statically consistent.

The behavior of a system is modelled through the use of contracts. These

contracts specify operations via pre- and postconditions and class invariants.

In this approach, a class diagram with routine contracts and a collaboration

diagram are used as the static and dynamic view respectively.

Informally, when checking for contractual consistency between a class di-

agram and a collaboration diagram we have to ensure that all contracts are

satisfied each time a message from the collaboration diagram executes. If this

condition applies to all messages then we will consider the two diagrams con-

tractually consistent. We will define this concept more precisely in Chapter 4.

The following example illustrates the idea behind contractual consistency.

Our example uses the modelling language BON [WN95] rather than UML,
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since we believe that BON is a simpler modelling language to understand, but

at the same time offers most of the features of UML that are needed for our

discussion. BON will be discussed in more detail in Chapter 2.

Figure 1.2 shows the static class diagram of two classes. Class ACCOUNT

is shown in its expanded form to show all its features. Class PERSON is

shown in its compact form since its features are of no interest at the moment.

Class PERSON has a client-supplier relationship with ACCOUNT which is

indicated by the double-arrow. ACCOUNTbalance: INTEGERmake! balance = 0withdraw(a: INTEGER)? balance >= a! balance = old balance - aPERSON Invariantbalance >= 0
Figure 1.2: Static diagram of example demonstrating contractual consistency.
Two classes are shown and their client supplier relationship. Class ACCOUNT
has three features: balance, make and withdraw.

Class ACCOUNT has three features: balance, make and withdraw. Feature

balance represents the balance of an account, make creates a new account and

withdraw withdraws from the account. Routines make and withdraw have pre

and postconditions. The feature make has only one postcondition that asserts

that balance is set to zero after the execution of make. Routine withdraw ’s
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precondition asserts that balance is greater or equal to the amount a that is

being withdrawn and its postcondition specifies that after the execution of

withdraw balance is decremented by a. The expression old balance refers to

the state of balance before the execution of withdraw.PERSON ACCOUNT1, 2Scenario 1: Bank Example1.  Create Account2.  Withdraw 200
Figure 1.3: Dynamic diagram of our example. Two objects and two messages
are shown. The description of the messages is given in the scenario box.

Figure 1.3 shows the dynamic view of our model. In this view, we can

see two run-time objects each corresponding to the classes in Figure 1.2. The

object of type PERSON sends two messages to the object of type ACCOUNT

and those messages are explained in the scenario box. The first message calls

make and the second calls withdraw with argument $200 on the object of

type ACCOUNT. As can be seen, no implementation is provided and we are

interested to see whether these two views are contractually consistent.

As mentioned above, to check for contractual consistency, we have to check

that the contracts of all routines associated with the corresponding messages

are satisfied before and after the message is executed (preconditions before and

postconditions after the message execution). In the example above, the routine
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make does not have a precondition, but its postcondition asserts that balance

is set to zero after its execution. As a result, the execution of make can proceed

without any problems and we will assume that balance is set to zero afterwards.

The precondition of withdraw, however, asserts that balance ≥ 200. But after

the execution of make we have balance = 0 and as a result, the precondition

of withdraw is not satisfied. We therefore conclude that the two views are

contractually inconsistent. Though small, this example demonstrates the idea

behind contractual consistency. We will define it more precisely later in this

work.

This thesis is organized as follows: Chapter 2 introduces the modelling

language BON and discusses the features relevant to this thesis. Chapter 3

discusses work done previously on multi-view consistency and presents one

MDD tool. Chapter 4 presents the major theoretical work on contractual con-

sistency. It defines the concept clearly and presents a more detailed example.

Chapter 5 presents our prototype BON Development Tool (BDT) that im-

plements the ideas presented in this thesis. An early description of this tool

was introduced in [TO03]. This shows the possibility of this type of consis-

tency checking in industrial strength tools. Chapter 6 concludes this work by

discussing the significance of our work and the contribution to the software

engineering field.



Chapter 2

Business Object Notation

(BON)

In order to present our method for checking contractual consistency, we had to

choose a modelling language. We had the choice between UML and Business

Object Notation (BON) [WN95]. Both languages support static class diagrams

and dynamic collaboration diagrams - the two views we are interested in. In

addition, both allow for the integration of contracts within routines and classes.

UML is the most widely used software modelling language. It is, in fact,

the de facto modelling standard. It supports nine different views of a software

system including structural, behavioural and deployment views [OMG03]. The

Object Constraint Language (OCL) [Gro99] could then be used to specify the

class contracts. It seems that UML would have offered all features necessary

12
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for explaining our approach, but we chose BON over UML because of the

following two reasons:

• There is no standard uncluttered way to represent OCL contracts in

UML class diagrams. They might reside in notes or in other text de-

scriptions. Thus one cannot understand the contract view in one glance.

By contrast, BON has a simple, uncluttered and standard way for rep-

resenting contracts in the class diagrams themselves. [PO99] offers an

extensive comparison between BON and UML. Figure 2.1 and 2.2 were

taken from [PO99] and clearly show the difference between representing

contracts in UML and BON.name, sex, age: VALUEspouse: CITIZENparents, children: SET[CITIZEN]single: BOOLEAN ! Result = (spouse = void)divorce? not single! single and (old spouse).singlesingle or spouse.spouse = currentparents.count = 2c children p c.parents p=currentInvariant
CITIZEN

Figure 2.1: A static diagram in BON. Class CITIZEN has six attributes and
two routines. The routine contracts and class invariant are elegantly incorpo-
rated into the modelling language.

• None of the current UML tools supports automatic translation of OCL
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+single() : bool+divorce()-name[1]-age[1]-sex[1]-spouse[0..1]-parents[2]-children[*]Citizen
Figure 2.2: A class diagram in UML representing the same class as in
Figure2.1. Contracts are shown in OCL, but cause the diagram to become
cluttered.

to code. For example, contracts in Java could be described with JML

[GTLJ00]. However, there is an impedance mismatch between OCL and

these other specification languages (e.g., see the mapping from OCL to

JML provided in [Ali04]). Translating BON class diagrams with their

contracts to Eiffel [Mey92] code is seamless.

It is important to note that the method presented in this work can easily

be applied to models modelled in UML and OCL without major modification.

BON was chosen as the modelling language in order to simplify the addition

of contracts into static diagrams.

BON is a set of concepts for modelling object oriented software. It supports

two notations - a graphical and textual notation - and has a set of rules and
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guidelines for producing these models. The concepts and notations in BON are

designed to encourage a reusability approach by emphasizing seamlessness, re-

versibility and software contracting. Further, the software system is described

through modelling its static and dynamic behavior. Static descriptions docu-

ment the structure of a system and show what the components are and how

they are related to each other. Dynamic descriptions, by contrast, document

how the system will behave over time. The ideas of software contracting, static

diagrams and dynamic diagrams are the ones most relevant to this work and

will be discussed below. The interested reader can refer to [WN95] for a more

detailed discussion of all aspects of BON.

2.1 Software Contracting

Perhaps the most important feature of BON is its software contracting ability

and support of Design by Contract (DbC) [Mey97]. Software that has been

designed for reuse needs to be of extra high quality because of the accumulated

damage it can cause when used in thousands of components. If one part fails,

it is possible for the whole system to fail. It is therefore important to find new

ways to guarantee software correctness. The theory of software contracting

tries to bring elements from the research fields of abstract data types and

formal specification into standard use in software engineering. The idea is

that assertions can define the semantics of each class. These assertions are in
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the form of pre and postconditions for routines and class invariants for overall

class consistency. These assertions form the basis for a contract between a

class, the supplier, and all classes using its features, the clients.

Routines in BON can include preconditions and postconditions. The pre-

condition states a predicate that must be true at the time the feature is called

by the client. It is the client’s responsibility to ensure that the precondition is

fulfilled before the call is made. The postcondition states a predicate that must

be true when the feature has been executed and the supplier object returns

control to the client. Given that the precondition is true on feature entry, it

is the supplier’s responsibility to ensure that the postcondition is true before

returning control to the client. Further, postconditions are double state for-

mulae, i.e., they contain information regarding the state of attributes before

and after the execution of a routine. The keyword old is used to refer to state

of attributes before the execution of a routine.

Class invariants represent conditions that must hold for the entire class

before and after each routine execution. In effect, they are an integral part

of every pre and postcondition. Class invariants are single state formulae and

do not have to be satisfied before the constructor of a class is called. A more

detailed explanation on invariants is given in Section 4.6.

Based on these contracts, a consistent error handling mechanism is pos-

sible. Assertions can be monitored at run-time and contract violations can
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be made to cause system exceptions. It is argued that software contracting

represents a significant step towards the production of correct software and

should be included in any object-oriented analysis and design method aimed

at building reliable, high-quality software systems [WN95]. Our approach for

defining contractual consistency depends on contracts in the static diagram as

an alternative to state machines to specify behavior.

2.2 Static Diagrams

Static diagrams in BON show the classes that make up the software system,

their interfaces and how they are related to each other. A static diagram

concentrates on the what part and downplays the how. We are interested in the

components of the system and the operations they can perform, but not how

they interact. BON static diagrams offer a description of the system, which

consists of fully typed class interfaces and formal specification of software

contracts.

2.2.1 Class

The fundamental construct in a BON static diagram is a class. Classes in BON

can be represented in two forms: A compact and an expanded representation.

Figure 2.3 shows examples of these two forms. A compact class is represented

through an ellipse, which contains the class name in the center. In addition
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to the class name, the state of the class can be shown, e.g. deferred, effective

etc. The compact representation is aimed at situations when the interface is

less important and interactions are the main concern.ACCOUNTACCOUNTbalance: INTEGERdeposit (d: INTEGER)? d >= 0! balance = old balance + dwithdraw (a: INTEGER)? a>=0      balance >= a! balance = old balance - aInvariantbalance >= 0
Figure 2.3: Examples of compact and expanded classes in a BON static dia-
gram.

A BON expanded class displays all the information a class contains. As

shown in Figure 2.3, it contains the information from a compact class, but can

also include the following:

• An indexing clause, which acts as documentation for the class;

• An inherit clause listing all super classes;

• Public, private and selectively exported features including their con-

tracts;

• An invariant clause, which lists all class invariants.
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2.2.2 Features

Class features are fully typed in BON and the signature is specified for each

feature. Class features consist of commands, functions and attributes. A query

can be a function or an attribute. Commands are routines that can change the

state of an object, but do not return a value. Queries on the other hand do

not change the state, but return a value (public attributes are also considered

queries, but do not have pre and post conditions). On top of specifying the

signature of the feature, pre and postconditions can be specified for commands

and queries. Figure 2.3 shows an example of this. In graphical BON, “?” is the

graphical notation for preconditions and “!” the notation for postconditions.

The meanings of pre and postconditions were explained in the previous section.

2.2.3 Relationships

There are three static relations in BON. Two are client-supplier relationships

and one is an inheritance relationship. Figure 2.4 shows the three different

relationships and their graphical representation. A class may inherit from one

class (single inheritance), from several classes (multiple inheritance), or sev-

eral times from the same class (repeated inheritance). Inheritance is simply

defined as the inclusion in a class, called the child, of operations and contract

elements defined in other classes, its parents. Inheritance may translate dif-

ferently depending on the object-oriented language used, so the definition is
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kept very general in BON. An inheritance relation is represented by a single

arrow pointing from the child to its parent, called an inheritance link.PERSON CARSTUDENT_ACCOUNTSTUDENT
Figure 2.4: Illustration of three static relations in BON. STUDENT has in-
heritance relationship with PERSON, association with CAR and aggregation
with STUDENT ACCOUNT

An association between a client class and a supplier class means that (at

system execution time) some instances of the client class may be attached to

one or more instances of the supplier class. A particular instance of the supplier

class may take part in many such attachments, thus permitting supplier objects

to be shared by different clients.

An aggregation relation between a client class and a supplier class means

that each client instance may be attached to one or more supplier instances

which represent “integral parts” of the client instance. The parts may in turn

have client relations to other classes, which may be aggregations (subparts)

or associations. Aggregation is an important semantic concept, useful when

thinking about the properties of objects in a system - which is why it has a
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special notation in BON - but not so easy to define exactly. Aggregations are

often implemented as simple associations.

More detailed information regarding the static model including clusters,

BON assertion language and relationships can be obtained from [WN95].

2.3 Dynamic Diagrams

Feature calls, or message passing between objects, are what constitute a system

execution and consequently, this is what a BON dynamic diagram expresses.

[WN95] proposes a new notation for dynamic behavior of a system, called

dynamic diagrams. Dynamic diagrams in BON are similar to collaboration

diagrams in UML. BON dynamic diagrams strive for a higher level of abstrac-

tion that can be naturally expressed with fewer parameters. In this section, we

will give an overview of BON dynamic diagrams and refer the user to [WN95]

for a more detailed discussion of these.

2.3.1 Objects

A dynamic diagram consists of a set of communicating objects passing mes-

sages to each other. An object is represented by its type - that is its class

name, and an optional object qualifier. Objects are represented graphically by

rectangles to make them stand out from the class ellipses. Figure 2.5 shows

an example of a BON object in a dynamic diagram.
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PERSON
(Peter)

ACCOUNT

Figure 2.5: A single object (left) and a set of objects (right) are shown. PER-
SON is a single object with the qualifier Peter. ACCOUNT is a set of objects.
The number of objects within a set can vary.

The name of the corresponding class is centered inside the rectangle in

upper case. A single rectangle in a diagram always refers to an individual

object, so two single rectangles with the same name will refer to two individual

objects of the same type. A qualifying identifier may be written below the class

name, enclosed in parentheses, to distinguish several objects of the same type

in a dynamic diagram. An object rectangle may be double, in which case it

refers to a set of objects of the corresponding type. Passing a message to a

double object rectangle means that a message is passed to all objects in the

set. Figure 2.5 shows an example of the notation for a set of objects.

2.3.2 Messages

A dynamic diagram also shows the messages passed between objects. A mes-

sage sent from one object to another is shown as a dashed line extending form

the calling object to the receiving object. Messages are numbered which serves

a double purpose: First, they represent time in the scenario and second, they

correspond to entries in the scenario box where each message’s role might

be described using free text. Figure 2.6 shows examples of messages and a



23

scenario box. There is one scenario box per dynamic diagram.

In [WN95], it is understood that a message in a dynamic diagram corre-

sponds to some routine in the static diagram. It is not necessary to specify the

precise routine in the initial design phase. A textual description in the scenario

box suffices. But, this is the critical point at which the static and dynamic

views overlap (i.e. the correspondence between messages in the dynamic dia-

gram with feature calls in the static diagram). In an actual BON consistency

tool, the mapping between messages and features will need to be more precise.

This means that we will need to support (a) informal diagrams where the map-

ping is unspecified, but also (b) the formal ability to map messages to actual

features (which must be completed before the actual consistency check can be

invoked). This mapping will play a major role in our definition of contractual

consistency. STUDENT COURSEACCOUNT 12 Student Scenario1.  Take courses2.  Pay fees
Figure 2.6: Three run-time objects and scenario box are shown. STUDENT
sends two messages which are explained in the scenario box.

A message relation is always potential; that is, we cannot tell from the

diagram whether the call will actually occur in a specific execution. A message
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call might not succeed at the time of execution if the preconditions of an

associated routine are not satisfied.

2.3.3 Sub Messages

Another important aspect of messages in a dynamic diagram are sub-messages

[Gao04]. A message m1 sent between objects o1 and o2 represents the routine

call r1 on o2. Once the routine call is completed, control is returned to o1

again. According to this definition a scenario such as that in Figure 2.7 is

not permitted because of the following: After the execution of m1 control is

returned to OBJECT 1 and as a result, m2 cannot be executed anymore. In

order for this diagram to be executable, m2 must be called within the body

of m1 and control is returned to OBJECT 1 only after the execution of m2

completes. As a result, m2 becomes a sub-message of m1.

This scenario is not discussed in [WN95] and [Gao04] suggests using a

new notation for sub-messages. Figure 2.8 demonstrates this notation for sub-

messages. The notation indicates that m1.1 is called within the body of m1 and

as a result, control is not returned to OBJECT 1 until m1.1 has completed

its execution.

OBJECT_1 OBJECT_2 OBJECT_3
1 2

Figure 2.7: An illegal message sequence in BON.
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OBJECT_1 OBJECT_2 OBJECT_3
1 1.1

Figure 2.8: Using multi-dot notation to represent sub-messages.

In summary, a diagram such as the one in Figure 2.7 is permitted in BON,

but will not be permitted in diagrams that are later checked for contractual

consistency. In order to specify sub-messages for such messages a notation

such as the one in Figure 2.8 must be used. As will be seen later, this case

does not have to be considered in our approach to contractual consistency

since no implementation is provided. The developer might, however, wish to

draw sub-messages in the dynamic diagram. As a result, it is important that

a solution for sub-messages within contractual consistency is found.



Chapter 3

Literature Survey

Chapter 1 gave an overview of the problem of consistency and our distinction

between single-view and multi-view consistency. In general, the problem of

consistency arises when models are used to describe a software system and we

have to ensure that the information in these models is consistent. For multi-

view consistency, multiple views of a system can have overlapping information

that can cause the two views to become inconsistent. It is important to discover

these inconsistencies early and ensure that they do not propagate into the

program implementation.

The problem of view consistency is one that has been known and discussed

extensively. In most cases, UML is used as the modelling language for the

discussion. Discussions are often divided into those trying to solve single-view

26
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consistency problems [ARR00, SC02] and those working on multi-view consis-

tency [Gli00, HHM01, Kri00, EN95, Egy01]. While there are several single-

view consistency tools available [Rat02, Tec04], not much work has been done

on multi-view consistency tools. Apart from the work in this thesis, the only

other such tool that we are aware of is the recent M.Sc. thesis of Gao [Gao04].

Gao describes and implements a multi-view consistency tool that detects in-

consistencies that we have categorized as static inconsistencies (see Figure 1.1).

Gao’s tool also treats contractual consistency by allowing developers to gener-

ate a test driver. The test driver can be compiled by any Eiffel compiler and

executed. If no contract violations occur then there is at least one execution of

the dynamic diagram that satisfies the static diagram. This approach requires

implementation detail for the contracts of each feature. The BDT tool de-

veloped in this thesis complements Gao’s tool as BDT focuses on contractual

consistency. Both tools use the definitions of multi-view consistency developed

in [POB02] as the starting point.

In this chapter, we will introduce the Model-Driven Architecture (MDA)

[MSUW03] framework and one MDA modelling tool that promises model exe-

cution and model consistency, but in fact only checks single-view consistency.

A second tool will be discussed in Appendix B. Further, we will discuss the

most relevant works in the area of multi-view consistency. Finally, we will

explain and discuss [POB02], which is the work most closely related to this
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thesis.

3.1 Model-Driven Architecture and MDA Tools

Model-Driven Development presents a set of ideas that could deliver improve-

ments in productivity and decrease the cost of software development. Model-

Driven Architecture (MDA) [MSUW03], an initiative by the Object Manage-

ment Group [OMG04], tries to offer a conceptual framework for defining a set

of standards in support of the concepts of MDD. MDA’s main initiative is to

provide a framework for software development that uses models to describe

the system to be built [MSUW03]. The goal is to have MDA tools that let the

developer specify models at various abstraction levels and keep them synchro-

nized [Uhl03]. These models also tend to grow increasingly independent of

the target platform, making future adjustments to new target platforms easier

[MSUW03].

Key to achieving platform independence within MDA is the notion of

two models: platform-independent models (PIM) and platform-specific mod-

els (PSM) [McN03]. As the name suggests, PIMs are platform independent

and as a result, do not require any change as the underlying technology and

deployment platform change. It is argued that the benefit of PIMs is that

being technology independent, they can best preserve the intellectual and fi-

nancial investment. PSMs can be generated through refinement of PIMs, and
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one given PIM can be mapped to several PSMs. The final stage of the develop-

ment is to generate the code from the PSM so the system can be deployed. If

at some point in time the application has to be deployed on several platforms

or migrated from one platform to another as a result of technology changes,

then the required code can be generated from the PIM. It is argued that this

method is faster and cheaper than migrating the deployed code [McN03].

In terms of modelling language, MDA has been supporting UML. Support-

ers of this standard argue that UML is a solid foundation on which MDA is

built and that UML has been instrumental in the transition from code-oriented

to model-oriented software production techniques [BB01]. Within UML there

are two ways to specify the behavior of the system. This issue has become a

dividing point in the MDA community. Two approaches have been suggested

to specify system behaviour [McN03]:

• The dynamic behavior of a system can be specified as a set of constraints

that must be true about the system before and after execution of mes-

sages (operations). These constraints can be in the form of contracts - pre

and postconditions - for operations and invariants for classes. In UML,

these constraints can be specified using the Object Constraint Language

(OCL) [Gro99]. It is often argued that the expressive power of this form

of dynamic specification is limited and not all aspects of a system can be

defined this way. Secondly, the automatic generation of complete code
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from pre and postcondition is not possible. User intervention is neces-

sary and the programmer has to supply additional implementation for

operation bodies.

• An alternate approach is to use UML state machine diagrams with Ac-

tion Language (AL) of UML [OMG03]. This language extends UML

with compatible mechanisms for specifying action semantics in software-

platform independent manner. AL specifies how the model will react

in response to a particular stimulus, what changes are made within the

model and how they are applied. One limitation of Action Language is

that execution semantics of UML concepts are not precisely defined. As

a result, actions and their executions are defined in the documentation of

UML, but not within the meta-model. There is therefore the risk of two

software engines interpreting the same model in two different manners.

In the following subsection, we will describe one MDA tool that uses state

machines to specify behavior of the system. As mentioned, this tool allows

construction of collaboration diagrams, but they are not incorporated into

model consistency and model execution. A second tool is described in Ap-

pendix B. As will be seen, this method for specifying behaviour is in contrast

to our approach which uses contracts only. In this thesis, we argue that con-

tracts are valuable enough to allow the user symbolic model execution, model

consistency and partial code generation as seen in Eiffel [Mey92].
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3.1.1 BridgePoint

BridgePoint [Tec04] is an MDA tool developed by Project Technologies. Bridge-

Point’s development environment is based on executable and translatable UML

(xtUML) [MB02]. It is argued that xtUML Platform Independent Models

(PIMs) [MB02] completely and concisely describe what the system does and

are fully testable and executable. BridgePoint relies on class diagrams (Data),

statecharts (Control) and Action Language (Processing) to define a system

and its behavior. According to BridgePoint, this kind of specification allows

for early PIM testing and defect elimination and as a result, system quality

is increased. In addition, xtUML PIMs are automatically translated, by cus-

tomizable model compilers compromised of translation rules and patterns, to

generate complete target code. Changes to the application defined by the PIM

or to the software architecture defined in the model compiler are automatically

reflected in the system’s generated code.

The model verifier in BridgePoint is expected to provide early PIM execu-

tion, debug and consistency capabilities before code translation. It is claimed

that entire domains or individual threads of control can quickly be tested and

debugged. Single-view consistency is achieved through compilation and ex-

ecution of the Action Language. Any problems in the code can be seen as

inconsistencies that are brought to the attention of the user through a model

debugger.
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As mentioned before, BridgePoint allows the user to construct collaboration

and sequence diagrams, but does not check their consistency and therefore,

they are not incorporated in model execution and code generation. As a

result, developers cannot take full advantage of such diagrams.

3.2 Multi-View Consistency

As mentioned, multi-view consistency has been discussed before, but no tools

have been developed to check contractual consistency directly. [Gli00] intro-

duces a new approach for checking the consistency between UML class dia-

grams and scenario models. In this approach, there are three main possibilities

for inconsistencies to arise. These inconsistencies are based on the following

overlap between the two views:

• Stimuli in a scenario require a corresponding operation or state transition

in the class model.

• A response in a scenario that needs more data than the stimuli of this

scenario provide requires stored data.

• Every operation in the class model which is not referenced by another

operation in the class model is typically used by a scenario in order to

process a stimulus or to produce a response.



33

[Gli00] tries to resolve inconsistencies by reducing the amount of overlap

between the two views. We believe, however, that a reduction in amount of

overlap is not the correct approach. A certain amount of overlap is needed to

assure that both views describe the same system. Further, the inconsistencies

that this approach catches are static inconsistencies that are further described

and implemented in [Gao04]. The approach described in [Gli00] does not

involve the behavior of diagrams or the execution of a model.

[Kri00] discusses an approach that is most related to our work and that

in [POB02]. This work tries to translate each view in UML into a constraint

described in OCL [Gro99] and using the theorem prover PVS [OSR01] to

check certain constraints. In particular, consistency between a class diagram

and collaboration diagram is achieved by trying to find a trace that satisfies

all constraints in the static diagram. Each state in the trace has to satisfy all

relevant state predicates in the system. This approach is very similar to that

in [POB02] and the authors argue that their approach is superior since it deals

with UML and all the views this modelling language supports, while that in

[POB02] applies to BON, which only supports two views of a system. [Kri00],

however, does not present any tool that implements this approach and shows

that this method is implementable.

Another approach that is suggested is to transform two views into one

common view and then compare them [Egy01]. In this approach, when trying
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to find inconsistencies between a UML state machine and sequence diagram, a

sequence diagram is converted to a state machine and then the two models are

compared. A method introduced in [WS00] could be used to convert sequence

diagrams to state machines. [Egy01], however, does not explain in detail how

similar models can be compared and which constraints should be used for their

comparison.

As can be seen, many different approaches for multi-view consistency exist,

but few tackle the difficult task of contractual consistency and symbolic model

execution. In most cases, the multi-view consistency check is only a static

consistency check or the approach described does not have an accompanying

tool to show it is implementable. The next section discusses [POB02], which

is most closely related to our work in this thesis.

3.3 Related Work on Contractual Consistency

The problem of multi-view consistency is not unique to UML or BON and any

modelling language that supports multiple views has the potential to introduce

inconsistencies into the system. In this thesis, we are interested in checking

the consistency between dynamic and static diagrams of an object-oriented

system. Specifically, the contractual consistency between a BON class diagram

and dynamic diagram is discussed. In this section we will discuss the work of

[POB02] which is the first work on contractual consistency between a dynamic
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and static diagram.

[POB02] introduces a four step approach to checking consistency between

a BON static and dynamic diagram. The four steps are based on conditions

that can be checked statically (symbolic execution is not necessary) and those

that require execution of messages. The four steps are as follows:

1. Each object appearing in the collaboration diagram must have a corre-

sponding class in the class diagram. This condition ensures that objects

for which no class is defined cannot be used in consistency checking.

2. Each message in the collaboration diagram has a routine from the static

diagram associated with it. If no routine is associated with a message

then it cannot be determined how a message call would change the system

state.

3. Each routine associated with a message must be from the target object

of that message and must be exported to the source object. This re-

quirement ensures that source objects call routines in the appropriate

classes and have permissions to access them.

4. Routines that are called must be enabled, i.e., the precondition of a

routine associated with a message must be satisfied before the message

can be executed. A precondition can only be satisfied if the sequence of

previous calls to routines left a system state satisfying the precondition.
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[POB02] argues that if all four requirements from above are met then a

BON static and dynamic diagram can be considered consistent. We will refer

to the first three requirements as static multi-view consistency. They have

been further discussed and implemented in [Gao04]. These requirements can

be checked statically without the symbolic execution of any messages. [Gao04]

also checks indirectly for contractual consistency. The user is given an infras-

tructure to develop tests that check the implementation against the contracts.

One major drawback of this approach is that code must be provided to check

for contractual consistency.

Requirement four is the more challenging step and requires (symbolic) ex-

ecution of the model. It is this step that we refer to as checking for contractual

consistency and will define it more precisely in the next chapter.

[POB02] offers an initial attempt at defining contractual consistency. The

definition is as follows: Assume that dd represents the dynamic diagram,

dd.calls all the message calls in dd and dd.calls.item(i) message mi in dd.

Further, dd.calls.item(i).pre is the precondition of the routine associated with

mi. Then, in order to start checking requirement 4, a user specified initial

state init (specified as a predicate) must imply the precondition of the first

element in the sequence of calls in the collaboration diagram:

init ⇒ dd.calls.item(1).pre

For any subsequent message call we have to ensure that the system state left
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behind satisfies the precondition of the routine associated with a message.

Formally, this was expressed in [POB02] as:

∀i : 2 ≤ i ≤ dd.calls.length • dd.spec(i− 1) ⇒ dd.calls.item(i).pre (3.1)

where dd.spec(i − 1)
def⇒ (dd.calls.item(1).spec; ...; dd.calls.item(i − 1).spec)

and spec is defined as old precondition ⇒ postcondition. (3.1) states that the

sequential composition of all specifications (spec) of messages executed must

imply the precondition of the current message. The sequential composition is

defined as:

P ; Q = ∃s′ • P [s := s′] ∧Q[old s := s′]

While this definition offers an early attempt to define contractual consis-

tency, it stops short in defining it fully for the following reasons:

• The notion of class invariants are not explicitly included into this theory.

Class invariants are an integral part of every pre and postcondition and

must be checked to ensure that they are not violated.

• (3.1) does not incorporate init into the formula. Once m1 is checked,

init must be incorporated into the system state and propagated to the

next message.

• A second check is needed in addition to (3.1). For example, suppose that

dd.spec(i− 1) = (x > 1) ∧ (x < 1)
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and that we have some arbitrarily chosen precondition r.pre. Then, (3.1)

results in:

((x > 1) ∧ (x < 1)) ⇒ r.pre

Since the antecedent is equivalent to false, (3.1) is trivially true and

message mi is enabled. However, there is no state that satisfies the an-

tecedent dd.spec(i− 1). In BON terms, there would be a postcondition

contract violation after execution of one of the prior messages. We there-

fore need an additional check to make sure that dd.spec(i − 1) is not a

contradiction.

In this thesis, we will clearly define the concepts mentioned above and

further introduce a prototype tool that was developed to demonstrate that

our approach to contractual consistency is implementable.



Chapter 4

Contractual Consistency

The purpose of this thesis is to precisely define contractual consistency between

a BON static diagram and a dynamic diagram and introduce a theoretical ap-

proach for checking this kind of consistency. In this chapter we will present

the theoretical work necessary to define this concept and present the BON

Development Tool (BDT) in the next chapter. We will show that BDT incor-

porates most of the concepts discussed in this chapter. It will also be evident

that checking for contractual consistency is closely related to symbolic model

execution.

Informally, when checking for contractual consistency between a static and

dynamic diagram in BON, we check whether the precondition of a routine as-

sociated with a message in the dynamic diagram is satisfied before the message

is executed. In addition, the postcondition of the routine should not evaluate

39
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to false. If these conditions apply to all messages in the dynamic diagram,

then we consider the static and dynamic diagram contractually consistent.

The procedure for checking for contractual consistency will be reduced

to checking the validity of a predicate. If we had access to an ideal oracle

that could return valid precisely when the predicate is a theorem, and invalid

otherwise, our procedure would be sound and complete. However, in the real

world, we must pass the predicate to a theorem prover. The theorem prover is

sound but not complete. Hence, our tool will be incomplete. We will discuss

the sources for unsoundness and incompleteness in Chapter 5

Despite the incompleteness and unsoundness of the tool, it is still useful.

First, many theorems can be proved automatically in a short period of time,

thus providing immediate feedback that consistency holds. When an invalid

answer is returned, enough feedback may at the same time be supplied to

establish that the predicate is not a theorem.

An important aspect of Model Driven Development and the use of models,

is that models should be executable or testable even if they are not complete.

Our approach (and the BDT tool) will allow for symbolic execution of partial

models. The ability to deal with partial models is significant because it allows

for early analysis of the model.
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4.1 The BON Model

We will check contractual consistency between a BON static diagram and

dynamic diagram. Since the focus of this thesis is on contractual conistency,

we assume that static consistency has already been checked. This can be done,

for example, by using a tool such as that in [Gao04]. Thus, the static diagram

must satisfy the following conditions:

• Classes are defined by their data (attributes) and operations (routines);

• Routines are specified by their specifications, i.e., preconditions and post-

conditions;

• Preconditions are single-state formulas and postconditions double-state

formulas. Double-state formulas contain information regarding the state

before and after the execution of a routine. The keyword old is used to

refer to states of attributes before the execution of a routine;

• Classes contain no invariants or implementation code. Invariants are

discussed as a special case.

The following conditions must be satisfied by the dynamic diagram:

• An object in the dynamic diagram has a corresponding class in the static

diagram.
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• Each message in the dynamic diagram is associated with a routine in the

static diagram.

• The client object must have access to the routine it is calling in the

supplier object.

A BON model of an object-oriented system that consists of a static diagram

and dynamic diagram and satisfies the conditions listed above will be the input

to our system. We will refer to this model as model(SD, DD) where SD and

DD represent the static and dynamic diagram respectively.

4.2 Example

In this section, we will introduce an example that acts as sample input to our

system and that we are going to use throughout this chapter to explain our

approach to contractual consistency. In this example we will model a bank

that provides customers with checking and saving accounts. Each customer

has one of each and can make deposits and withdrawals. In addition, she

can transfer money from her checking account to her savings account. In the

following two subsections, we will introduce the static and dynamic structure

of this example.
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4.2.1 Static Structure

Figure 4.1 shows the BON static diagram of the bank example including the

relationships between classes. As can be seen, there are three classes in this

system: PERSON, CHECKING and SAVING. The static structure shows that

class PERSON has association relationships with both classes, CHECKING

and SAVING. Class CHECKING has an association relationship with class

SAVING. Using plain English, a person has both, a checking account and

a savings account and the checking account is associated with the savings

account. SAVING CHECKINGPERSON
Figure 4.1: Class structure of SAVING, CHECKING and PERSON.

Figure 4.2, 4.3 and 4.4 show the classes PERSON, CHECKING and SAV-

ING in more detail through their expanded forms. The class PERSON has

two attributes checking and saving of type CHECKING and SAVING respec-

tively. Class SAVING has an attribute balance of type INTEGER. Further,

this class has one routine withdraw(w: INTEGER). The precondition of with-

draw states that when calling this routine, balance must be greater or equal
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to w. The postcondition ensures that balance is decreased by w after com-

pleting execution. In addition, the modifies clause (∆) is specified for this

class. The modifies clause identifies the attributes that this routine can mod-

ify. The meaning of the modifies clause and its importance in this discussion

is explained in more detail in Section 4.3.2.PERSONsaving: SAVINGchecking: CHECKING
Figure 4.2: Expanded class view for PERSON. Two attributes can be seen.SAVINGwithdraw(w: INTEGER) balance ? balance >= w! balance = old balance - wbalance: INTEGER

Figure 4.3: Expanded class view for SAVING. One attribute and one command
can be seen.

Figure 4.4 shows the detailed view of class CHECKING. This class has

three attributes: balance of type INTEGER, saving of type SAVING and

active of type BOOLEAN. It has four commands that change the state of

the object. These commands are activate account, deposit(y: INTEGER),

withdraw(i: INTEGER) and transfer(x: INTEGER).
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CHECKINGbalance: INTEGERsaving: SAVINGactive: BOOLEANactivate_account    saving.balance, balance, active  ? active = false  ! saving.balance = 0       balance = 0       active = truewithdraw (i: INTEGER) balance   ? balance >= i    ! balance = old balance - ideposit (y: INTEGER)    balance  ? y > 0    ! balance = old balance + ytransfer (x: INTEGER) balance, saving.balance  ? x > 0        balance >= x    ! balance = old balance - x        saving.balance = old saving.balance + x
Figure 4.4: Expanded class view for CHECKING. Three attributes and four
commands can be seen.
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The routines and their contracts are as follows:

• activate account: Activates the current instance of CHECKING. Based

on the contracts, active must be false before activatate account is called

and after the call, it is set to true and balance in saving and in the

current object are set to 0.

• deposit(y:INTEGER): Deposits can be made to checking as long as the

amount deposited y is greater than 0 and after deposit balance is in-

creased by y.

• withdraw(i:INTEGER): A withdrawal succeeds if balance is greater than

the amount i being withdrawn. After a withdrawal balance is decreased

by i.

• transfer(x:INTEGER): An amount x is transferred from the current in-

stance of CHECKING to saving. The precondition of this routine en-

sures that x is greater than 0 and that it is not larger than balance. The

postcondition states that balance is decreased by x and that balance in

saving (saving.balance) is increased by x.

This is all the information that is contained within the static diagram. No

implementation is provided.

A postcondition of a routine may specify direct changes as well as indirect

changes to the attributes of the model. Consider the routine activate account
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in CHECKING. An example of a direct change for this routine is the postcon-

dition balance = 0 as balance is an attribute of CHECKING. An example of

an indirect change is the routine’s postcondition saving.balance = 0.

Of course, when it comes to implementation, the activate account routine

may not change attributes of other classes such as saving.balance, because,

in BON, a routine has read access but not write access to attributes of other

classes. This is an important part of reliable information hiding. However,

at the specification level, such indirect changes may be asserted, with the

understanding that at implementation time, a suitable routine of the other

class will be called to do the change. But, at the specification level, this

additional routine need not be declared. This is a powerful idea, because it

means that we can deal with partial models.

However, at the specification level, we need a precise account of which

variables change and which stay the same as will be seen later in this chapter

in equation (4.1). We could try to infer the changes by analyzing the post-

condition, but this is a risky business. Instead, we require that the designer

specifies this clearly and precisely up front in the modifies clause. The modifies

clause will thus list both direct and indirect changes. For example, the mod-

ifies clause of activate account is the list saving.balance, balance, active. In

a commercial application, however, the developer should only have to specify

the direct changes and the indirect changes should be inferred automatically
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by the tool.

4.2.2 Dynamic Structure

Figure 4.5 shows the dynamic diagram of our bank example. There are three

runtime objects in the system: checking of type CHECKING, saving of type

SAVING and p1 of type PERSON. In this example, four messages are sent

between these objects as described in the scenario box in Figure 4.5.CHECKING(checking) SAVING(saving)PERSON(p1)1, 2, 3 4 Scenario 1:   Bank Scenario1.   Activate checking2.   Deposit 500 into checking3.   Transfer 200 to saving from checking4.   Withdraw an amount greater than 300 from saving
Figure 4.5: Dynamic diagram for Bank scenario. There are three objects and
four messages. The scenario box describes the messages in more detail.

Table 4.1 lists the mapping between the messages in the dynamic diagram

and routines in the static diagram:

Given this model(SD, DD), we would like to know whether it is contrac-

tually consistent. In order to simplify the task of writing object and feature

names, we will use the abbreviations in Table 4.3 and 4.2 for the remainder
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Message Routine argsi

m1 checking.activate account args1 = true
m2 checking.deposit(y) args2 = (y = 500)
m3 checking.transfer(x) args3 = (x = 200)
m4 saving.withdraw(i) args4 = (i > 300)

Table 4.1: Table showing mapping between messages in DD and associated
routines in SD. argi is the constraint on the arguments of routine ri.

Feature Name Abbreviation
balance b
saving s
active a

checking c

Table 4.2: Abbreviations used for feature names.

of this chapter. It is important to note that BDT works with full feature and

object names and communicates with the user through those names.

4.3 System State Constraint and Prover

In this section we will define the notion of a System State Constraint (SSC)

and introduce the function Prover that we will use throughout our discussion.

Object Name Abbreviation
saving sav

checking ch
p1 p1

Table 4.3: Abbreviations used for object names.
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As will be seen, this function will later translate into the theorem prover we

use in BDT.

4.3.1 System State Constraint

In the discussion of consistency, the notion of a system state is of importance.

The system state is defined by all the entities and their values in all run-time

objects at a certain moment during execution. For example, suppose the state

space corresponding to our objects are the attributes a1, a2, a3 where a1, a2 are

integers and a3 is a string, then the system state SS at an instance of time

might look as follows:

SS
def
= a1 = 2 ∧ a2 = 3 ∧ a3 = V oid

However, we are not dealing with implementations in which the state is fully

defined. All we have are contracts (single state, and double-state predicates

in the variables). Thus, instead of SS, what we might have at an instance of

time is the System State Constraint SSC:

SSC
def
= a2 > a1 ∧ a3 = V oid

where SS ⇒ SSC.

Thus, a system state constraint SSC for a model(SD, DD) is just a pred-

icate whose free variables are the attributes occurring in the contracts of rou-

tines in the classes in SD as well as the formal arguments of these routines.
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This predicate is a constraint on the state at a certain instance of time. An

unqualified attribute in a contract is treated as Current .a where Current is

the object in the DD sending the message.

The variables in the banking system include: sav.b, ch.b, ch.s, ch.a, p1.s

and p1.c, although not all of them are used in the contracts. There are syntactic

variable names equivalent to the ones already mentioned. In the bank example,

the multi-dot expressions p1.sv.b and p1.ch.sv.b all refer to sv.b and should be

in the state space with a marker to say that they are all equivalent. The Eiffel

[Mey92] compiler is able to make checks for this, or alternatively we could use

a version of the specified depth algorithm in [Gao04]. For simplicity, we do

not consider such multi-dot syntactic variable names in this discussion, but

the discussion could be generalized to deal with the multi-dot case as well.

Semantically, the execution of a message mi results in the execution of an

associated routine ri that takes the system from one system state constraint

to the next:

SSCi−1
ri−→ SSCi

where 0 ≤ i ≤ n where n is the number of messages in the DD. The initial

state constraint is SSC0, which represents the system state constraint before

the execution of any messages. This state is either the predicate true (meaning

that the attributes may have any value) or is user specified, i.e. the user has

the freedom to specify specific values for attributes.
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In the bank example, the user might specify the following system state

constraint for the initial state:

SSC0 = (sav.b > 500 ∧ ch.b = sav.b ∧ ch.a = false)

After the execution of a message m1 and associated routine r1 the new system

state constraint SSC1 has to be calculated. The next section describes this

step.

4.3.2 Post SSC

After a message mi is executed with a constraint SSCi−1, a new system state

constraint SSCi must be determined. This new constraint must depend on

SSCi−1 that existed before mi started execution and on the contracts of ri,

which is associated with mi. The contracts state the new constraints that

apply once mi completes execution.

Routine ri which is associated with message mi has a precondition ri.pre,

a postcondition ri.post and a modifies set ri.mod. For example, consider the

routine withdraw of class CHECKING in Fig. 4.4:

withdraw ( i :INTEGER)
modifies

balance
require

i < balance
ensure

balance = old balance − i
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for which withdraw.mod = {checking.balance} (or in the abbreviated version

withdraw.mod = {ch.b}. Thus, only ch.b may change when this routine is

executed, but all other attributes and variables remain the same.

Let ri.mod = {v1, · · · , vm}. Then

SSCi = ∃v′1, · · · v′m •
(SSCi−1[v1 := v′1, · · · , vm := v′m]

∧ ri.post[old v1 := v′1, · · · ,old vm := v′m]) (4.1)

where the notation P [x1 := x′1, x2 := x′2] means the predicate similar to the

predicate P , except that there is the simultaneous replacement of every free

occurrence of x1 by x′1 and x2 by x′2.

In (4.1), we must propagate the values of the variables that are unchanged

while appending the new constraints from the postcondition on the variables

that have changed. The postcondition is a double state formula which may

refer to the new value of a variable (v) in the poststate as well as to its old

value in the prestate (old v). But, in the prestate SSCi−1, old v is referred

to by v. Thus, (4.1) renames the variables that change (both those in the

prestate as well as old v) to the same new fresh variable v′. Thus, (4.1) is the

formal description of the following:

1. Constraints in variables that are not modified are propagated from SSCi−1

to SSCi unchanged;

2. The postcondition of ri is used to append the constraints on the variables
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that have changed;

3. The renaming via simultaneous replacement avoids conflict between dif-

ferent names in the prestate.

The existential operator projects out the old state and we are left with a single

state formula or constraint describing the poststate.

(4.1) represents the system state constraint after the execution of mi. Since

the existential quantifier projects out all new primed variables, no information

regarding past constraints is kept. In a commercial tool, however, we might be

interested in keeping this crucial information. It would help us to give feedback

to the user regarding the transition of attributes as messages execute. As a

result, we can re-write the above formula in a stronger form:

SSCi = (SSCi−1[v1 := v′1, · · · , vm := v′m]

∧ ri.post[old v1 := v′1, · · · ,old vm := v′m]) (4.2)

(4.2) is stronger than (4.1), but retains information regarding past states of the

variables. Our tool BDT implements (4.2) in order to provide more valuable

feedback to the user.

We can now use (4.1) to determine the post state for our bank example.

Assume we started with SSC0 as described above and executed m1. As a

result, SSC1 has to be determined.

We have the following SSC0:

SSC0 = (sav.b > 500 ∧ ch.b = sav.b ∧ ch.a = false)
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The postcondition of r1 (i.e. routine activate account) is:

r1.post = (sav.b = 0 ∧ ch.b = 0 ∧ ch.a = true)

The modifies clause of r1 is as follows:

r1.mod = {sav.b, ch.b, ch.a}

As a result, we know that the attributes in r1.mod are modified and have to

be renamed in the construction of SSC1. Using equation 4.1 we obtain the

following:

SSC1 = ∃ sav.b′, ch.b′, ch.a′ •
SSC0[sav.b := sav.b′, ch.b := ch.b′, ch.a := ch.a′]

∧ r1.post[old sav.b := sav.b′, old ch.b := ch.b′, old ch.a := ch.a′]

Evaluating this expression, we obtain the following SSC1:

SSC1 = sav.b = 0 ∧ ch.b = 0 ∧ ch.a = true

SSC1 represents the system state constraint after the execution of m1 with

associated routine r1.

4.3.3 Prover

For our discussion in this chapter, we will define a function Prover that acts

as an oracle. Assume p is a predicate, then Prover is defined as follows:

Prover(p) =





T if |= p

C if p is contingent

F if p is a contradiction

(4.3)
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The function Prover returns true if p is valid, C if p is contingent and

false if p contains contradictory terms and evaluates to false. We will use

this oracle in the remaining discussion of consistency checking and as will be

evident, we will use a theorem prover in our tool to replace this oracle.

4.4 Symbolic Execution Step

Given a message in the dynamic diagram of model(SD, DD), we will define a

symbolic execution step as the semantics of a message execution. If a symbolic

execution of a message is successful, then we consider the message to be con-

sistent with the static diagram SD. Repeating this step for all messages in the

dynamic diagram checks for contractual consistency of the model(SD, DD).

Suppose the current state constraint is SSCi−1, and assume that we now

want to invoke a message ok
mi−→ ok+1 where ok (ok+1) is the source (respec-

tively target) object in DD for message mi. From the model mapping (e.g.

Table 4.1), we obtain a corresponding routine ri in the class associated with

the target object oi+1. Using (4.1), we may now compute SSCi from ri and

SSCi−1. We define step as follows:

step(SSCi−1, ri, SSCi) iff Prover((SSCi−1 ∧ argsi) ⇒ ri.pre) = T ∧
Prover(SSCi) 6= F (4.4)

which defines under what conditions the symbolic execution of the original

message ok
mi−→ ok+1 in the DD is successful. argsi is the constraint on the
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formal arguments of routine ri (see Table 4.1). Note that we constructed (4.4)

from information contained in both DD and SD (e.g. the contracts come from

the SD).

(4.4) asserts that in order for an execution step to be successful, two con-

ditions have to be met. First, the system state constraint before the execution

of message mi must satisfy the precondition of the routine ri. Second, the

post state SSCi must be free of contradictory expressions and not evaluate

to false. If both these requirements are met, then we consider the symbolic

execution of mi as successful. If any of the two conditions are not met, then a

contract violation has occurred.

Continuing with our bank example, we have to complete a step that we

omitted above. We have to check whether the execution of m1 results in a

successful step using (4.4).

We have the following values:

SSC0 = (sav.b > 500 ∧ ch.b = sav.b ∧ ch.a = false)

r1.pre = (ch.a = false)

SSC1 = (sav.b = 0 ∧ ch.b = 0 ∧ ch.a = true)

As a result, the condition we have to check is the following:

step(SSC0, r1, SSC1) = Prover((SSC0 ∧ args1) ⇒ r1.pre) ∧
Prover(SSC1)

We know that args1 = true and using the values from above, we obtain:
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Prover(SSC0 ⇒ r1.pre) = T

Prover(SSC1) 6= F

We therefore conclude that m1 can be symbolically executed without any con-

tract violations.

4.5 Contractual Consistency of model(SD, DD)

In the section above we defined the meaning of a single symbolic execution

step. A step is the symbolic execution of a single message in the dynamic

diagram and a successful execution step was defined by (4.4).

We are now ready to define contractual consistency for model(SD,DD)

from our definitions above. Informally, a static and dynamic diagram are

contractually consistent if each message in the dynamic diagram can be suc-

cessfully symbolically executed. Formally, we define contractual consistency

(CC) as follows:

CC(model(SD,DD))
def
= ∀i | 1 ≤ i ≤ n • step (SSCi−1, ri, SSCi) (4.5)

where n is the number of messages in the DD. The above formula is the

definition of contractual consistency for model(SD,DD). As can be seen,

step (SSCi−1, ri, SSCi) must hold for all messages in the dynamic diagram in

order for model(SD, DD) to be contractually consistent. A contract violation

at any time during the symbolic execution specifies that the two views are
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contractually inconsistent.

In order to check for contractual consistency for our bank example, we

have to symbolically execute the remaining three messages and if all of them

can be successfully executed then we can claim that our model(SD,DD) is

contractually consistent.

In order to check whether message m2 can be successfully executed, we

have to check step(SSC1, r2, SSC2), which translates into the following two

conditions (r2 corresponds to the routine deposit(y) in Table 4.1):

(1) - Prover((SSC1 ∧ args2) ⇒ r2.pre) = T

(2) - Prover(SSC2) 6= F

We have the following values:

SSC1 = (sav.b = 0 ∧ ch.b = 0 ∧ ch.a = true)

r2.pre = (y > 0)

Incorporating the constraint on the argument of r2 (args2) into SSC1, we

obtain the following:

SSC1 ∧ args2 = (sav.b = 0 ∧ ch.b = 0 ∧ ch.a = true ∧ y = 500)

Using the above values for (1), Prover returns T . To check (2) we obtain SSC2

after using the modifies clause of r2, (4.1) and simplifying the expression using

arithmetic:

SSC2 = (sav.b = 0 ∧ ch.a = true ∧ ch.b = 500)

Prover returns not F for (2) as well. As a result, we can conclude that m2 can
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be successfully symbolically executed.

In m3 we are transferring 200 from ch to sav. The correspond routine

for this message is transfer(x). We will not describe this step in detail as it

is similar to the ones described above. This message can also be successfully

executed and we obtain the following system state constraint after the symbolic

execution of m3:

SSC3 = (sav.b = 200 ∧ ch.a = true ∧ ch.b = 300)

The last message to be symbolically executed is m4. This message tries to

withdraw an amount that is greater than 300 from sav (i.e. args4 = (i > 300)).

We have to therefore check the following two conditions as described in (4.4):

(1) Prover((SSC3 ∧ args4) ⇒ r4.pre) = T

(2) Prover(SSC4) 6= F

We have the following value for SSC3 with the additional information regard-

ing args4:

SSC3 ∧ args4 = (sav.b = 200 ∧ ch.a = true ∧ ch.b = 300 ∧ i > 300)

The value for r4.pre is

r4.pre = sav.b ≥ i

Checking condition (1), we can see that Prover would not return T . The

attribute sav.b has a value of 200 at the time of the execution which is not

greater or equal to i, which is greater than 300. This failure signals a contract

violation and as a result, we conclude that model(SD, DD) is contractually
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inconsistent.

4.6 Special Case - Incorporation of Class In-

variants

From page 36 of [Mey97] we have the following definition for a correct invariant

for a class:

An assertion I is a correct class invariant for a class C if and only if it

meets the following two conditions:

E1: Given a creation procedure make of C and attributes that have their

default values, the execution of make with arguments that satisfy its precon-

dition, yields a state satisfying I.

E2: Every exported routine of the class, when applied to arguments and a

state satisfying both I and the routine’s precondition, yields a state satisfying

I.

Property E2 indicates that we may consider the invariant as being im-

plicitly added to both the precondition and postcondition of every exported

routine. It therefore has to be checked before and after each routine because

of the indirect invariant effect (page 402 of [Mey97]). So in principle, we could

enrich the pre and postcondition with the invariant and do without it.

Such a transformation is not desirable because of two reasons: First, it
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would complicate the routine text. Second, an invariant transcends individual

routines and applies to the class as a whole. As a result, the invariant will

apply to a class written later as an extension to the current class (i.e. classes

that inherit from the current class).

Incorporating invariants into the theory already developed is simple. Given

a routine r, the precondition r.pre was defined as the conjunction of all the

require clauses of the routine. Likewise the postcondition was defined as the

conjunction of all the ensure clauses.

To accommodate invariants, it suffices to redefine r.pre as the conjunction

of all the require clauses as well as the class invariant. Likewise the postcon-

dition r.post is redefined as the conjunction of all ensure clauses as well as the

class invariant.

(4.4) can now be applied as is to check a successful step which also checks

for the invariant. In addition, the invariant should be conjoined to the user

defined initial constraint, if the routine is not a creation routine.

When this definition is implemented in a tool, the user has to be given

the opportunity to specify whether or not SSC1 represents the very start of

an execution. Currently, BDT does not include implementation for invariants,

but pre- and postconditions only. The addition of invariants can be achieved

with little complexity.
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BON Development Tool

In this chapter, we will introduce and discuss the BON Development Tool

(BDT). BDT was developed as a prototype to demonstrate the implement-

ability of our approach to contractual consistency. BDT is a software modelling

environment allowing for the construction of static and dynamic diagrams in

BON. In addition, BDT incorporates most of the concepts of consistency check-

ing that were discussed in the previous chapters. BDT was developed as an

extension (plug-in) for Eclipse [IBM04] in order to simplify the development

of a graphical application and at the same time make BDT available in an

environment that is widely used. The graphical framework used for the imple-

mentation of BDT was GEF [IBM03]. Both, Eclipse and GEF are described

in more detail below.

BDT consists of three parts: a static diagramming module, a dynamic

63
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diagramming module and a consistency checking module. In this chapter,

we will explain important concepts of the static diagramming module and

consistency module. Since the structure of the dynamic diagramming module

is similar to that of the static diagramming tool, its discussion will be left to

the Appendix A.

When describing classes used to implement BDT, we will use the modelling

language BON to describe our implementation. In BON, it is recommended

to write class names in capital letters and separate words by a “ ” (e.g. STU-

DENT ACCOUNT). Such notation, however, is difficult to read when it ap-

pears outside of diagrams. As a result, we will use BON notation for classes in

diagrams, but regular Java naming convention for explaining those diagrams.

5.1 Eclipse and GEF Framework

5.1.1 Eclipse

Eclipse is an extensible platform for tool integration and a wide range of tools

have been built on that platform. In its roots, Eclipse is an IDE for software

development which allows for plug-ins to be plugged into it to increase its

functions. Eclipse is an open-source project that has created a community

around itself. This community is very diverse and consists of users of Eclipse-

based products, writers of tool extensions and researchers exploring new ways
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to use Eclipse [IBM04].

Eclipse provides a platform that allows diverse tools to inter-operate, often

in ways that tool writers initially did not imagine. The Eclipse Platform con-

sists of numerous plug-ins itself and many more are available for free and com-

mercially. Eclipse is a collection of places-to-plug-things-in (extension points)

and things-plugged-in (extensions or plug-ins). The power of Eclipse lies in

the possibility of many plug-ins working together and providing functionality

that was not expected from the original plug-in developers.

BDT is one such plug-in that provides modelling, consistency checking and

model execution functionality to Eclipse. Further, BDT is expected to work

with Eiffel Development Tool (EDT) [Mak03] to provide seamless forward

and reverse-engineering from Eiffel to BON and vice-versa. More information

regarding Eclipse can be obtained from various online sources and [IBM04].

5.1.2 Graphical Editing Framework

The Graphical Editing Framework (GEF) [IBM03] allows developers to create

a rich graphical editor from an existing application model. GEF uses the

SWT-based drawing plug-in Draw2d to create a graphical environment within

Eclipse. The developer can take advantage of the many common operations

provided in GEF and/or extend them for the specific domain. GEF employs

an MVC (model-view-controller) architecture, which enables simple changes to
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be applied to the model from the view. GEF is completely application neutral

and provides the groundwork to build almost any application, including but

not limited to: flow builders, GUI builders, UML diagram editors (such as

work-flow and class modelling diagrams), and even WYSIWYG (What You

See Is What You Get) text editors like those to write HTML code.

GEF is divided into two major plug-ins, each with their own subset of

features: GEF, and Draw2d. The Draw2d plug-in provides a stand-alone

rendering and layout package for an SWT Canvas. It includes common shapes

and layouts that can be assembled to render almost anything. The GEF plug-

in uses Draw2d for rendering, but adds a rich MVC editing framework on top

of it. This framework helps ensure that most graphical applications look and

behave in a similar way. The plug-ins are written in Java with no native code

and thus may be ported to any platform supported by Eclipse.

GEF is used extensively throughout BDT. We use this plug-in for all draw-

ing and display capabilities of our application. The GEF classes and functions

that are used are explained in the subsections below. For more information

regarding GEF refer to [IBM03].

5.2 Static Diagramming Module

As explained above, the BDT application consists of three parts. The first

part is the static diagram drawing module. It was developed to support the
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construction of BON static diagrams and specifically allow the addition of

contracts in the diagram that can be used later for consistency checking. Fig-

ure 5.1 shows a screen shot of the static diagram module. In subsections below,

we will concentrate on the Model-View-Controller (MVC) we used, and we will

explain the various aspects of this approach.

Figure 5.1: A screen shot from the static diagramming tool of BDT.
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5.2.1 Model

The model used to represent a static diagram has a simple structure. A BON

static diagram consists of elements such as class ellipses and containers such

as clusters. Further, it can contain dependencies between classes and features

and routines within classes.

Figure 5.2 shows the class structure of five classes within the model. The

class BonTopDiagram acts as the top diagram where BON elements are added

and therefore behaves like a container. It contains features for adding and

removing children which are BON elements. This class does not contain any

implementation as various containers inheriting from BonTopDiagram might

implement features for adding and removing children differently. Two classes

inheriting from BonTopDiagram are StaticDiagramModel and ClusterModel.

The class StaticDiagramModel acts as the implemented top diagram in the

system where all the items in a static diagram are added to. It implements

the features from its parent class and includes additional features for reporting

changes to itself to the classes responsible for maintaining the view. Since a

cluster also contains other elements within itself (such as classes), ClusterModel

also inherits from BonTopDiagram.

BonElement is a deferred class representing classes and clusters in the

system. A BonElement has a name, keeps track of incoming and outgoing

dependency arrows and can be added to an instance of BonTopDiagram as
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Figure 5.2: Class relationship between BonTopDiagram, BonElement, Static-
DiagramModel, ClusterModel and ClassModel.

a child. Figure 5.2 shows that ClassModel and ClusterModel inherit from

BonElement. As a result, instances of ClassModel can be added to instances

of ClusterModel and StaticDiagramModel since both of these classes act as

containers. This class structure also ensures that instances of ClusterModel

can be added to instances of the same class since a ClusterModel is both a

container and an element.

Another component in BON static diagrams are dependencies. These in-

clude inheritance, association and aggregation dependencies. Figure 5.3 shows

the class structure around these items. DependencyModel represents a depen-

dency between two instances of BonElement. It contains features for distin-

guishing the source and target BonElement and for attaching and disconnect-

ing connections. The three inheriting classes InheritanceModel, Association-

Model and AggregationModel are used to distinguish between the various pos-

sible dependencies and implement features specific to each type of dependency.

Class features are another component in a static diagram. These compo-

nents belong to specific classes. Figure 5.4 shows the structure of the classes
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Figure 5.3: Class structure of dependencies in a static diagram.

involved. FeatureModel defines a general structure for all features. It in-

cludes features such as the name and status (implemented, deferred) of a

feature. FunctionModel defines the structure for all features that are also rou-

tines, such as commands and queries. This class includes routines for adding

and returning contracts and feature-arguments. AttributeModel inherits from

FeatureModel only, whereas FunctionModel and CommandModel inherit from

both, FeatureModel and RoutineModel.

ATTRIBUTE_MODEL COMMAND_MODELFUNCTION_MODEL
*ROUTINE_MODELget_precondition: STRINGset_postcondition(s: STRING)add_argument(a: FEATURE_ARGUMENT)*FEATURE_MODELname: STRINGstatus: STRING

Figure 5.4: Class structure for features in static diagrams.

The classes described above are the most important ones in the model of
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the static module. Many more exist, but are not relevant to this discussion.

Figure 5.5 shows a more comprehensive class structure for the static mod-

ule. As can be seen, ClassModel contains a list of DependencyModel. This

list represents all dependencies that have their source in that class. Further,

it has a list of GroupFeatureModel. This class represents a grouping of fea-

tures within a BON class diagram. An instance of ClassModel has various

instances of GroupFeatureModel and these instances in turn contain instances

of FeatureModel and RoutineModel. Figure 5.5 also contains the class Boolean-

Expression. This class represents a Boolean expression in a contract of a rou-

tine which in this case can include pre and postconditions. This class will be

explained in more detail below when discussing the module for consistency

checking.

5.2.2 View

The view in the static module consists of figures from the draw2D package

within the GEF framework. All figures are customized to meet the expec-

tations of our application. Figure 5.6 shows the class structure for figures

representing classes and clusters.

ClassFigure and ClusterFigure both inherit from Label, which represents

the name of the class or cluster respectively. This inheritance makes the editing

of a name by double clicking on the name easier to implement. Both classes
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Figure 5.5: Partial class structure for the static model. Two new classes
BooleanExpression and GroupFeatureModel are shown.ELLIPSE LABELCLASS_FIGURE ROUNDEDRECTANGLECLUSTER_FIGURECHOPBOXANCHOR
Figure 5.6: Class structure around ClassFigure and ClusterFigure. Both in-
herit from Label and use ChopBoxAnchor. Their shapes are defined by Ellipse
and RoundedRectangle.
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have a ChopBoxAnchor, which acts as the anchor to which all dependency

lines connect. Finally, ClassFigure’s shape is defined by an Ellipse and that

of ClusterFigure by a RoundedRectangle.

Figure 5.7 shows the class structure for visually representing dependencies

such as aggregation, association and inheritance. The class PolyLineConnec-

tion is the draw2D class for representing lines in GEF. Each of the inheriting

classes redefines the paint routine to have the appropriate shape for the de-

pendency. Further, the feature setTargetDecoration of PolyLineConnection is

used to define the various arrow heads of the three inheriting classes.

ASSOCIATION_FIGUREAGGREGATION_FIGUREINHERITANCE_FIGURE
POLYLINECONNECTIONpaintsetTargetDecoration

Figure 5.7: Class structure of figures representing dependency lines.

Figure 5.8 captures the class structure necessary to visualize feature groups

and features. All four classes FeatureGroupFigure, QueryFigure, Command-

Figure and AttributeFigure inherit from RectangleFigure which represents the
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bounds for the feature and feature groups. When drawing classes, the rectan-

gles are not visible and only act as helpers to calculate bounds and dimensions.

All four classes also use Label to visualize the text in these elements.FEATURE_GROUP_FIGUREFUNCTION_FIGURECOMMAND_FIGURERECTANGLEFIGURE ATTRIBUTE_FIGURELABEL
Figure 5.8: Class structure of figures representing feature group and features.

5.2.3 Controller

In GEF, the controller in the MVC paradigm is represented by an EditPart.

An EditPart’s responsibility is to ensure that model and view are consistent

and to reflect any changes from the view to the model and vice versa. An

EditPart represents a single conceptual object with which the user can directly

or indirectly interact. In general, an EditPart will directly represent something

in the model. The EditPart itself is not visible to the user, but will present

itself through its view, as described above. The most fundamental role of an

EditPart and the one that is usually implemented first, is to populate the
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viewer with visuals, and to maintain those visuals as the model changes. The

second and more interesting role of an EditPart is to perform graphical editing.

Graphical editing is defined here as:

• Manipulating the Model - EditParts must manipulate the model by

creating Commands in response to Requests.

• Display Feedback - EditParts should show feedback during complex

interactions with the user such as drag and drop.

• Delegation - Either of the previous two jobs can be delegated to addi-

tional EditParts.

Figure 5.9 shows classes involved in controlling the view and model of

classes and clusters. AbstractGraphicalEditPart and NodeEditPart are classes

from the GEF framework that act as the controller in MVC. An instance

of AbstractGraphicalEditPart represents an EditPart whose view is a figure

as described above. A NodeEditPart is a specialized EditPart that supports

both target and source connections (these will be described below). Bon-

ContainerEditPart and BonNodeEditPart are BDT implementations and cor-

respond to BonTopDiagram and BonElement in the model. They are fully

implemented as ClusterEditPart and ClassEditPart.

As mentioned above, EditParts correspond to the controller in our appli-

cation that ensures that model and view are always consistent. Figure 5.10
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Figure 5.9: Class structure for EditParts controlling the view and model of
classes and clusters in the static diagramming module.

shows the relationship between ClassEditPart and ClusterEditPart with their

corresponding models and views. Each EditPart has features for setting and

getting its model and view. An instance of ClusterEditPart has also an in-

stance of ClusterModel as its model and an instance of ClusterFigure as its

figure. ClusterEditPart ensures that these two are consistent and that changes

in one of them are reflected in the other. The same applies to ClassEditPart,

ClassFigure and ClassModel. The main features that are inherited from Edit-

Part and implemented to achieve this consistency are getModel, createFigure

and updateFigure.

As described above, the top model for the static diagram is StaticDiagram-

Model. Figure 5.11 shows the classes that represent the canvas on which the

elements of a static diagram are drawn. BonDiagramEditPart is the controller

which registers any additions to the canvas. The figure representing the canvas



77

+CLUSTER_EDITPARTgetModel: CLUSTER_MODEL +createFigure +updateFigure +
+CLASS_EDITPARTgetModel: CLUSTER_MODEL +createFigure +updateFigure +

CLUSTER_FIGURE CLUSTER_MODEL
CLASS_MODELCLASS_FIGURE

Figure 5.10: Relationship between model, view and controller. EditParts are
the controller and each have a model and a figure.
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is an instance of FreeFormLayout. Any changes to the view are reflected to

the model, StaticDiagramModel. The class BonDiagramEditPart inherits from

BonContainerEditPart as it behaves like a container where elements can be

dropped to and removed from.BON_CONTAINER_EDITPARTBON_DIAGRAM_EDITPARTFREEFORMLAYOUT STATIC_DIAGRAM_MODEL
Figure 5.11: vis responsible for maintaining consistency between the view
FreeFormLayout and the model StaticDiagramModel. It inherits from Bon-
ContainerEditPart which was described above.

The last controller we are going to discuss in this section is that of depen-

dencies. There are three different models and views for dependencies and as

a result we have three EditParts. AggregationEditPart, AssociationEditPart

and InheritanceEditPart inherit from BonConnectionEditPart which is seen

in Figure 5.12. BonConnectionEditPart inherits from AbstractConnectionEd-

itPart and implements the abstract routines for this class. An instance of

BonConnectionEditPart has an instant of DependencyModel which acts as the

model for a dependency. Each of the three connection EditParts have their

own figure, which can also be seen in Figure 5.12.
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ABSTRACTCONNECTIONEDITPARTBON_CONNECTION_EDITPARTAGGREGATION_EDITPART DEPENDENCY_MODELASSOCIATION_EDITPARTINHERITANCE_EDITPARTAGGREGATION_FIGURE ASSOCIATION_FIGURE INHERITANCE_FIGURE
Figure 5.12: Class structure of EditParts involved in controlling the view and
model of dependencies. AssociationEditPart, AssociationEditPart and Inher-
itanceEditPart inherit from BonConnectionEditPart which in turn inherits
from AbstractConnectionEditPart.
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In this section, we did not mention EditParts involved in controlling models

and figures that represent class features. This class structure is very similar to

that of ClassEditPart and ClusterEditPart and it was therefore omitted. The

interested reader can inspect the code to find out more about those EditParts.

5.2.4 BON Static Editor

In the sections above, we described the model, view and controller. These

three, however, have to be started at some point and in this section we will

discuss the Editor, the class that is responsible to start the static diagram

application and set all initial values. Figure 5.13 shows the structure of classes

that are involved in maintaining an editor and initializing its values.

The class EditorPart is the base abstract implementation of all Editors.

GraphicalEditor extends EditorPart and represents an editor for graphical use.

Each GraphicalEditor has an instance of GraphicalViewer which is responsi-

ble for showing the contents of the editor. Figure 5.13 also shows that each

GraphicalViewer has an instance of EditPartFactory. Whenever an EditPart

in that viewer needs to create another EditPart, it can use the Viewer’s factory.

In our case, EditPartFactory is set up in a way to create the right EditParts

based on the model that is added to the editor. This structure follows the

Factory design pattern.

Once an instance of BonStaticEditor is created, it sets its own content
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Figure 5.13: Class structure of EditParts involved in controlling the view and
model of dependencies. AggregationEditPart, AssocationEditPart and Inher-
itanceEditPart inherit from BonConnectionEditPart which in turn inherits
from AbstractConnectionEditPart.

by creating a new instance of StaticDiagramModel. This model is passed to

the GraphicalViewer and then to the EditPartFactory. It is the factory’s

responsibility to create the correct EditPart for this model. In our case, the

factory would create an instance of BonDiagramEditPart. Once this EditPart

is created, it creates an instance of FreeFormLayout to act as its figure. After

that, BON DIAGRAM EDITPART waits for user input.

5.3 Consistency Module

The module for checking contractual consistency consists of a small number

of classes. ConsistencyComposite, ConsistencyCheck and SSC are the three

main classes in this module. In addition, the class BooleanExpression from the

static diagram module is of importance to this module. Figure 5.14 shows the
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classes and their interactions in the consistency module. ConsistencyCompos-

ite is the class that holds the visual elements such as buttons and text boxes

for user interaction. ConsistencyCheck is the main class responsible for coor-

dinating consistency checking and has references to StaticDiagramModel and

DynamicDiagramModel, which represent SD and DD in Chapter 4 respec-

tively. An instance of the class SSC represents the system state constraint

and consists of a list of predicates.

In this section, we will discuss how contracts and the system state con-

straint are represented, how BDT interacts with the theorem prover and how

the system state constraint is modified. In addition, we will outline the sources

of incompleteness in our tool and any features from the theory that were not

implemented in BDT.CONSISTENCY_COMPOSITECONSISTENCY_CHECKSSC STATIC_DIAGRAM_MODELSTATIC DIAGRAM MODULEDYNAMIC_DIAGRAM_MODELDYNAMIC DIAGRAM MODULECONSISTENCY MODULE
Figure 5.14: ConsistencyCheck has references to StaticDiagramModel and Dy-
namicDiagramModel. It also has one instance of SSC.
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5.3.1 Boolean Expression

Checking for contractual consistency is dependent on contracts of classes. As

a result, it was important to have a well-defined structure for contracts in

order to simplify their manipulation. BDT currently supports a subset of

legal contracts as defined by [WN95]. The following forms of contracts are

supported:

• The primitive types supported in a contract are INTEGER, REAL,

BOOLEAN, STRING and ARRAY[G]

• Composite types can be composed from supported primitive types (e.g.

SAVING). Composites of composites are supported as well.

• Contracts involving equality and inequality of the supported types, e.g.,

a = 5 and a ≤ b.

• Query calls that return a supported type, e.g. a = get balance.

• Contracts involving one level of multi-dot expressions, e.g. a = sav.balance.

The current application does not deal with multi-dot expressions and it

needs improvement in this area for the future.

• Four basic operations (+, –, *, /) for INTEGER and REAL; nega-

tion, conjunction, disjunction and implication for BOOLEAN, e.g. a =

sav.balance + x and a = x implies b.



84

• Three operations are supported for arrays. These are insert(i: INTE-

GER, x: G), count and item(y: INTEGER). item(y) returns the item at

position y in the array; insert(y) inserts an item at position y and count

returns the number of items in the array. Support for other features can

easily be added, but we chose to limit our implementation to these three

array operations to avoid unnecessary complexity.

• Array expressions that hold one of the supported primitive or composite

types, e.g. a.item(5) > 15.

Class BooleanExpression represents a predicate that asserts a condition on

one attribute. As a result, a precondition of a routine can consist of several

instances of BooleanExpression. Figure 5.15 shows the most important features

of BooleanExpression. This class is deferred and consists of unimplemented

features getVariables, getPrefix, renameVariables, replace and a few others

that are not relevant for the current discussion. The function of each routine

is as follows:

• getVariables: Skims through the expression and returns a list of all vari-

ables in the Boolean expression removing all key words, constants and

feature names.

• getPrefix: Returns this Boolean expression in prefix format. This rou-

tine is used to communicate with the theorem prover, which accepts
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predicates in prefix form only.

• renameVariables (s: String): Renames all variables var in the expression

to s.var. This feature is used to rename all unqualified variables var to

s.var where s is the object name.

• replace (s, newS): Replaces all occurrences of s in the current instance

where it appears as old s with the new variable newS. This feature is

used to remove all occurrences of old variables and is used for evaluating

post system state constraints. *BOOLEAN_EXPRESSION
ARRAY_EXPRESSION OPERATOR_EXPRESSION

getVariables: LISTgetPrefix: STRINGrenameVariables(s: STRING)replace(s: STRING, newS: STRING)
Figure 5.15: BooleanExpression is the class representing Boolean expressions.
It is a deferred class and is implemented by ArrayExpression and OperatorEx-
pression.

There are two classes that implement BooleanExpression: class ArrayEx-

pression and class OperatorExpression. ArrayExpression is used to represent

Boolean expressions that involve arrays whereas OperatorExpression is used for



86

all other forms of supported Boolean expressions. These expressions cannot

contain array expressions. In our current implementation, operator expres-

sions consist of feature calls and expressions involving equality and inequality

operators.

5.3.2 Mapping between Messages and Routines

As was discussed in Chapter 4, a mapping between messages in the dynamic

diagram and routines in the static diagram has to be specified by the user (see

Table 4.1). This mapping represents the overlap of information between the

two views and this information is used to check for consistency, or in our case,

contractual consistency.

In BDT, the mapping occurs in the dynamic diagram by choosing a rou-

tine for each message. The user can specify a routine through the messages

Properties interface. In this interface, the user will be presented with a list of

legal routines that can be associated with the chosen message. The legality of

routines depends on the routines that are exported to the source object from

the target object. Figure 5.16 shows a screen-shot of this interface from BDT.

If contractual consistency is being checked between a static diagram and

dynamic diagram for which not all mappings have been specified, an error

message will be displayed to the user and she will be prompted to specify the

necessary mappings.
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Figure 5.16: The interface used to specify a mapping between messages and
routines.
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5.3.3 Theorem Prover - Simplify

In section 4.3.3 we described the function Prover that we used as an oracle

for the development of our theoretical approach to contractual consistency

checking. The definition of Prover was given by (4.3). In order to implement

BDT, we have to replace this oracle by a theorem prover that provides us with

similar abilities.

There are several theorem provers available, both commercially and open-

source. PVS [OSR01] is one of the most famous and widely used theorem

provers. [POB02] suggests using PVS for the approach presented in that

paper. [Kri00] also suggests the use of PVS for checking the consistency

between UML diagrams. We have decided to use the theorem prover Simplify

[DNS03] which is the prover used in the Extended Static Checker ESC/Java

[LNS00] for the following reasons:

• Simplify is available for all development platforms including Windows

and Linux. PVS, for example, is not available for Windows.

• Simplify tries to find simple proofs rapidly if they exist. This provides an

advantage for software developers who are not interested in long waiting

times when testing models.

• Simplify simplifies the use of the multi-dot notation that is extensively

used in object-oriented programming. A variable sav.balance can easily
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be supplied to Simplify as |sav.balance|. This is a major simplification

compared to other theorem provers.

• An important property of the theorem-prover is that it is refutation-

based: to prove a formula P , it tries to satisfy the negation of P . If

the prover finds a set of variable assignments that satisfy the negation

of P , those variable assignments are returned as feedback. This feature

is very useful as it can be used to give valuable feedback about contract

violations. Consider the predicate (x = −1) ⇒ (x > 0). The following

are sample outputs from Simplify :

(IMPLIES (EQ x −1)(> x 0) )
Counterexample :
context :

(AND
(EQ x −1)

)
1 : Invalid .

The first line represents the predicate that was sent to Simplify to be

proved. Invalid indicates that the predicate could not be proved. The

section context specifies the counter example that could be used to satisfy

the negation of the predicate. In this example, if x was set to −1 then

the above predicate would evaluate to false. Note that Simplify uses the

prefix notation. It is important to note that Invalid does not necessarily

mean that the predicate is not a theorem. In cases when quantifications

are used, an output of Invalid with a counter example could still mean
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that the predicate is a theorem. This is one source of incompleteness in

Simplify.

The next example also evaluates to Invalid, but Simplify has not found

a counter example to return.

(AND (EQ x 1) (NEQ x 1) )
Counterexample :

3 : Invalid .

Simplify reports Invalid. In this case, the tested predicate x = 1 ∧ x 6=

1 really is not a theorem — it is in fact a contradiction. However,

Invalid just means that the theorem prover could not definitively prove

the theorem. But it does not definitively tell us that we are dealing with

a contradiction. Simplify returns Invalid without a counter example if

it did not exhaust all search paths, but also could not come up with an

assignment that satisfies the negation of the supplied predicate. Note,

however, that there is a way to clarify the situation using the theorem

prover. If we submit ¬(x = 1 ∧ x 6= 1) we get back V alid. Thus we

now have definitive evidence that x = 1∧x 6= 1 is a contradiction. With

regard to the oracle of the previous chapter, we can thus assert that

Prover(x = 1 ∧ x 6= 1) = F .

The next example evaluates to Valid.

(IMPLIES (EQ x 10)(> x 0) )
1 . Val id
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The authors of Simplify claim that an output of Valid guarantees that

the supplied predicate is a theorem.

The implications of the above three cases in regards to the response from

our tool are discussed in the next section.

Incompleteness of BDT

We use Simplify in BDT to check for a successful symbolic execution step as

defined by (4.4). Simplify is only an approximation to our oracle Prover de-

scribed in Section 4.3.3. This theorem prover was “engineered to be automatic

rather than complete” [FLL+02] and as a result this theorem prover is incom-

plete. In fact, due to Gödel’s completeness Theorem, all theorem provers are

incomplete and a prefect oracle cannot be constructed. Due to this restriction,

BDT is also incomplete as it can provide spurious warnings and label a model

as contractually inconsistent, but in fact the model could be contractually

consistent.

Simplify has two possible outputs given a predicate P :

• Valid ;

• Invalid (often with a context).

Given a predicate P as the input to Simplify, the output Valid signals that

P is definitely a theorem (assuming that the theorem prover was implemented
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Valid Invalid
Simplify(X) Prover(X) = T . The

precondition is enabled
under the current state
constraint.

Incomplete. Context
usually provides enough
feedback to help the de-
signer decide whether the
contractual design is in
error or whether the the-
orem can be proved and
the precondition is en-
abled.

Simplify(¬Y ) Prover(Y ) = F . SSCi+1

is a contradiction; thus
there is no poststate with
which to continue the
symbolic execution.

Incomplete. Context
usually provides enough
feedback to help the
designer decide whether
there is or is not a con-
sistent poststate.

Table 5.1: Table explaining the mapping between the output from Simplify
and Prover. X = SSCi → ri.pre and Y = SSCi+1. Note that we use ¬Y for
the second condition.

correctly). An output of Invalid signals incompleteness as it cannot be deter-

mined whether P is indeed not a theorem. In these cases, Simplify tries to find

a counter example that would make P evaluate to false. There are, however,

cases in which the theorem prover does not return a counter example as it did

not find one (even though one does exist). Table 5.1 shows how Simplify is

used in order to evaluate (4.4).

If Simplify(SSCi → ri.pre) returns Valid then the precondition of ri.pre

is satisfied and the user is given the appropriate feedback. However, if the the-

orem prover returns Invalid then it is the user’s responsibility to decide based

on the context returned whether a contract violation will occur. Similarly, if

Simplify(¬SSCi+1) returns V alid then the system state constraint SSCi+1
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is a contradiction and the user is notified. An output of Invalid can be used

with the context to determine whether the system state constraint is in fact a

contradiction.

Interaction with Simplify

BDT interacts with Simplify through input and output files. The formula to

be proved is written into an input file and then Simplify is invoked on that

file. After the execution, the result is read from an output file.

The execution of Simplify is achieved through running the following com-

mand in Java:

Runtime . getRuntime ( ) . exec ( ‘ ‘ cmd . exe /E:1900 /C

s imp l i f y . exe < f i l e . in > f i l e . out ’ ’ ) ;

where simplify.exe is the executable file for the theorem prover in a Windows

environment1, file.in contains the predicate to be proved and file.out will con-

tain the output from Simplify. As described, once this command is executed,

BDT reads file.out to extract useful feedback that can be shown to the user.

Modification of Response from Simplify

The extraction of relevant information as feedback is dependent on the pro-

grammer. No theory was developed during this thesis that dictates which

1Other files must be used for other environments. Ideally a commercial release of BDT
should come with Simplify files for all supported platforms.
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result should be communicated back to the user. As (4.2) shows, variables can

be renamed several times during the execution of messages. As a result, the

output from Simplify can be very extensive and overburden the developer.

We use (4.2) in our implementation in order to preserve information re-

garding past states of variables. This information can be used to provide the

developer with targeted feedback regarding the transition of every variable. In

the current implementation of BDT, however, we do not use this information

and project out information regarding past states when presenting the user

with feedback. As a result, the user only sees the current state of attributes at

the time a contract violation occurred. It is possible to define more elaborate

rules for displaying feedback to the user. This is left as a future improvement.

The following is an output from BDT after checking for successful symbolic

execution of some message Message1. The output is as follows:

Precondition (saving.active = false) from Message1

was not satisfied.

The following terms caused this error:

(NEQ saving.active false)

(EQ balance 0)

The first line indicates the exact term that caused the precondition to fail. In

this case, it was (saving.active = false). Further, the output identifies the

message whose associated routine failed, i.e. Message1. After that, useful

terms that can help the developer in finding the source of the error are listed.

The terms presented as feedback are a subset of the terms that made (SSCi →
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ri.pre) evaluate to false. In this case, the developer knows that at the time of

the contract violation (saving.active 6= false) and that (balance = 0). This

information can now be used to find the source of the violation. At this stage,

it is the user’s responsibility to recognize the most relevant expressions and

change the model accordingly.

5.3.4 Representation and Modification of System State

Constraint

In BDT, we use the class SSC to represent the current system state. SSC

has three main features that are used to update the system state constraint

as shown in Figure 5.17. The routines and their roles are explained below:

• getVariables is used to get all the variables in the state constraint. This

feature is used to rename variables after a message has been successfully

executed and a new system state constraint has to be constructed.

• addExpression (BooleanExpression exp) adds a new Boolean expression

to the system state constraint. This feature is mainly used during the

beginning of the simulation when the initial, user-specified constraint is

added.

• seqCompose (LIST newExp) is the main feature of this class. This rou-

tine implements (4.2). seqCompose takes as argument newExp which is
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a list of Boolean expressions. newExp represents the postcondition of a

routine whose precondition has been satisfied by the current system state

constraint. As outlined in (4.2), seqCompose must rename attributes in

both, newExp and the current SSC. For each variable v that is being

modified, this routine has to find a fresh variable v′. In this routine, we

use the Java construct

UID uid = new UID ( ) ;

to find a unique identifier in the system. This value is then attached to

the variable v to give us a fresh variable v′. This is repeated for each

variable that is being modified.

In our discussion in Chapter 4 we presented the idea of a modifies clause

that specifies all variables that a routine can change. This clauses is used in

(4.2) to obtain the variables that are being modified and therefore have to

be renamed. In BDT, the user can specify the modifies clause in the static

diagram together with the contracts of a class.

5.3.5 Process of Checking Contractual Consistency

Given a static and dynamic diagram in BON, BDT checks for contractual

consistency between the two views as follows:

1. BDT checks that all messages in the dynamic diagram have a mapping
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Figure 5.17: SSC represents the system state when executing messages. Con-
sistencyCheck has a reference to SSC.

to routines in the static diagram. If this is not the case, an error message

is displayed.

2. The user is given the opportunity to specify an initial constraint. This

constraint becomes SSC1, otherwise it is true.

3. If the routine ri associated with message mi contains formal arguments,

then the user is asked for a constraint involving the arguments. This

constraint is added to SSCi.

4. For each message mi, BDT checks whether SSCi implies the precondition

of ri which is associated with mi. For this step, the condition to be

checked is converted to prefix format and checked by using Simplify.

If the theorem prover returns V alid, then BDT continues to the next

step, otherwise an error message with an edited response from Simplify

is returned to the user to signal a possible contract violation.

5. BDT uses the routines in the class SSC to construct the new system



98

state constraint according to (4.2).

6. Using the new state constraint, Simplify is used again to check the second

condition of (4.4). Table 5.1 is used to evaluate the output from the

theorem prover.

7. If both conditions of (4.4) are satisfied, BDT notifies the user that the

message was successfully symbolically executed.

8. If all messages are successfully executed, the two views are considered

contractually consistent.

5.3.6 Limitations of the Tool

Our main objective for BDT was to develop a prototype tool that illustrates

the implementability, in principle, of the theoretical work on contractual con-

sistency. Our objective was not to develop a full-strength tool that catches all

errors and provides all features of a modelling tool. As a result, the following

features were not implemented in BDT:

• Class invariants were not implemented in BDT as they do not add addi-

tional complexity to the work. Section 4.6 shows what is needed to add

invariants.

• Sub-messages as described in Section 2.3.3 are not supported in BDT.

Further research is necessary to develop a theory for them first before
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they are added to the tool.

• As mentioned above, only a subset of legal contracts is supported. As a

result, quantifications and object equality (inequality) are not fully sup-

ported. Simple expressions involving reference equality work as expected.

For example, in BDT a contract might state that (x = V oid ∧ x = y) ⇒

(y = V oid). BDT submits this to Simplify as

(IMPLIES (AND (EQ x |Void|) (EQ x y)) (EQ x y))

Simplify will reduce this to true as expected. However, we would need

further axioms to be added to the theory to fully support reference equal-

ity. For example, suppose we have x,y:SAVING, then we need to add an

axiom that says (x = y) ⇒ (x.balance = y.balance). These kinds of

extensions are not that difficult to do, but they are not currently imple-

mented in BDT.

• Simplify supports quantifications and as a result, they could be added

to the tool. The work with contracts involving objects needs additional

research.

• Currently, BDT only supports single-dot notations, e.g. sav.balance.

Support for multi-dot notation can be added, but it would require a

more robust parser.

• Genericity is not supported.
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• Inheritance of contracts is not supported.

Most of the features from above can be easily implemented, but as men-

tioned, this is a prototype tool for the purpose of demonstrating our ideas

only. The next stage in the development of BDT would involve implementing

these omitted features and adding more error checking to BDT.



Chapter 6

Discussion

While multi-view consistency of software architectural languages (e.g. UML

and BON) is discussed in the literature, no consistency tools have emerged

until very recently. Yet, inconsistent views could have major ramifications for

software quality and reliability.

Gao [Gao04] recently developed the first such multi-view consistency tool.

The main focus of the tool was to check for static consistency. To check

for contractual consistency, class features have to be implemented, and tests

are run simulating the dynamic diagrams. In this thesis, we develop a tool

(complementary to that of Gao) that can deal with multi-view contractual

consistency directly, without the need to develop implementations. The main

contributions of this work are as follows:

101



102

• Our BDT tool allows developers to describe and edit BON static dia-

grams with contracts that describe the class behaviour, as well as dy-

namic diagrams to describe object communication sequences.

• To our knowledge, BDT is the first tool to automatically check contrac-

tual consistency between message sequences in the dynamic diagrams

against their contracts in the static diagrams, without the need to sup-

ply implementation detail.

• Consistency checking is done by symbolic execution of the messages using

their contracts with the help of a theorem prover. Thus, BDT provides

executability and thus the ability to test partial models early on in the

design process. Feedback is provided as to the precise location of contract

violations. This allows the designer to change the design accordingly.

• Current MDD tools are limited to the use of statecharts for describ-

ing behaviours. BDT allows the designer to work with contracts which

describe behaviour at a higher abstraction level than statecharts.

• Current MDD tools support the informal use of dynamic diagrams, but

these diagrams are not formally factored into the final generated model.

But dynamic diagrams (message sequence diagrams and collaboration

diagrams) are widely used in the development of business systems. BDT

directly incorporates dynamic diagrams into the design process and in
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fact ensures that they are consistent with the rest of the design. This

does not mean that the use of statecharts is discouraged, rather that our

approach is an advantage orthogonal to the use of statecharts.

• The use of Simplify as our theorem prover has made our tool fast, which

returns proofs and counter examples quickly.

In summary, we have developed a theoretical approach for defining and

checking contractual consistency of a multi-view model. In addition, we pre-

sented a tool that implements most of the ideas in this thesis. There will be

three major areas for future work.

First, our BDT tool requires improvements and additions to make it an

industrial-strength tool. Section 5.3.6 outlined the areas in which BDT needs

improvements. The most important ones include support of invariants and

quantifications in contracts. Quantifications would allow us to specify more

advanced behaviour about routines such as properties of Lists and Arrays. In

addition, inheritance and genericity need to be included in BDT. We believe

that once these features are implemented, BDT will provide a unique modelling

environment that does not currently exist.

Second, BDT can be incorporated with the Eiffel Development Tool (EDT)

[Mak03]. EDT is an integrated development environment (IDE) for software

production using Eiffel. EDT has also been developed as a plug-in for Eclipse

and as a result can be integrated with BDT. The integration of both tools
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would support forward and reverse engineering. Therefore, the user could

develop models, check their consistency and generate partial program code.

Finally, BDT/EDT can be expanded to provide program verification simi-

lar to ESC/Java [LNS00]. The Eiffel Refinement Calculus (ERC) [PO04] could

be used to ensure that program code satisfies the specifications of a class. Us-

ing this environment, the user can start by developing models of the system

using contracts only and checking their consistency. Then, partial program

code can be generated and routine bodies completed. Finally, the correctness

of the program code can be checked against the specifications.



Appendix A

Dynamic Diagramming Module

BDT allows the user to construct dynamic diagrams in BON. Dynamic dia-

grams can be used to illustrate the runtime/dynamic behavior of an object-

oriented system. Figure A.1 shows a screen shot of the dynamic diagramming

module. The sections below describe the implementation of this module and

highlight the most important design decisions.

A.1 Model

This section outlines the model behind a dynamic diagram that a user con-

structs. Figure A.2 displays the structure of classes that represent objects,

object groups and the dynamic diagram within the model. The class Dynam-

icDiagramContainer represents a container to which instances of DynamicEle-

ment can be added. An instance of DynamicElement represents an element
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Figure A.1: A screen shot from the dynamic diagramming tool of BDT.
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in the diagram and is implemented by ObjectModel and ObjectGroupModel.

Class DynamicDiagramModel implements the class DynamicContainer and

represents the entire dynamic diagram to which elements are added.DYNAMIC_CONTAINER DYNAMIC_ELEMENTDYNAMIC_DIAGRAM_MODEL OBJECT_MODELOBJECT_GROUP_MODEL
Figure A.2: The model for a dynamic diagram, an object and a group of
objects. DynamicContainer represents the model of a container. Dynam-
icElement represents an element such as an object or group of objects.

There are two classes representing messages within the model. First, the

class MessageModel represents messages between two different objects, i.e.,

the source and target objects are different. Second, class SelfMessageModel

is for those messages that are ”loop-messages”. These messages have the

same source and target object. A self message has also a different graphical

representation.

A.2 View

The view in the dynamic diagram is based on figures in the draw2D package of

GEF. Objects are graphically represented by ObjectFigure and object-groups

by ObjectGroupFigure. As Figure A.4 shows, both of these classes extend
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Figure A.3: MessageModel is the class representing the model of a message in
the dynamic diagram. A SelfMessageModel is a special case of a MessageModel
where source and target object are the same.

Label and use ChopBoxAnchor to represent the anchors to which message

arrow-lines connect. Classes ObjectFigure and ObjectGroupFigure additionally

use the classes RectangleFigure and RoundedRectangleFigure respectively for

representing the outlines for their shapes.LABELOBJECT_FIGURE OBJECT_GROUP_FIGURECHOPBOXANCHORRECTANGLE_FIGURE ROUNDED_RECTANGLE
Figure A.4: ObjectFigure and ObjectGroupFigure are the figures in the view
when representing an object and object group respectively. Both inherit from
Label from draw2D and have an anchor.

The structure of classes representing messages graphically is similar to that

of the model of messages. Class MessageFigure extends PolyLineConnection,
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which represents a line in draw2D. Class SelfMessageFigure extends Message-

Figure to implement a different representation of the message line. Both,

MessageFigure and SelfMessageFigure use instances of PolyLineDecoration to

get their shape and arrow head. Figure A.5 shows these concepts.POLYLINECONNECTIONSELF_MESSAGE_FIGUREMESSAGE_FIGURE
Figure A.5: MessageFigure and SelfMessageFigure are the figures that rep-
resent messages in a dynamic diagram. Both of these classes inherit from
PolyLineConnection.

A.3 Control

The class structures representing controls in the dynamic diagram tool are

very similar to those in the static diagram. Figure A.6 depicts the class

structure of EditParts controlling the view and model of object-groups and

objects. Class ObjectGroupEditPart inherits from NodeEditPart and Dynam-

icContainerEditPart. The EditPart for containers has features to act as a

container. NodeEditPart represents a node in the diagram to which lines

(messages) can be connected.
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Figure A.6: ObjectEditPart is the control for object figures and model. Ob-
jectGroupEditPart does the same for object group models and figures. Both
inherit from NodeEditPart and AbstractGraphicalEditPart. DynamicCon-
tainerEditPart works similar to BonContainerEditPart for static diagrams.
It represents a container.

Class ObjectEditPart inherits from both NodeEditPart and AbstractGraph-

icalEditPart. Figure A.7 shows that this class has references to ObjectFigure

and ObjectModel, the view and model it keeps consistent. Figure A.8 shows the

same for ObjectGroupEditpart. This class has references to ObjectGroupFigure

and ObjectGroupModel. OBJECT_EDITPARTOBJECT_MODELOBJECT_FIGURE
Figure A.7: The EditPart in this figure is responsible to keep view and model
consistent. The view is represented by ObjectFigure and the model by Object-
Model.

The EditPart for the overall dynamic diagram has a similar structure as
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Figure A.8: ObjectGroupEditPart has a reference to the model, ObjectGroup-
Model and view, ObjectGroupFigure. It tries to keep both consistent.

its counterpart in the static diagram. DynamicDiagramEditPart extends Dy-

namicContainerEditPart and has also two references to FreeFormLayout as its

figure and DynamicDiagramModel as the model. FreeFormLayout is a figure

from the draw2D package and acts as the canvas on which elements are drawn.

This structure is shown in Figure A.9DYNAMIC_CONTAINER_EDITPARTDYNAMIC_DIAGRAM_EDITPARTFREEFORMLAYOUT DYNAMIC_DIAGRAM_MODEL
Figure A.9: DynamicDiagramEditPart extends DynamicContainerEditPart as
it behaves like a container. It has references to the model and the view which
it controls.

Even though there are two types of messages (regular and self-message)

there is only one EditPart for controlling the view and model of messages. It

has references to both MessageModel and MessageFigure to control the model
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and view. The structure is shown in Figure A.10ABSTRACT_CONNECTION_EDITPARTMESSAGE_EDITPARTMESSAGE_MODEL SELF_MESSAGE_FIGUREMESSAGE_FIGURE SELF_MESSAGE_FIGURE
Figure A.10: MessageEditPart is the control for messages. It has a reference
to MessageModel and MessageFigure. There is only one EditPart for both,
messages and self-messages. The class deals with both cases.

A.4 BON Dynamic Editor

The editor for dynamic diagrams is set up similarly as that for static diagrams.

BonDynamicEditor is responsible for creating a new instance of DynamicDi-

agramModel and passing it to DynamicGraphicalFactory. This factory is re-

sponsible for creating the appropriate EditPart of the model. In this case, the

factory would create an instance of DynamicDiagramModel. Figure A.11 shows

the class structure for classes involved in setting up and maintaining the ed-

itor. BonDynamicEditor implements routines for activating and deactivating
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the editor, responding to actions and displaying graphical objects.EDITPARTFACTORYGRAPHICALVIEWER GRAPHICALEDITORDYNAMIC_DIAGRAM_MODEL BON_DYNAMIC_EDITOREDITORPART
Figure A.11: BonDynamicEditor is the editor responsible for starting the
dynamic diagramming application and has mechanisms for receiving events
and processing actions. It has a reference to DynamicDiagramModel which is
instantiated when the application starts.



Appendix B

Rational Rose RealTime

Rational Rose RealTime (RRRT) [Rat02] is a software development environ-

ment that is tailored to meet the special needs of real-time system develop-

ment. It is, however, argued that it can be used for other software develop-

ment domains as well. RRRT can be used to create models of the software

system based on UML, generate implementation code and run the application.

RRRT can be used through all phases of the software development lifecycle:

from requirements analysis through design, implementation, testing and final

deployment. All the development is performed through one single interface for

model-based development.

Since Rational Rose RealTime is in support of the Model-Driven Architec-

ture [MSUW03] framework it allows development at a higher level of abstrac-

tion. Developers specify behavior in statecharts and static structure in class
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diagrams. In contrast to BridgePoint, the developer does not have to use the

UML Action Language to specify behavior in statecharts. RRRT gives the de-

signer the option to use from a number of programming languages, including

Java and C++, to be used as the Action Language. This features provides

the developer with the advantage of not having to learn a new language.

In this chapter, we will discuss the use of Rational Rose RealTime. The

discussion will introduce the new construct capsule in UML, then give an

example of code generation and finally discuss model execution.

B.1 Classes vs. Capsules

In order to achieve model executability and support for real-time systems,

Rational Rose RealTime uses the extensibility features of the UML to define

some new constructs. One of these new constructs is a capsule. A capsule

is the fundamental element of Rational Rose RealTime. Capsules have much

the same behavior as classes and have operations and attributes. They can

also, as do classes, participate in dependency, generalization and association

relationships. They have, however, some additional functionality and differ in

some areas from classes. Here is a list of these features and differences:

• Capsules can communicate with other capsules only through the use of

public ports, i.e. capsules do not have public operations, only public

ports.
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• A capsule’s structure is defined by its attributes (like a class). These

attributes, however, are completely private and no outside object can

directly access them.

• Capsules can only communicate through messages which are sent and

received through ports.

• When an operation is invoked in a class the action taken depends on the

implementation of the operation. When a capsule receives a signal event,

however, the behavior is controlled by its statechart. When a capsule

receives a message from another capsule a signal event is generated and

a response must be produced. The optional statechart associated with a

capsule represents its behavior. The statechart is the only element that

can access the protected attributes of the capsule.

As can be seen, capsules are very similar to classes, but have some addi-

tional features, the most important being statecharts. The user has the ability

to develop systems without the use of capsules at all. This kind of develop-

ment, however, would eliminate the ability to execute (partial) models. In

order to achieve model executability with a model consisting of classes only,

the full implementation is necessary. If model executability at a higher level

and at earlier stages in the development is desired then capsules have to be

used.
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B.2 Code Generation

As discussed above, two of the main objectives of MDA and Rational Rose

RealTime are to achieve model executability and automatic code generation

for the developer. In order to achieve automatic code generation, capsule and

statechart specifications are necessary. Program code is generated based on

the semantics of capsules which is specified through a statechart. Statecharts

describe the states that an object goes through in its life cycle and the tran-

sitions that can be taken from each state.

According to Rational Rose RealTime, round trip engineering is not nec-

essary and forward engineering is enough for the developer to achieve the best

performance and efficiency. As a result, the code generated by Rational Rose

RealTime can be very complicated to inspect. Below is an example of a Hello

World example. This example consists of one class and one method and is

written in Java. The expected class and method look as follows:

Class Hel loCapsule {
public stat ic void main ( St r ing [ ] a rgs ){

System . out . p r i n t l n ( ‘ ‘ He l l o World ’ ’ ) ;
}

}

The above class is the code a programmer would produce if given the task

to write a Java class that prints “Hello World” outside of RRRT. The same

class can be developed using Rational Rose RealTime. In this case, to achieve

full code generation a capsule must be defined and its statechart specified.



118

<<Capsule>>
HelloCapsule

Figure B.1: HelloCapsule Capsule in Rational Rose RealTime.

S1initial
Figure B.2: State machine for HelloCapsule in Rational Rose RealTime.
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The capsule and statechart are shown in Figure B.1 and B.2 respectively. The

action belonging to the transition initial in this diagram is as follows:

java . lang . System . out .
p r i n t l n ( ‘ ‘ He l l o World from Capsule ’ ’ ) ;

After completing the model described above and performing code generation,

RRRT produces a Java file with fourteen methods and 151 lines of code.

Through quick inspection, the following easy-to-understand method can be

located:

protected void r t T r a n s i t i o n 0 I n i t i a l ( ) {
java . lang . System . out . p r i n t l n

( ‘ ‘ He l l o World from Capsule ’ ’ ) ;
}

This method represents the code for the initial transition. The following two

methods are also among the fourteen added:

protected void r tPreparePort s ( ) {
super . r tPreparePort s ( ) ;
NewPort1 = new NewProtocol1 . Base
( this , 1 ,

(1 << com . r a t i o n a l . r o s e r t . Capsule .
PortDescr iptor . I dSh i f t )

+ com . r a t i o n a l . r o s e r t . Capsule .
PortDescr iptor . No t i f i c a t i onD i s ab l ed

+ com . r a t i o n a l . r o s e r t . Capsule .
PortDescr iptor . RegisterNotPermitted

+ com . r a t i o n a l . r o s e r t . Capsule .
PortDescr iptor . Wired

+ com . r a t i o n a l . r o s e r t . Capsule .
PortDescr iptor . V i s i b i l i t yPub l i c

) ;
}
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protected com . r a t i o n a l . r o s e r t . BindingEnd rtFol lowInV ( int
re lay , int index ){

switch ( r e l a y ){
case 0 :

i f ( index < 1){
return new com . r a t i o n a l . r o s e r t .

BindingEnd ( this . NewPort1 , index ) ;
break ;

}
default :

break ;
}

return super . rtFol lowInV ( re lay , index ) ;
}

These two methods, however, are more difficult to understand and their

purpose is not fully clear. The above example shows clearly that the code

generated automatically can be very difficult to understand, even for very

small programs. Whether this poses any clear difficulties for the programmer

is debatable. MDA and RRRT argue that the programmer should only work

at the model level and not at the code level. This approach, however, requires

very strong debugging, execution and consistency capabilities at the model

level. RRRT currently has debugging and execution capabilities, but lacks

methods to check multi-view consistency. The next section, discusses this in

more detail.

B.3 Model Executability

Model executability is one of the key objectives of MDA and as a result, that of

Rational Rose RealTime. As with code generation, key to model executability
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are the specification of capsules and statecharts. Statecharts are the only

components in Rational Rose RealTime that take part in model executability.

The developer specifies the various capsules in the system and defines their

statecharts and the communication between these statecharts. Once com-

pleted, the developer can build and subsequently “run” the model using model

compilers. As with BridgePoint, the main disadvantage with this approach is

the lack of activity diagrams such as collaboration diagrams in the process

of model execution (and code generation). Many designers, especially those

developing business systems, prefer the use of collaboration diagrams over stat-

echarts. RRRT currently, allows the construction of such diagrams, but does

not check their consistency with the capsules or incorporates them in model

execution.
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