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Abstract 
 

Concurrent programming is notoriously error prone. SCOOP is a simple but 

powerful notation for concurrent programming built on top of standard Eiffel (Meyer 

1997). The SCOOP extension to standard Eiffel covers fully-fledged concurrency and 

distribution constructs, but is as minimal as it can get. Starting from the standard 

sequential Eiffel notation, there is the addition of a single new keyword — separate. This 

simplifies mutual exclusion and synchronization, and almost completely removes 

problems such as the inheritance anomaly. 

In this thesis, we describe a SCOOP to Eiffel Generator. The Generator is the first 

workable and complete cross-platform implementation of SCOOP. We show how 

SCOOP constructs can be mapped to standard Eiffel and the use of a cross-platform 

threads library (Eiffel+Threads). The Generator automatically converts SCOOP programs 

to running Eiffel+Threads code. 

Eiffel has powerful features such as Design by Contract, genericity, multiple 

inheritance, and seamless and reversible design and code generation via BON. The 

addition of a SCOOP concurrent facility, fully compatible with all the standard Eiffel 

features, makes the resulting framework a productive environment for developing quality 

concurrent code. 
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Chapter 1 – Introduction 
 

Concurrent programming is considered to be a challenging and inherently error 

prone process. The continuing discussions of flaws in the Java memory model (originally 

described in Chapter 17 of the Java Language Specification) is a symptom of the 

difficulties. The Java memory model gives constraints on how threads interact through 

memory. But the model was hard to interpret and poorly understood. Many JVMs actually 

violated the constraints of the memory model (Lea 1999), and thus there has been a 

concerted and ongoing effort to eliminate the flaws. 

In this thesis we provide an implementation of SCOOP (Simple Concurrent Object 

Oriented Programming) as defined by Meyer (Meyer 1997) for concurrent programming. 

SCOOP provides a simple framework for concurrent development that also helps the 

developer to isolate and avoid common problems. The nice integration of Object-Oriented 

Design, contracts and the simple concurrency model of SCOOP is a good motivation for 

developing actual executable target code. We describe and implement a prototype 

Generator. As part of the work for this thesis: 

• a manual, the code and the Generator executable was first made available in 

March 2003 to the Eiffel and open source communities at the URL 

http://scoop2eiffel.sourceforge.net; and 

• a journal paper describing SCOOPGEN is to appear in the November/December 

2004 issue of JOT - Journal of Object Technology. 

Many mechanisms exist for introducing concurrency into object-oriented (OO) 

programming languages. The pervasiveness of multi-tasking operating systems, in which 
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several programs can use various resources concurrently, has increased the potential of 

parallel computations. These approaches support the use of multiple, and sometimes 

distributed processors, each of which may be executing multiple processes. Different 

techniques are provided with various languages to support synchronization, interruption, 

mutually exclusive access to object state, and atomic execution of routines.  

However, the process of development and, in particular, debugging of programs 

using parallel programming is complex and labour-intensive resulting in large financial 

expenses due to programmer time (McDowell 1989). To implement concurrency, 

compiler writers had to use special hardware/system calls. To bring concurrency up into 

the programming language and out of low-level system calls, language developers started 

adding concurrency language constructs into the language and compiler, to support 

automatic translation into the appropriate low-level behaviour. Use of these language 

constructs allows developers to treat concurrency at an abstract level, not wasting time 

and effort on the details of the implementation of parallel calculations. 

In the late 1980s, there was a paradigm shift in programming, as Object-Oriented 

languages became prevalent.  With popular Object-Oriented languages such as Modula-3, 

SmallTalk, Eiffel and C++, development time was reduced, program analysis was 

simplified and code reuse was made possible via information hiding and encapsulation.  

Subsequently, language constructs were also added to implement parallel calculations in 

Object-Oriented languages (Tsichritzis 1995). 

There are various approaches to concurrency in object-oriented programming 

languages.  The development of concurrency constructs is found in languages such as 

C++, Java, SmallTalk (which uses Active Objects) and Eiffel.  
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In C++, two approaches have been used to add concurrency. In the first approach, 

the language is extended in order to add the concurrency constructs. The second approach 

uses the facilities of OOP to encapsulate the lower-level details of concurrency in a 

library. In the library approach, a library class (generally referred to as a Task class) 

provides the concurrent facilities. A user wishing to write concurrent code can use Task, 

normally by inheriting from it. In this library approach, the concurrency constructs are 

kept outside of the language. As stated in (Arjormandi 1995), the library approach “keeps 

the language small, allows the programmer to work with familiar compilers and tools, 

provides the option of supporting many concurrent models through a variety of libraries, 

and eases porting of code to other architectures (usually, a small amount of assembler 

code needs to be changed). Software developers typically have large investments in 

existing code and are reluctant to adopt a new language. A class library with sufficient 

flexibility that can provide most of the functionality of a new or extended language is 

often more palatable. On the other hand, new or extended languages can use the compiler 

to provide higher-level constructs, compile-time type checking, and enhanced 

performance”. 

Concurrency is currently supported in Eiffel via the library approach. However, 

Meyer (Meyer 1997) has provided an approach called SCOOP (see below) for extending 

the language with concurrency. The novelty of Meyer’s approach is that only one new 

keyword “separate” is required. Yet this single construct provides all the main properties 

of concurrent computation, even simplifying the resultant code.  

(Compton 2000) was the first to implement SCOOP.  In Compton’s work, SCOOP 

is implemented via changes in the open source SmallEiffel compiler. However, this 
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implementation of SCOOP is now incompatible with later versions of the SmallEiffel 

compiler (now called SmartEiffel). It also did not implement the full set of SCOOP 

constructs (such as contracts and “once” routines). A once routine has a body that will be 

executed only once, for the first call; subsequent calls will have no further effect and, in 

the case of a function, will return the same result as the first. This provides a simple way 

of sharing objects in an object-oriented context.  

In this thesis, we provide the first full implementation of SCOOP in a multi-

threaded setting1 that is fully compatible with the current commercial Eiffel Software 

compiler (www.eiffel.com). This work is reported (in part) in the journal article (JOT 

2004). 

 

Figure 1-1 SCOOP Architecture  

SCOOP has a two-level architecture as shown in Figure 1-1. The top layer is the 

platform independent layer. A SCOOP program (at the top layer) can be implemented on 

different underlying platforms (such as Posix and .NET) as shown in the bottom layer in 

                                                 
1 This implementation does not support distributed computation via CCF files and duel mechanism 
interrupts. 

 
 

SCOOP platform-independent 

 
Eiffel + 
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.NET 
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the figure. The implementation in this thesis is in terms of a multi-threaded model (see the 

box labeled “Eiffel+Threads”).  

Subsequent to the work reported in this thesis, another implementation of SCOOP 

in the .NET framework has been developed (Nienaltowski 2003). We will compare our 

approach and the .NET approach in the sequel, but currently, the .NET implementation is 

not as complete as our approach (e.g. it does not support exclusive locking of multiple 

concurrent objects). On the other hand, the .NET implementation allows for distributed 

computing. 

1.1 Eiffel and SCOOP 
Eiffel includes many modern object-oriented language features through which it 

aids developers in creating robust, reusable, secure, extensible, portable and maintainable 

software (Meyer 1997). Eiffel supports Design by Contract (DbC), genericity, multiple 

inheritance, static typing/dynamic binding, garbage collection, “once” routines, self-

documentation, and other advanced language features.  

As mentioned earlier, the Eiffel language can be provided with concurrency 

constructs via SCOOP (Simple Concurrent Object-Oriented Programming). The 

concurrency constructs of SCOOP extend the Eiffel language by adding one keyword 

(“separate”) that can be applied to classes, attributes, and formal routine arguments. 

The application of separate to a class (or equivalently, declaring an attribute 

associated with a class as separate) indicates that the class executes in its own thread 

of control. The application of separate to routine arguments indicates that these 

objects are points of synchronization, and can be safely shared among concurrent threads. 
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The commercial Eiffel Software compiler, as well as the open source SmartEiffel 

compiler, are both planning to implement SCOOP. The Eiffel Software compiler already 

reserves the separate keyword to this end, although no implementation of SCOOP has 

been released yet (ISE 2003). 

In this thesis we will describe a tool, called the SCOOPGEN Generator. The 

Generator translates Eiffel SCOOP programs (using the separate keyword) into 

standard Eiffel threaded applications (that make use of Eiffel’s THREAD class). This 

approach has multiple benefits: 

• The resulting code is pure Eiffel that compiles on standard Eiffel compilers 

(provided the compiler supports Eiffel Software’s THREAD class).  

• Class THREAD is described in detail in Appendix A, and its 

implementation is in terms of standard POSIX threads. It is relatively easy 

to port it to other compilers such as SmartEiffel. 

• The Generator is not dependent on changes to the standard Eiffel 

compilers. Only significant changes to Eiffel syntax would require 

(probably minor) changes to the Generator. 

• The target code will run on any platform supported by the compiler. For 

example, Eiffel Software’s compiler runs on Windows, Linux, Macintosh 

and various embedded systems. 

The main disadvantage of this approach is that debugging must currently be performed in 

the standard runtime systems of the target code rather than being able to work at the 

abstract level of SCOOP code. 
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The Generator is implemented and works successfully with the latest Eiffel 

Software compiler and Integrated Development Environment EiffelStudio (Version 5.4).  

As mentioned earlier, (Compton 2000) was the first to implement SCOOP.  In 

Compton’s work, SCOOP is implemented via changes in the open source SmallEiffel 

compiler, and its runtime system and debugger thus has the advantage of supporting 

SCOOP programs directly. However, this implementation of SCOOP is now incompatible 

with later versions of SmallEiffel compiler (now called SmartEiffel). It also does not 

implement the full set of SCOOP constructs (such as contracts and “once” routines). 

.  The producer-consumer example in the next subsection will illustrate some of 

the features of a SCOOP program.  

1.2 A Producer-Consumer example 
 

The producer-consumer problem illustrates the need for synchronization in 

systems where many processes share a resource. In this section, we will provide an 

informal introduction to SCOOP using this problem. 

In the producer-consumer problem, two processes share a fixed-size buffer. One 

process produces information and puts it in the buffer, while the other process consumes 

information from the buffer. These processes do not take turns accessing the buffer, they 

both work concurrently. Herein lays the problem. What happens if the producer tries to 

put an item into a full buffer? What happens if the consumer tries to take an item from an 

empty buffer? In order to safely synchronize these processes, we (a) use some mechanism 

to provide mutual exclusion so that only one process at a time can access the buffer 
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(otherwise the information in the buffer might be garbled), and (b) we must block the 

producer when the buffer is full, and block the consumer when the buffer is empty. 

A standard Java solution is shown in Appendix D (Listing 6). Three separate 

constructs are needed for the final solution. (a) Class PRODUCER and CONSUMER 

must inherit from a THREAD class, (b) the put and get methods of BUFFER must be 

declared synchronized, and (c) the put and get methods must wait() to be notified (via 

notifyAll() )that the buffer is available. Alternatively, we may use a sleep method 

instead of wait/notify (to ensure that we do not use up CPU cycles with an 

unnecessary busy-wait). 

The SCOOP version of the producer-consumer provides the same behavior as the 

Java solution, but with the simplification that only one extra keyword separate is used 

(instead of Thread, synchronize and wait/notify). In addition, the SCOOP 

solution uses contracts with all the benefits of DbC, although as we will see, the meaning 

of a precondition will change (postconditions, class invariants, and loop variants and 

invariants retain the original semantics).  

The BON diagram shown in Figure 1-2 specifies the various classes. The 

ROOT_CLASS (shown in Figure 1-6) has three attributes: buffer b, producer p and 

consumer c. The buffer b (of type BUFFER) is declared separate, thus indicating that 

it executes in its own logical thread (called a subsystem). This means that BUFFER 

(Figure 1-7) is just a standard class having routines put and remove (without any 

regard to concurrency). Thus it has no concurrent keywords in it, and when used in 

sequential programs has none of the concurrent overheads. By declaring buffer attribute b 
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in the root class separate, we thereby specify that it executes in its own subsystem and 

that all its routines are “synchronized” (using Java notions). 

 

Figure 1-2 ‘producer-consumer’ BON Diagram 

The contracts of BUFFER are as expected (Figure 1-7). For example, the routine 

put in BUFFER has a precondition that asserts that you cannot put more than three 

elements in the buffer. Its postcondition asserts that after a put, the number of items in 

the buffer is incremented by one, and that the buffer actually has the new element 

inserted.  

 By contrast to BUFFER, classes PRODUCER and CONSUMER are declared 

separate right at the beginning (Figure 1-3 and Figure 1-5). This is because they are 

inherently concurrent and always execute in their own subsystems. When classes 

PRODUCER and CONSUMER are first created (via their constructor routine make), we 

pass to them (as an argument of make) the reference to the same buffer (b). Thus both 

PRODUCER  and CONSUMER have an attribute  

buffer: separate BUFFER  

to store this reference to b. Attribute buffer must be declared separate to indicate 

that its routines execute in a different subsystem to the current object (either the producer 

or the consumer). 
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separate class PRODUCER create   
 make 
 
feature  {NONE}  
 buffer: separate BUFFER 
    
 make (b: separate BUFFER) is  
   -- Initialize `Current'. 
  do  
   buffer := b 
   keep_producing 
  end  
 
 keep_producing is  
  local  
   i: INTEGER 
  do  
   from  
   until  
    False  
   loop  
    i := (i + 1) \\ 5 
    produce (buffer, i) 

    -- buffer.put or buffer.remove  

    -- is forbidden here 
   end  
  end  
 produce (b: separate BUFFER; i: INTEGER) is  
  require  
   b.count <= 2 
  do  
   b.put (i) 
  end  
end  -- class PRODUCER 

Figure 1-3 PRODUCER class for ‘producer-consumer’ example 

PRODUCER (via routine produce) and CONSUMER (via routine consume) 

must not access the buffer at the same time. Normally, we would protect the buffer with a 

mutex or a similar construct.  

 produce (b: separate BUFFER; i: INTEGER) is  
   require  
    b.count <= 2 

   i >= 0 
   do  
    b.put (i) 
   end 

Figure 1-4 produce routine for ‘producer-consumer’ example 
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separate class  CONSUMER create   
 make 
feature  {NONE}  
 
 buffer: separate  BUFFER 
    
 make (b: separate BUFFER) is  
   -- Initialize `Current'. 
  do  
   buffer := b 
   keep_consuming 
  end  

 
 keep_consuming is  
  do  
   from  
   until  
    False  
   loop  
    consume (buffer) 

    -- buffer.put or buffer.remove is forbidden here 
   end  
  end  
 
 consume (b: separate  BUFFER) is  
  require  
   b.count > 0 
  do  
   b.remove 
  end  
  
end  -- class CONSUMER 

Figure 1-5 CONSUMER class for ‘producer-consumer’ example 

class   
 ROOT_CLASS  
 create   
 make 
 feature  -- Initialization 
 
 b: separate BUFFER 
 p: PRODUCER 
 c: CONSUMER 
 
 make is  
   -- Creation procedure. 
  do  
   create  b.make 
   create  p.make (b) 
   create  c.make (b) 
  end   
end  -- class ROOT_CLASS  
 

Figure 1-6 ROOT_CLASS for ‘producer-consumer’ example 
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In SCOOP, we use argument passing, where the argument of a routine is declared 

separate, as a reservation (or synchronization) mechanism. For example, routine 

produce is presented on figure 1-4. A call to this routine will block until (a) the 

producer gets sole access to the buffer, and at the same time (b) the buffer must not be full 

as indicated in the precondition. If either (a) or (b) is false, the call waits until both are 

satisfied. Thus both mutual exclusion and the validity of the contract are ensured. A 

precondition clause involving a call with a separate target (b.count <= 2) is 

called a separate precondition. The other clause (i >= 0) is not separate.  

However, the meaning of the precondition has now been changed. In sequential 

processing, the precondition is a correctness condition. If the precondition is true 

execution immediately proceeds to the body of the routine. If the precondition is false, an 

exception is generated. In the concurrent case, the precondition becomes a wait condition 

and the producer waits until the precondition evaluates to true. 
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class BUFFER create   
 make 
 
feature   
 
 count: INTEGER is  
  do  
   Result := q.count 
  end  
 
 item: INTEGER is  
   -- front 
  do  
   Result := q.item 
  end  
 
 put (x: INTEGER) is  
   -- enqueue `x' 
  require  
   count <= 3 
  do  
   q.put (x) 
   io.new_line 
  ensure  
   count = old count + 1 
   q.has (x) 
  end  
 
 remove is  
   -- dequeue 
  require  
   count > 0 
  do  
   q.remove 
   io.new_line 
  ensure  
   count = old  count - 1 
  end  
  
feature  {NONE}  
 
 q: QUEUE [INTEGER] 
 
 make is  
   -- initialize buffer 
  do  
   create  {ARRAYED_QUEUE [INTEGER]} q.make (3) 
  end  
  
 invariant  
 0 <= count and count <= 3 
end  -- class BUFFER 
 

Figure 1-7 BUFFER for ‘producer-consumer’ example 
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It is only a separate precondition that delays. A non-separate precondition will 

act as a regular correctness condition. 

How would we implement a SCOOP program into executable target code using 

POSIX-like threads and mutex locks? To call consume from routine 

keep_consuming, the consumer will pass buffer as an argument. When one or 

more arguments of a routine are separate objects, the client must obtain exclusive 

locks on all these objects before executing the routine. In our case, the consumer object 

must obtain an exclusive lock on buffer before executing consume. If another object 

(e.g. the producer) is currently holding the lock, the client must wait until the lock has 

been released, then try to acquire it. A default policy of first-in/first-out can be adopted. 

As described in (Meyer 2003) when the client succeeds in acquiring the lock: 

• The separate precondition clauses are evaluated. If they all hold, the 

routine will execute, and then release the lock. 

• Otherwise, the object releases the lock and restarts the whole process from 

the beginning: acquiring the locks, and then checking the separate 

precondition clauses. This allows other clients to access the supplier object 

and change its state, so that the wait conditions required by our client may 

eventually be met.  

The locking policy facilitates building correct concurrent programs and reasoning about 

them: 
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• No interference between client objects is possible since at most one client 

may hold a lock on a supplier object at any time. This helps find which 

object is responsible for possible breaches in the contract, such as breaking 

the supplier invariant. 

• The precondition rules ensure that correct calls do not violate the integrity 

of the supplier object. 

1.2.1 separate call rule 

As shown in Figure 1-3, we make it a syntactic error to call buffer.put in the 

routine keep_producing of the producer. This is because buffer is declared as a 

separate supplier. Instead we wrap the call in produce as discussed in the previous 

section. The main advantage of this approach is that the programmer does not need to 

worry about how to get access to the target object: this was taken care of by the call to 

produce, which had to reserve the object waiting if necessary until it is free. 

SCOOP makes this scheme the only one for separate calls (i.e. calls to 

separate objects’ routines) by introducing the Separate Call Rule, which asserts that the 

target of a separate call must be a formal argument of the routine in which the call 

appears. This rule may appear to put an undue burden on the developer of concurrent 

programs. In fact, what it really does is encourage developers to identify accesses to 

separate objects and separate them from the rest of the computation. This will actually 

help the developer avoid common concurrent development errors that normally make 

concurrent programming an error prone undertaking. We provide two examples to 
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illustrate how SCOOP promotes good concurrent programming while helping the 

developer to avoid problems. 

As one illustration of reservation via separate arguments, suppose we want to 

remove two integers, one after the other, from the buffer. The normal code  

buffer.remove; 

buffer.remove 

will not work because any other client might jump in and interrupt (and hence disrupt) the 

execution. What we must do is wrap the above code in a routine with a separate 

argument: 

remove_two (b: separate BUFFER) is 

  do 

   b.remove; 

              b.remove; 

         end 

 

We can do the double remove merely by invoking the call remove_two (buffer). 

As another example, consider the code  

 if not buffer.empty then 

  value := buffer.item 

            buffer.remove 

 end 

Without protection on buffer, another client may add or remove an element between 

the calls to item and remove. What makes things really bad is that the runtime 

behaviour is non-deterministic since it depends on the relative speeds of the clients. The 
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bug will be intermittent and hard to reproduce. By encapsulating this error prone code in a 

separate routine, all these problems are eliminated. 

 

1.2.2 Wait by necessity 

A separate call to a supplier object only blocks until it acquires the resource 

and checks the preconditions as described above. The separate routine then executes 

its body in its own subsystem, and the calling object continues with the next statement in 

its own subsystem, i.e. it can continue with the rest of its computation. 

Later on, the client may need to resynchronize with the supplier. Rather than 

introducing a specific language mechanism for this purpose, SCOOP relies on a “wait by 

necessity” mechanism in which the client waits on a query (but not on a command 

routine). 

Consider the following code 

1. x: separate X 

… 

2. x.compute_fourier_transform 

3. do_some_other_processing 

4. y := x.get_fourier_transform -- wait by necessity 

5. print(y) 

 

In Java, as an example, execution would be blocked at line 2 until the routine to compute 

the Fourier transform runs to completion.  
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As explained above, wait by necessity just means that we do not block on commands, 

only on queries. As will be explained in more detail in 3-3, there is a refinement to wait 

by necessity introduced by (Compton 2000). However, in this thesis, we use the basic 

mechanism as explained above and as recommended by (Meyer 1997). 

1.3 SCOOP syntax 
 

The buffer example in the previous section illustrates the complete SCOOP 

syntax, i.e. we add to Eiffel the extra keyword separate. A separate SUPPLIER 

may be declared either as  

• x: separate SUPPLIER, or 

• separate class SUPPLIER .. end 
x: S 

Suppose C1 is a separate class and C2 is an ordinary class. A separate routine call 

r in some class has the general form 

r (x1: C1; x2: C1;  

y1: separate C2; y2: separate C2; z: C2) is 

 do 

  x1.feature_1 

  y1.feature_2 

  z.feature_2 … -- etc. 

end 

i.e. you may have as many arguments of any type as you want. 
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1.4 Contribution and organization of this thesis 
Concurrent programming is an inherently difficult undertaking. We have argued 

that SCOOP as defined by Meyer (Meyer 97) provides a simple framework for concurrent 

programming that also helps the developer to isolate and avoid common problems. The 

nice integration of OO, contracts and the simple concurrency model of SCOOP is a good 

motivation for developing actual executable target code. Hence, the contribution of this 

thesis is to develop a SCOOP-to-Eiffel Code Generator that will 

• parse SCOOP programs using the syntax outlined in Section 1.3; 

• detect syntax errors in the SCOOP code such as violations of the separate call 

rule; 

• translate syntactically correct SCOOP programs to standard Eiffel code that uses 

the Eiffel POSIX libraries for multi-threaded  applications, so that the target code 

behaves according to the SCOOP semantics (outlined informally in Section 1.2). 

The Generator is itself written in Eiffel. 

The organization of this thesis is as follows: 
 

• In chapter 2 we review existing approaches to concurrent OO programming. 

• In chapter 3, we develop the SCOOP model in more detail than the original 

presentation in Meyer (Meyer 1997). The additional details were needed for 

implementation. 

• In chapter 4, we describe the Generator in detail using the model developed in 

chapter 3. 

• Chapter 5 provides the final discussion and conclusions. 
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Chapter 2 – Related Work 
 

The idea of integrating concurrent or parallel computation into the object-oriented 

programming paradigm received wide acceptance relatively recently. There are many 

approaches to integration, as testified by extensive activity in this area. 

The authors of (Briot 1998) define three basic approaches that make it possible to 

carry out the integration of parallel computation in object-oriented languages. These 

approaches include the library approach, the integrative approach, and the reflective 

approach. We discuss each of these approaches, and also their specific implementations. 

The SCOOP mechanism, implemented in this thesis, can be classified as integrative 

(using synchronized objects). Therefore attention in this chapter will be given mostly to a 

description of the integrative approach and method. 

2.1 The Library Approach 
 

In the library approach, class libraries are developed that make the implementation 

of parallel computation possible. These libraries include classes that encapsulate different 

components, necessary for parallel programs, such as threads, semaphores, critical 

sections, mutexes and others. This makes it possible to develop parallel programs (and 

thus to increase the effectiveness of the software development) without a change in the 

syntax of the programming language itself.  

Usually class libraries are developed taking into account the specific character of 

the given object-oriented programming language. Many OO programming languages (for 

example, C++, Eiffel, and SmallTalk) have such libraries. The library approach is a low-
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level approach, since the developer remains responsible for many concurrency pissues 

such as resource management and synchronization), which require professional 

knowledge in this area, and are time intensive to develop.  

The main merit of the library approach is its low-level flexibility. The approach is 

thus often used where low level system or embedded programming is required. However, 

the approach does not address the problem of the complexity of concurrent software 

development (Bruno 1993). What we need is the ability to program at a higher level of 

abstraction. 

2.2 The Integrative Approach 
 

The integrative approach introduces new concurrent constructs into the syntax of 

the OO language, which facilitate concurrent programming. These constructs then hide 

the details of how the parallel implementation is actually achieved (Wegner 1990). 

There are several methods for integrating object-oriented programming and 

concurrent processing: active objects, synchronized objects and distributed objects.  

2.2.1 Active objects 
 

An active object integrates the concepts of an object and a process. An active 

object is a standard object, with attributes and methods, which also has its own thread of 

calculations, i.e., its own actions. Active objects can support two types of parallel 

calculations: introobject and inter-object. Depending on what type of parallel calculations 

is implemented, active objects can be of the following types (Wegner 1990): 
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 Serial. Active objects of this type can process only one message at a time. In 

other words, these objects do not use internal parallel processing. Languages 

using serial active objects are POOL (P.H.M. America: A. Yonezawa and M. 

Tokoro 1987) and Eiffel// (Caromel 1990); 

 Quasi-concurrent. In such active objects several methods of activation can 

exist simultaneously, but only one of them is in the state of execution. This 

approach is used in the languages ABCHL/1 (Yonezawa 1986) and 

ConcurrentSmallTalk (Tokoro 1987); 

 Concurrent. Active objects of this type allow parallel calculations inside the 

object itself, i.e., processing several queries simultaneously. In this case a 

certain degree of control of the execution, determined by the programmer, can 

be present. Among the languages, which use concurrent active objects are 

CEiffel (Lohr 1993) and ACT++ (Kafura 1990); 

According to a key principle of object-oriented programming, an object must at 

the very least be reactive, i.e. react to events or messages. Active objects not only react, 

but also have their own thread, which is started immediately after the creation of the 

object. Thus, two types of active objects are distinguishable: reactive active objects and 

autonomous active objects. The first correspond to the principle of reactivity and are 

activated only on receipt of a message (ACT++, CEiffel), whereas the second type can 

independently execute in addition to responding to events (POOL, Eiffel//). 

Another detail concerning the reactivity of active objects is the method for 

message acceptance. There are two methods for message acceptance: explicit and implicit. 

In the explicit method, the object is forced to accept all messages it receives (although its 
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execution can be postponed). Implicit acceptance means that the object may refuse to 

accept a message according to some rules or constraints.  

As an example of implicit acceptance, many languages (e.g. POOL and Eiffel//) 

have autonomous active objects with the notion of a 'body'. A 'body' indirectly describes 

the types and a sequence of queries that the object will accept during its activity. Eiffel// 

has a class PROCESS. An active class is a subclass of PROCESS. These objects have a 

routine ‘live’, which is the 'body' of the object. This function is defined in class 

PROCESS. However, to give it specific functionality, it is usually overridden in the 

subclasses. Other features of class PROCESS make it possible for the active object to 

manage the acceptance of calls in the ‘live’ feature. 

2.2.2 Synchronized objects 
 

Synchronized objects represent a further level of integration, in which 

synchronization is associated with the creation of objects. Messages are the explicit 

mechanism of synchronization between the sending object and the receiving object. The 

literature discusses two levels of synchronization: synchronization at the Message-Passing 

Level and synchronization at the Object Level.  The difference is best illustrated via an 

example. 

Assume there are two objects: sender – the object, which sends the message, and 

receiver – the object to which this message is addressed. There are two possible 

interaction behaviours for these objects. In the first of them, called synchronous transfer, 

sender blocks until the receiver completes execution of the message.  
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In the case of active objects, the sender and receiver execute independently of 

each other. This leads to the possibility of using asynchronous communication. The 

sender does not block; instead, it sends the message and then continues its execution. This 

type of object interaction can be implemented in different ways. One approach involves 

separating the call from the waiting object. Only when a calling object requires a result 

(to perform some actions on it) is synchronization with the called object required. This is 

known as Wait-by-necessity, implemented in the Eiffel// language (Caromel 1990). 

Synchronization at the object level is of three types: intra-object synchronization, 

behavioral synchronization and inter-object synchronization.  

In the case of intra-object parallel processing (in which the object simultaneously 

processes several requests), it is necessary to monitor the operations in order to guarantee 

the state of the object. Usually control is achieved by mutual exclusion between the 

operations. Intra-object synchronization can be illustrated with the “readers-writers” 

problem. All the existing readers can simultaneously access the shared book but the 

presence of one writer excludes access for all readers and writers. The shared book would 

be responsible for ensuring mutual exclusion, i.e. only one writer at any one time. 

In behavioral synchronization, an object delays until a condition is met, instead of 

reporting an error. For example, in a bounded buffer, the buffer accepts values until it 

becomes full. When it is full, it simply waits until a value is removed, at which point it 

can insert the next value. Inter-object synchronization is used when it’s necessary to 

synchronize the interacting objects.  

To implement these methods of synchronization, different models of concurrency 

have been developed, which are subdivided into centralized (synchronization is achieved 
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at the object level) and decentralized (synchronization is achieved at the method level) 

models. 

An example of the use of the centralized synchronization model is Procol (Van 

den Bos 1991). The Path Expressions concept is implemented in this language, where the 

interleaving of invocations is determined with the aid of a special notation. 

The body concept (discussed earlier) is another example of the centralized 

synchronizing model. However, the use of the body concept has difficulties associated 

with its implementation. This is due to the fact that in some situations the body can 

describe both the behavior specific to the application and the logic for accepting 

invocations. Taking into account that invocations are managed in a centralized way, and 

also that the body by its nature is defined imperatively, a number of problems have been 

raised concerning its implementation (Lohr 1993). 

Another implementation of a centralized synchronization model is Behavioral 

Replacement. This model is used within the framework of the Actor language (Agha 

1986). An actor has a mail address and a behavior. The mail address of an actor may be 

freely communicated – a feature which results both in the ability to reconfigure the 

system, and in the ability to extend a system (since mail addresses from the outside may 

be communicated). In response to processing a communication targeted to an actor, the 

behavior of an actor consists of three kinds of actions. An actor may send 

communications to specific actors it knows the mail address of. In particular, an actor 

may send communications to itself. An actor may create new actors. Initially, the mail 

address of such actors may be known only to the creator and possibly to the actor itself. 

However, the mail address can be subsequently communicated. An actor must specify a 



 Page 33 

   

replacement, which will accept the next communication. The replacement may process 

the next communication even as other actions occurring as a result of processing the 

previous communication are still being executed. This model implies intra-object parallel 

calculations and synchronization. 

The combination of Behavior Replacement and behavioral synchronization (when 

the active object appears serial) leads to the concept of abstract states. If one has a 

bounded buffer, we might need three abstract states: empty, full and partial. The abstract 

state of partial within the framework of this concept is expressed with the aid of the union 

of the states of full and empty. After the object processes the query, the next abstract state 

is calculated so that if it is possible to renew the state and the accessibility of the services 

of the object.  The ACT++ language is an example of this concept (Matsuoka 1993). 

The decentralized synchronization model is implemented via Guards, Locks or 

Annotations.  

In the case of Guards, each feature of the object has a guard (or Boolean 

condition) associated with it for the object to become activated. The use of guards is 

convenient with the integration approach, since synchronization expressions need not be 

placed in the object. Actions are blocked or unblocked explicitly. However, this model of 

execution appears relatively slow. An example of the use of this synchronization model is 

the Guide language (Voss 1999). 

An example of the use of Locks is to be found in the Java language. To 

synchronize threads, Java uses monitors, which are a high-level mechanism for allowing 

only one thread at a time to execute a region of code protected by the monitor. The 

behavior of monitors is explained in terms of locks. There is a lock associated with each 
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object. The synchronized statement performs two special actions relevant only to 

multithreaded operation: (a) after computing a reference to an object but before executing 

its body, it locks a lock associated with the object, and (b) after execution of the body has 

completed, either normally or abruptly, it unlocks that same lock. As a convenience, a 

method may be declared synchronized; such a method behaves as if its body were 

contained in a synchronized statement2. 

The Java Virtual Machine allows an application to have multiple threads of 

execution running concurrently. There are two ways to create a new thread of execution. 

One is to declare a class to be a subclass of Thread. This subclass should override the run 

method of class Thread. An instance of the subclass can then be allocated and started. The 

other way to create a thread is to declare a class that implements the Runnable interface. 

That class then implements the run method. An instance of the class can then be 

allocated, and passed as an argument when creating a thread. 

There is also a concept, where two locks are associated with an object: one for the 

reader methods, and another – for the writer methods. This concept is used in the 

Distributed Eiffel language (Gunaseelan 1992), which is a modification of the Eiffel 

language. Any operation can be declared as ACCESSES (for the reader methods) or 

MODIFIES (for writer methods). If any of these declarations are present, then the 

operation must obtain the read or write lock for the object before it will be able to begin 

its execution. Locking will not be achieved without those qualifiers. 

Another modification of the Eiffel language is CEiffel (Lohr 1993), which uses 

the synchronization model called Annotations. In this language it is possible to determine 

                                                 
2 http://java.sun.com/docs/books/jls/first_edition/html/17.doc.html 



 Page 35 

   

the binary symmetrical relation of compatibility between the operations of an object. If 

one operation is declared as compatible with another, then such operations can be 

executed in an overlapping manner (they can use the same resources). Incompatible 

operations are by definition mutually exclusive. 

2.2.3 Distributed objects 
 

The third level of integration of parallel calculations into the object-oriented 

languages of programming is a distributed object. This level of integration assumes that 

an object can be a distributed module, which can be distributed or replicated among 

several processors. To make the program able to carry out its parallel calculations 

concurrently, this program must be implemented with a multiprocessor or a multi-

computer network.  Some approaches using distributed objects are discussed below. 

EPEE (Jezequel 1993) uses parallel calculations for the data of the type SPMD 

(single-program, multiple-data). The large structures of data, utilized in the EPEE 

language, are divided into fragments, which are distributed together with the replicated 

code between CPUs of a multi-computer. Each CPU processes a fragment of data while 

interacting with others CPUs if necessary. The syntax of EPEE is identical to Eiffel.   

Another language, which uses distributed objects, Charm++, supports both 

parallel calculations for SPMD type data and parallel processing of the type MIMD 

(multiple program/data). In this language, reactive active objects are used. To define such 

an object, the keywords ‘chare class’ are used. There is also a version called 'branched 

chare class'. The code of this class is replicated between the nodes of a computer network 

and each of the nodes performs operations on a certain fragment of the replicated object. 
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The 'branched chare class' interface reflects fragmentation by describing the messages, 

which it can accept data from other fragments, and also from external fragments. Overall, 

Charm++ reaches a higher degree of integration by comparison with EPEE. Charm++ is 

an extension of  C++. 

The majority of the approaches mentioned in this subsection require syntactic 

changes to the associated programming languages. These approaches assume the use of a 

number of the keywords, connected with the implementation of parallel computation, in 

the declarations of objects and methods.  As explained in chapter 1, SCOOP adds only 

one keyword to the Eiffel language. This issue will be explained in more detail at the 

beginning of Chapter 3. 

2.3 The Reflective Approach 
 

We explained earlier in this chapter that the Library Approach is more suitable for 

low-level system programming, while the integrative approach is useful in applications. 

The Reflective Approach attempts to combine the two, preserving the merits of each (the 

simplicity of the Integrative Approach and the flexibility of the Library Approach). 

Reflection is a general methodology for describing, controlling, and adapting the 

behavior of a computational system. The basic idea is to provide a representation of the 

important characteristics/parameters of the system in terms of the system itself. The 

characteristics of static presentation and dynamic execution of applications are 

determined in one or several programs (which can be an interpreter, a compiler or other 

programs), which present the behavior of the system while doing calculations. Such 
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programs are called meta-programs. Reflection fits especially well with object concepts, 

which enforce good encapsulation of levels and modularity of effects. 

Based on the fact that the meta-programs are objects, this system is called meta-

object protocol (Kiczales 1991). 

Below are some examples of the Meta-Object Protocols (MOP) implementation. 

The CodA platform (McAffer 1995)] is the general reflex architecture, built on the 

objects and based on meta-objects. By default CodA is examining seven meta-objects, 

connected to each of the objects. These meta-objects are message sending, receiving, 

buffering, selection, method lookup, execution, state accessing. The object, which has 

default meta-objects, behaves as usual passive, sequential object. The connection of 

special meta-objects makes it possible to selectively change the specific aspect of the 

presentation model of idea or execution for a certain object. 

Other two reflexive architectures, namely Actalk and GARF, are more specialized 

and propose smaller collections of meta-objects. The Actalk platform (Briot 1996) helps 

to experiment with different models of synchronization and communication for a 

predetermined program by changing different components: activity (for example, implicit 

or explicit acceptance of requests, intra-object concurrency), synchronization (for 

example, abstract behavior, guards), communication (for example, synchronous or 

asynchronous), invocation (for example, time stamp, priority). 

The GARF platform (Garbinato 1994) for distributed and resistant to errors 

programming allows a wide variety of mechanisms around two components: object 

control and communication. 
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2.4 Another SCOOP-like Implementation 
 

(Jalloul 2000) proposes a method for the integration of parallel processing into 

object-oriented languages called CSS (Communicating Sequential Systems). On the basis 

of this method, he created CEE (Concurrent Extension to Eiffel).  

Similarly to Meyer's SCOOP, keyword separate is also used in CEE. However, in 

contrast to SCOOP, CEE provides critical regions and conditional critical regions, but 

does not rely on procedure calls and require conditions.  

In CEE, a program is subdivided into many "internally concurrent sequential 

systems". These systems work in parallel. Each of them in this case can have internal 

parallel calculations. To wait for returned values, a wait-by-necessity mechanism is used. 

CEE has a kernel, implemented in the Eiffel language, which is located on the upper level 

of communication software for distributed processes. Thus the implementation of parallel 

processing is hidden from the programmer.  

Based on the separate declarations, the compiler divides an Eiffel program into 

several systems, each of which then is compiled by the Eiffel compiler. During the 

execution, interaction with other systems is translated into the queries to the kernel, which 

are then sent to the controller of the matching system. 
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2.5 The inheritance anomaly 
 

The term inheritance anomaly was coined in 1993 by Matsuoka and Yonezawa 

(Matsuoka 1993) to refer to the problems arising from the interweaving of behavioural 

and synchronization code in descendant classes.  

For example, consider class BUFFER (Appendix G) that has a function routine 

item that returns the oldest element in the buffer. In modern languages such as Java and 

C#, the burden of enforcing the synchronization constraints must ultimately lie with the 

buffer itself. Suppose we have a new class BUFFER2 (Appendix G) that inherits from 

BUFFER. In this new class we would like to define a new function item2 that works like 

item, except that it cannot be executed immediately after a call to item. In Java and C#, 

not only must the behaviour of item be redefined (e.g. by introducing a history variable), 

but this redefinition must be intertwined with synchronization code. This interweaving of 

behavioural and synchronization code makes such programs difficult to develop and 

understand.  

According to (Milicia 2003), SCOOP also suffers from the inheritance anomaly. 

However, Meyer in (Meyer 1999) disagrees. Meyer appears to be correct in this regard. It 

is true that in SCOOP, item must be redefined, but only behaviourally. No 

synchronization code is needed at all (as shown in detail in Appendix D). In fact, 

BUFFER can be a regular Eiffel class. If it is needed as a concurrent buffer, it can be 

declared as a separate supplier, and the preconditions of item and item2 immediately 

become wait conditions. However, in Java and C#, item must be redefined both 

behaviourally and with synchronization code (using synchronize and throw/catch).  
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Chapter 3  
 
Simple Concurrent Object-Oriented Programming 
 
 

In this chapter, we review the framework developed by Meyer (Meyer 1997), 

called Simple Concurrent Object-Oriented Programming (SCOOP). Meyer’s notation will 

be used to describe SCOOP. Compton (Compton 2000) developed a prototype 

implementation of SCOOP, including a run-time system.  Compton also contributed new 

notations and refinements of existing concepts, which assist in the implementation of 

SCOOP in practice. 

SCOOP is an extension of Eiffel that allows for parallel object-oriented 

calculations by adding a single reserved word separate into the syntax. Meyer makes 

an interesting claim: a single new keyword (separate) provides for a full-fledged 

concurrency mechanism. A general rule of software construction is that a semantic 

difference should always be reflected by a difference in the software text (Meyer 1997). 

A SCOOP compiler (or in our case the Generator) will translate the separate 

constructs into target code according to the SCOOP model. Even though the SCOOP 

model uses only one extra keyword “separate” to take care of all the concurrency issues, 

separate has a different semantic meaning when used with class declarations, attributes, 

and routine parameters. In the sequel, the model will be described along with various 

aspects of the SCOOP mechanism for Eiffel. We also describe problems arising with the 

model, and possible solutions. 
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In chapter 4 we will describe the implementation of the SCOOP-to-Eiffel code 

Generator and we will discuss the implementation of various SCOOP elements into Eiffel 

target code. 

3.1 Processors and Subsystems 
 
One of the key concepts of SCOOP is the processor. As shown in Figure 3-1, a 

computation is performed by a processor that applies certain actions (or routines) to 

certain objects. In the sequential case, there is only one processor. In the concurrent 

context, we have two or more processors. This is what concurrency is all about and can be 

taken as the definition of concurrent processing. 

 

Figure 3-1: Processors 

According to Meyer’s definition, a processor is an autonomous thread of control 

capable of supporting the sequential execution of instructions for one or more objects 

(Meyer 1997, page 964). 

This definition assumes that the processor is some device, which can be 

implemented as hardware (e.g. a computer equipped with its own central processor), or as 

ACTION 

PROCESSOR

OBJECT
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software (e.g. a thread, task or stream). The given definition describes an abstract 

processor and enables the system to use as many actual processors as required. 

A subsystem is the processor together with the set of objects it performs actions 

on. Within a subsystem, communication is synchronous, and execution follows the usual 

Eiffel sequential model. Communication between subsystems is asynchronous and 

processing is in parallel. This potential parallelism is the result of different processors 

handling each subsystem (Compton 2000, page 18). 

A separate object is any object that from the viewpoint of one object is in a 

different subsystem. At run time, any separate object can only be referenced (if 

reachable at all) through a separate entity (Compton 2000, page 19). An entity is 

either an attribute of a class, a formal argument of routines, or a local variable of a 

routine. 

A separate reference is a reference to a separate object. This reference must be 

through a separate entity that is not void, and not attached to a local object (Compton 

2000, page 20). 

A separate call is any routine call x.f (...), from the current object in 

which the call is made, where the target, x, is a separate object (Compton 2000, page 

20). 

A subsystem is created simultaneously with the creation of a separate objects 

and executes the object’s instructions. Several processors that run different separate 

objects allow concurrent execution. Processors may themselves contain subprocessors. 
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Separate objects, in turn, can create objects. Those objects can be shared with 

other processes; they can receive references to the objects that are carried out by other 

processors. Thus the processor can carry out operations not only on one separate 

object, but also on a set of objects. While sequential Eiffel contains one subsystem, the 

use of SCOOP provides an unlimited number of subsystems.  

A new subsystem is created with the creation of a separate object. Non-

separate objects are created in the same subsystem as the object that has created it. Thus, 

it will be considered as a separate object by other subsystems. Any object (whether 

separate or non-separate) can belong to only one subsystem. For communications 

(connections) between the objects that take place in different subsystems, separate 

references are used. Fig. 3.2 illustrates a SCOOP runtime system consisting of a number 

of subsystems. 

3.2 Routine calls in sequential Eiffel 
 

Feature call in sequential Eiffel is defined as follows:  

x.f(a) 

i.e., execute routine f with argument a on target x 
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Figure 3-2: SCOOP System 

According to the semantics of object-oriented programming, we can distinguish 

two types of procedure calls: 

 Case 1: A command feature call 
x.c (a) 

 Case 2: Assignment involving a query call 
y := x.q(a) 

In Eiffel, there is a strong distinction between a command and a query. A query 

has a corresponding type; a command does not. Consequently, a command is an 

independent statement, while a query is on the right hand side of an assignment.  

In Case 1, c is a command. The command is executed on the target x, and when 

completed, processing continues at the instruction following x.c(a). 
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 In Case 2, since the assignment statement has q on the right hand side, q must be 

a query. Execution switches to the object attached to x, and when 

completed, the result is assigned to y. Execution then continues at the instruction 

following the query. 

There is only one processor, and therefore only one subsystem. This processor 

executes the current routine as well as the routines c and q. 

The syntax of Eiffel does allow queries to change the state of the object on which 

it is called. However, this is discouraged in practice since contract checking would cause 

the state of the checked object to change. Therefore, in Eiffel there is a strong semantic 

separation between a command and a query. While a command changes the state of an 

object, the query should not.  

3.3 Routine calls in SCOOP 
Generalizing program execution to concurrent object-oriented models requires a 

change in the feature call definition. 

 Suppose as before that x is a separate entity.  There must then exist at least 

two subsystems, the current subsystem in which the code x.c(a)occurs, and the 

subsystem associated with x. The call to x.c(a)will be executed in the latter subsystem, 

and the current object making this call continues executing in its own subsystem.  

In the case of the assignment y := x.q(a), the current system blocks while the 

subsystem associated with x executes query q to completion (called wait-by-necessity as 

explained in chapter 1).  
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Commands may be executed in parallel as different processors process them. A 

query may need to return a result before the program can continue. For example, in the 

code below the query q is called on entity x: 

y := x.q (a) 
      … 

z := y + 1 

Execution does not continue until the result is computed and assigned to y. 

Caromel (Caromel 1989) was the first to define the notion of “Wait by Necessity". 

In the original definition, some cases were allowed which enabled the continuation of 

parallel calculations even in the case of a query. For example, in the code fragment above, 

entity y is not used until later in the statement z := y +1. Thus, we could wait until y 

is actually used before synchronizing with the other subsystem.  

(Compton 2000) implemented Caromel’s proposal, but the resulting 

implementation turned out to be inefficient. In this thesis, we follow the original proposal 

of SCOOP (Meyer 1997), and thus, the calling subsystem always waits at y:=x.q(a) 

before continuing to execute. This is much simpler to implement than Caromel’s 

proposal. 

Having considered existing types of calls and the ways they can be processed in 

the SCOOP program, it becomes evident that there can be two options for feature calls. In 

the first case in which the target is not separate, the execution of a call is made by the 

same processor that executes the calling object (the object on behalf of which the call is 

made). In the second case in which the target is separate, some other processor processes 

the call (not the one that processes the calling object). To specify how and where it is 

necessary to execute a call, some syntactic construct is required to reflect the semantic 
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intentions in the text of the program. The syntactic keyword separate is used to reflect 

this semantic difference. 

3.4 Eiffel Syntax and Semantics for SCOOP 
According to Meyer, for the SCOOP implementation in Eiffel, it is necessary to 

add only one keyword separate. The object declaration as separate specifies that a 

new processor will execute it. Possible ways of applying the separate keyword and 

syntax patterns are presented in figure 3-3. 

A class can be declared as separate as follows: 

separate class TY 

Figure 3-4 will help to understand the semantics of SCOOP using the syntax 

patterns presented in figure 3-3.The declaration  

x : TX 

… 

create x.make 

means that object O1 of type TX will be created in Root Subsystem ( Ho ) and entity x is 

attached to it.  The declaration 

y: separate TY 

… 

create y.make 

means that the entity y is attached to objects whose routines are executed by other 

processors. Another subsystem Hy is created. Object O2 of type TY is created in 

subsystem Hy. Entity y is attached to object O2. 

 separate class TY 

  x : TX 

  y : separate TY 
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  z : separate TZ 

  c ( a : separate … ) 

is 

     do 

… 

     end 

… 

r is 

    do 

      create x.make 

      create y.make 

      create z.make 

      x.c1 ( a1 ) 

      y.c2 ( a2 ) 

  x := x.q3 ( a3 ) 

  y := z.q4 ( a4 ) 

  c(a5) 

     end 

 Figure 3-3 : SCOOP Syntax 

According to (Meyer 1997, page 967) all three qualifiers used at the declaration of 

classes (separate, expanded (the values are objects) and deferred (classes that leave the 

implementation of some of their features entirely to proper descendants)) are mutually 

exclusive.  This follows directly from the sense of the appropriate qualifier and from the 

semantics of the Eiffel language. Descendant classes do not inherit these qualifiers. Thus 

such a declaration is invalid if TY is already declared expanded or deferred. 
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Hz

Root Subsystem Ho

Hy

TX

TY

TY

TZ

x

z

y
x.make

y:=...

z:=...

y.make

O1

O5

O6

O2

 

Figure 3-4: SCOOP Semantics 

The statement 

x.c1(a1) 

means that subsystem Ho performs command  c1 with an argument a1 on object O1. 

The statement 

y.c2(a2) 
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means that subsystem Hy performs command  c2 with an argument a2 on object O2. 

The statement 

y := z.q4(a4) 

means that subsystem Hz executes query  q4 with an argument a4 on object O5. Object 

O6 is created (this is the result of the query) and entity y is attached to it. 

The statement  

c(a5) 

means that subsystem Ho gets unique access and locks the separate object attached to 

a5 and executes the command c through to completion after which it releases the lock. 

3.5 Separateness consistency rules 
A problem arises when a non-separate object is used in place of a separate 

object.  This non-separate object is known as a traitor object.  Meyer introduced four 

separateness consistency rules. These rules guarantee that no traitor object situation can 

occur. The Generator must flag any traitor as a compile time error. The rules are listed 

below. 

The separateness consistency rule (1): If the source (y) of an attachment in an 

assignment instruction (or equivalently, argument passing) is separate, its target entity 

(x) must be separate too. In practice, this means that if we have the entities declared 

as 

x: SOME_TYPE 

y: separate SOME_TYPE 

then operations such as x:=y are forbidden. 
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For example, suppose we allow x:=y in the above case. The compiler assumes 

that x is in y’s subsystem as x is attached to the same separate object that y is 

attached to. Thus when x.c is executed, the precondition of c may (incorrectly) be 

treated as a wait condition rather than a correctness condition. Thus the object to which y 

is attached is now a traitor. 

Separateness consistency rule (2): If an actual argument of a separate call is 

of a reference type, the corresponding formal argument must be declared as separate 

(Meyer 1997).  

Assume we have the declarations in figure 3-5. Different processors handle 

objects x and y. Having declared x and arg as non-separate we have created a situation 

in which the subsystem of x will treat y as a local (i.e. non-separate) object. But this is 

wrong  because y is really in a different subsystem. Hence, it is necessary to declare arg 

as separate. 

Separateness consistency rule (3): If the source of an attachment is the result of 

a separate call to a function returning a reference type, the target must be declared as 

separate (Meyer 1997). 
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class FIRST_CLASS feature 

 y: SOME_TYPE   -- non-separate 

 x: SECOND_CLASS  -- x is declared ‘separate’ 

 some_feature is 

  do 

           x.f(y) 

       end 

end 

 

separate class SECOND_CLASS feature 

 f (arg: SOME_TYPE) is 

       do 

   . . . 

       end 

 end 

Figure 3-5: SCOOP Separate consistency rules 

The third rule means that in a separate call, the reference to the returned value 

can be placed only in a variable described as separate. 

Separateness consistency rule (4): If an attachment or the result of a separate 

call is of an expanded type, its base class may not include, directly or indirectly, any non-

separate attribute of a reference type (Meyer 1997). 

This rule means that we can pass an expanded object as an argument in a 

separate call, only if such expanded objects have no references to other objects. Non-

observance of this rule can result in the occurrence of a traitor. This will result in the 

compiler treating this call mistakenly as a synchronous local call, while the attached 

object is separate and needs to be handled asynchronously. 
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3.6 Synchronization in SCOOP 
 

In his work, Meyer considers various existing mechanisms of synchronization and 

their applicability in the context of parallel object-oriented calculations. For use in the 

SCOOP mechanism, Meyer describes a method for synchronized access to shared objects, 

which does not contradict the principle of inheritance, works well with DbC, and also 

guarantees that actions on objects are made in the sequence that we expect.  

In SCOOP, at each moment of time there is at most one executing routine on a 

given object. Furthermore, synchronization is carried out at the level of an object instead 

of at the level of its entities (attributes or variables). Also, a subsystem executes calls to it 

from other subsystems in the order received. 

Consider the following example (Meyer 1997). Suppose we have a requirement to 

remove two consecutive elements from a shared structure buffer (see chapter 1). To 

remove one element, procedure remove is used. For a double remove, we might choose 

to write: 

… 

buffer.remove 

buffer.remove 

… 

However, between these two calls, another object can obtain access to the buffer 

and execute any actions on it. Hence, it is impossible to guarantee that those two required 

elements will be removed. 

To solve this problem in SCOOP, it is necessary to write down the two 

consecutive calls inside one procedure (to encapsulate them) and to pass to the procedure 

the reference to the shared object. 
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remove_two (buffer: separate BUFFER) is 

 do 

  buffer.remove 

  buffer.remove 

 end 

Figure 3-6: removing elements from buffer using the SCOOP execution model 

In this case the buffer will be inaccessible to other clients until the termination of 

of the body of remove_two. This behaviour results in the following SCOOP rule: 

Separate Call rule: The target of a separate call must be a formal argument of 

the routine in which the call appears (Meyer 1997, page 985). 

As another example, suppose we want to call feature put on a separate 

buffer we then write the code for buffer_put as shown below (instead of 

buffer.put(…)): 

buffer_put (some_buffer: separate BUFFER) is 

  ... 

  do 

   -- calling put on some_b 

   some_b.put(…) 

  end 

Figure 3-7: adding elements to buffer using the SCOOP execution model 

3.7 Semantics of preconditions as wait conditions 
 

As described earlier, in the case of sequential execution, preconditions work as 

expected as a correctness condition. In SCOOP, however, the precondition is no longer a 

correctness condition but a wait condition.  

Consider a situation in which we have three subsystems S1, S2 and S3.  Suppose 

S1 calls a routine r in S2. S2 checks the precondition of r and then executes the body of r. 
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The problem is that in between the evaluation of the precondition and the execution the 

body, another subsystem may falsify the precondition. This situation has been named the 

concurrent precondition paradox.  Suppose routine r is as follows: 

 -- subsystem S2 

  

a: separate TYPE 

 

r(x1: separate TYPE1, x2: separate: TYPE2; x3: TYPE3) is 

 require 

   x1_validity: x1 /=Void 

   x2_validity: x2 /= Void 

   a_validity:  a /= Void 

        x3_validity: x3 /= Void  

 do 

   -- routine’s body 

 end 

 

The precondition clauses x1_validity, x2_validity and a_validity are called 

separate preconditions as they have occurrences of the routine arguments or class 

attributes that are declared separate. The non-separate precondition x3_validity 

remains a correctness condition (if false an exception is immediately raised).  

By contrast, the subsystem must gain a lock on all the separate entities before 

checking the separate preconditions. If these preconditions evaluate to true, the body 

is executed and then the separate entities are unlocked. If the separate preconditions 

evaluate to false, then the separate entities are unlocked, and the separate preconditions 

rechecked at some subsequent time. We thus have the following constraint:  
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Separate call semantics: Before a separate call can start executing the routine’s 

body, the separate call must wait until every blocked object is free, and every 

separate precondition clause is satisfied.  
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Chapter 4  
 
SCOOP to Eiffel+Threads Code Generator 
 
 

The purpose of this chapter is to develop a Generator that will translate a SCOOP 

program (that uses the separate keyword) to code in Eiffel+Threads (as described in 

section 1.1). In order to develop the Generator, the development of an appropriate 

mapping from SCOOP programs to generated Eiffel+Threads code is required. While 

(Meyer 1997) provides a comprehensive overview of the proposed SCOOP functionality 

and use, no implementation details are provided. In this chapter we develop and describe 

the mapping that the Generator uses to do the translation. The mapping must be done in 

such a way as to obey the SCOOP model developed in the previous chapter. 

SCOOP functionality includes 

1. Declaration and instantiation of separate objects; 

2. Call of features on separate objects; 

3. Argument passing (expanded and reference types); 

4. Exclusive locking of single and multiple separate objects; 

5. Declaration of separate features including both attributes and routines; 

6. Wait conditions and DbC; 

7. Wait by necessity; 

8. Support for distributed execution and Concurrency Control Files (CCFs).  
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The Generator fully implements items 1 to 7. The cross-platform multi-threaded 

Eiffel+Threads runtime does not support distributed execution, which means that 8 is not 

implemented by our Generator. Thus, as far as we are able to ascertain, the Generator is 

currently the most complete implementation of SCOOP. 

The other SCOOP implementations (Compton 2000; Meyer 2003) also do not 

support distributed execution, although the intention is to ultimately support distributed 

execution in (Meyer 2003). (Compton 2000) does not support wait conditions and DbC 

(item 6), and (Meyer 2003) does not yet support locking of multiple separate objects 

(item 4). 

As described in the first chapter, Eiffel+Threads is standard Eiffel together with a 

cross-platform threads library for concurrent execution. A BON diagram for the Thread 

library is shown in Figure 4-1, and Appendices A, B and E contain more details. 

THREADS

THREAD

launch

make

THREAD_CONTROL

join_all

MUTEX

lock

unlock

make

ROOT_CLASSPROCESS

execute*

 

Figure 4-1 BON diagram of Threads library 
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Suppose we have a ROOT_CLASS that launches two threads p1 and p2 each of 

type PROCESS. The ROOT_CLASS does this in its creation procedure as follows: 

p1.launch 

p2.launch 

join_all 

The PROCESS threads must effect execute inherited from class THREAD (figure 4-2). A 

launch invokes the implemented execute routine. When all the execute routines terminate, 

then join_all terminates the system. Class MUTEX supports data locking in the standard 

way. A mutex can be created to protect data. Routine lock waits until access is granted 

and unlock frees the mutex to other threads. It is assumed that the underlying OS 

implementation of mutexes is fair (an assumption that has been verified under Windows 

and Linux). 

4.1 Eiffel SCOOP project files 
As explained in the previous chapter, the keyword separate is used as follows: 

separate class A_CLASS … 

 

a_entity : separate A_TYPE … 

 

another_routine (separate_argument: separate SOME_TYPE) is 
          require 
             separate_argument … 
 

 

The Generator is invoked on an Eiffel Scoop Project file (with extension “.esp”). 

Consider the producer-consumer example described in Section 1.2. Classes 

ROOT_CLASS, PRODUCER and CONSUMER all have occurrences of the separate 
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keyword in their text. Class BUFFER does not have any occurrences of the separate 

keyword.  

The text of each class C that has occurrences of the separate keyword is placed 

in a file c.es. The Generator will automatically transform each SCOOP class C to a new 

generated class CG, and the text of CG is placed in a file c.e. The Eiffel SCOOP Project 

file for the producer-consumer example is as follows: 

root root_class.es 

      consumer.es 

      producer.es 

 
The project file does not specify file buffer.e as the keyword separate does not 

appear in it. The root class is distinguished from the other classes in the project file. This 

is because: 

1. the generated root class must inherit from THREAD_CONTROL which 

does not have routine execute. Instead of execute, the creation 

procedure of the root class is initially called. At the end of the creation 

procedure, join_all must be invoked for the system to exit; 

2. the generated root class will have the responsibility for managing a global 

shared integer variable called requests_pended, that keeps track of 

the total number of separate calls across all subsystems. This variable 

is used by all the subsystems to determine when to safely exit (as will be 

explained in the sequel). 

All other classes in the project file inherit from THREAD and effect execute. 
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4.2 Implementing Subsystems 
 
Suppose we have SCOOP classes as follows: 

separate class A_CLASS feature 

c1: C1 

c2: separate C2 

… 

create c1.make 

create c2.make 

… 

end 

 

separate class C1 … end 

 

class C2 … end 

 

Conceptually, c1 and c2 each have their own subsystem. However, it is usually the case 

that non-separate classes such as C2 are usually passive data containers, such as BUFFER 

in the producer-consumer example. The main requirement is that any call to such classes 

must run atomically in order to be protected from interference by other threads. They do 

not really need their own thread. By contrast, classes such as C1 are independent 

processes that must run in their own thread (e.g. the producer, or consumer). 

The Generator therefore treats these two cases differently. For each entity such as 

c2, we merely declare an associated mutex c2_mutex. Any feature call c2.f is always 

“wrapped” with a lock to the mutex: 
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c2_mutex.lock 

c2.f 

c2_mutex.unlock  

Thus, in the generated code, any routine with c2 as an argument must also be passed 

c2_mutex at the same time. Such a procedure guarantees that the shared data object 

associated with c1 is only accessed by one routine (atomically) at a time. 

By contrast, c1 must execute in its own thread. To implement c1’s subsystem, we 

must therefore proceed differently.  Let C1G denote the generated code associated with 

the SCOOP class C1.  

1) Each generated class such as C1G (other than the root class) inherits 

from THREAD and effects execute. 

2) Each instance of C1G has its own buffer request_buffer which is a 

queue of separate calls (to routines of C1G) coming from other 

subsystems. Other subsystems must first obtain the lock to the buffer 

(called request_buffer_mutex) before being allowed to queue its 

routine call request. Each addition to the buffer increments by one a global 

integer variable requests_pended (which has a corresponding lock 

request_pended_mutex). Thus, at any moment in time, the value of 

requests_pended is the number of separate buffered calls across 

all subsystems. 

3) The deferred feature execute (of THREAD) is implemented in C1G by 

repeatedly requesting a lock on the buffer and executing the oldest 

routine call request (say for routine r). When r (and all its sub-calls) 
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terminates, then requests_pended is decremented by one to indicate 

that there is one less call request to process.  The global variable 

requests_pended must be zero before execute terminates, thus 

terminating the subsystem. 

4) If any of the sub-calls of r is itself a separate call to some subsystem, 

then the same procedure is followed, i.e. the sub-call is registered with the 

buffer of requests for that subsystem, and that subsystem must complete 

the sub-call before control is returned to r. Thus requests_pended 

will not reduce to zero until every separate call (and its separate 

sub-calls) has been handled by the appropriate subsystem. 

Steps 1-4 ensure (a) that every separate call is registered and executed, and (b) that 

subsystems only terminate when no more separate calls are possible. 

The root class in the project file (say CR) has an associated generated root 

class called CRG. As described earlier, CRG inherits from THREAD_CONTROL and has 

the responsibility for managing the requests_pended global variable and its lock. 

The generated creation feature of class CRG: 

1. initializes the requests_pended  and its lock; 

2. launches the appropriate threads. Any create statements in CR (e.g. 

create c1.make) involving separate calls (of type C1) must be 

followed by a launch in the corresponding generated code, i.e. 

(c1.make; c1.launch…). The launch command invokes the effected 

execute routine in C1G; 
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3. registers any separate calls in the creation feature of CR with the 

appropriate subsystems; 

4. calls join_all for system termination. 

There are thus three cases, each handled differently by the Generator: 

a) the root class CR; 

b) C2 (i.e. passive data that must be protected); 

c) C1 (i.e. active processes that need their own threads in the generated code). 

 

 class SOME_TYPE 

 

 inherit 

 THREAD 

 feature 

 execute is 

  do 

   … 

  end 

 

 class SECOND_CLASS 

some_var: SOME_TYPE 

make is 

  do 

   … 

   create some_var.make 

   some_var.launch 

                  … 

          end 

Figure 4-2 THREAD inheritance   
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Further experience with SCOOP may cause us to treat C2 similarly to C1, but with a loss 

of the efficiency of the current model. The current generated code will run correctly with 

less thread overhead; it’s only downside is that it over-serializes calls to passive C2 type 

structures. Further experience with SCOOP is needed to evaluate which translation is 

better. 

The Generator scans through all the classes mentioned in project file. The root 

class and other separate classes are each translated to generated code, as described in 

the overview presented above, and with further detail supplied in the rest of this chapter. 

 

4.3 Effecting routine execute 
 

Consider an instance of a C1 type class. It is launched (by calling launch), 

which in turn calls routine execute. It is the responsibility of execute to manage 

this thread (i.e. subsystem). Figure 4-3 shows a pseudo-code version of the effected 

execute routine. The body of the routine repeatedly accesses the oldest separate call 

to this subsystem (from other subsystems) in the request buffer, executes the call and then 

removes the call from the buffer. Thus separate calls are atomically processed in the 

subsystem in the order they are received (while other subsystems concurrently process 

their calls in the same manner). This is because any separate call must be registered 

with the subsystem, and only such calls are invoked by execute. 

An example of the precise execute code is provided in Appendix C. The 

stop_condition involves an access to the global variable requests_pended, 

which is described in more detail below. 
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class C1G feature  

 

execute is  

     do 

  from 

  until not (stop_condition) 

  loop 

    get_next_call_from_request_buffer 

    execute_call 
                    … 

      end 

      end  

… 

end 

Figure 4-3 the execute feature   

4.4 Keeping track of separate calls 
 

The execute routine in the generated code C1G needs to access the separate 

calls in the order received by this subsystem. Figure 4-4 illustrates the way in which this 

is done via a buffer request_buffer and routines to add a separate call to the 

buffer and remove a call (set_feature_to_do, get_feature_to_do). The 

request buffer is a list of TUPLE: 

request_buffer: LINKED_LIST[TUPLE] 

Tuples are a mathematical cross product, implemented as an indexed linear data structure. 

The number of elements in TUPLE beforehand is not determined. Tuples are extremely 

useful in SCOOP, as no decorator classes are necessary to wrap the features, their 

arguments and other associated data. TUPLE will be used to store separate calls (e.g. 

the name of the call, and its arguments). 
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class C1G feature  

 

      execute … 

 

request_buffer: LINKED_LIST[TUPLE] 

 

set_feature_to_do(feature_params_arg:TUPLE) is 

do 

  requests_pended_mutex.lock 

  requests_pended.copy(requests_pended + 1) 

  requests_pended_mutex.unlock 

  request_buffer_mutex.lock 

  request_buffer.extend(feature_params_arg) 

  request_buffer_mutex.unlock 

end 

 

get_feature_to_do:TUPLE is 

do 

 request_buffer_mutex.lock 

   if not request_buffer.is_empty then 

    Result := request_buffer.first  

   else 

    Result := [Current,"NOTHING"] 

   end 

 request_buffer_mutex.unlock 

end 

 

… 

end 

         Figure 4-4 A buffer to queue separate calls to a subsystem  

 Separate calls can be placed on the subsystem buffer using the routine: 

set_feature_to_do(feature_params_arg: TUPLE) 
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Routine set_feature_to_do places the call data at the end of the buffer and is 

public (it can be called from any subsystem). If another subsystem wants to execute a 

separate call to this subsystem, it registers the call using set_feature_to_do. 

The other subsystem can then continue executing (for a feature that is a command), 

without blocking, and the execute routine of the current subsystem will get the call 

from the buffer and execute in the proper order. Queries and wait by necessity will be 

discussed in the next subsection. 

Routine get_feature_to_do is called by routine execute: 

get_feature_to_do: TUPLE. 

It gets the oldest call (stored as a TUPLE on the buffer). Thus the buffer is organized 

under a FIFO scheme.  

4.5 Command and function calls 
 

Separate command and function calls to a subsystem are both registered in the 

subsystem buffer, as explained above. However, function calls (queries) are subject to the 

wait by necessity rule. In this section we discuss the differences between command and 

function calls. 

 

4.5.1 Command Routines 

Consider the SCOOP code for two subsystems C1A and C1B in figure 4-5. C1A 

makes a separate call request f.some_command(arg) to C1B. In C1B, the 

argument arg is declared as separate.  
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separate class C1A … 

c1b: C1B 

… 

c1b.some_command(arg) 

… 

end 

 

separate class C1B … 

some_command(separate arg: TYPE1) is 

… 

end 

Figure 4-5 Commands 

As it currently stands, subsystem c1a directly calls and executes the separate routine 

some_command in subsystem c1b, and inappropriate interference with other threads 

might occur. Instead, we require that c1a register the call some_command(arg) with 

c1b’s buffer of calls so that the c1b can later execute some_command atomically and 

safely in the appropriate order. The Generator must therefore map the call 

c1b.some_command(arg) in C1A to 

c1b.set_feature_to_do([Current,"SOME_COMMAND_STRING",arg1, 
arg1_mutex]) 

in the generated code C1AG. Recall that set_feature_to_do is a public routine in 

the generated code C1BG associated with subsystem C1B which is declared as 

set_feature_to_do(feature_params_arg: TUPLE) 

The formal argument feature_params_arg is a TUPLE that can store the 

call  c1b.some_command(arg) for later reference. The first field of the TUPLE 

stores the calling subsystem (i.e. Current that refers to c1a), the second field stores the 

name of the routine some_command as a string “SOME_COMMAND_STRING”, and 

the third field stores the routine argument arg. Since arg is declared as a separate 



 Page 70 

   

argument, it refers to a different subsystem, and thus any accesses to arg must be via it’s 

lock arg1_mutex, which is passed in the fourth field of the TUPLE. 

The first field of the TUPLE (Current) allows the c1b subsystem to access the 

global variable requests_pended. This variable must be incremented when the call is 

registered and decremented when it is executed. 

After the information on a call is placed in the buffer, the subsystem associated 

with c1a continues execution while the subsystem associated with c1b will process the 

call. 

4.5.2 Function Routines 
 

In the case of a command routine, the calling subsystem registers the command 

call with the target subsystem, and then continues execution without blocking. In the case 

of a function call (see Figure 4-6), we have some version of the “wait by necessity” 

mechanism, as defined in Section 3.3. Thus, if the calling subsystem executes an 

assignment x:=y.f, then it must block until the subsystem associated with x has 

executed the call f.  

As for commands, function calls are also registered with the target subsystem 

using routine set_feature_to_do. The function call is registered in the same way as 

a command with only one difference: 

• An extra field of the TUPLE is reserved for the return value of the function. 
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 separate class CA feature 

 f: SOME_TYPE is 

  do 

   … 

  end 

      … 

end 

 
  separate class CB feature 

 x: separate SOME_TYPE 

 y: CA 

 some_feature is 

  do 

    x := y.f 

              z:=x 

            end 

… 

end 

Figure 4-6 Function calls 

The following code will be generated by Generator: 
class  CB 

… 

x: SOME_TYPE 

x_mutex: MUTEX 

y: CA 

y_mutex: MUTEX … 

some_feature is do  … 

   x_mutex.lock  

             y.set_feature_to_do([Current,"f_STRING", x, x_mutex]) 

             x_mutex.lock  

             -- We acquire mutex second time and wait until 

             -- it will be released in CA 

             x_mutex.unlock 

             z:=x 

            end 

… 
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      class  CA 

… 
 
 execute is  
  local  
   f_return: SOME_TYPE 

            f_return_mutex: MUTEX 

            … current_feature_args := get_feature_to_do 
         …  
        if  current_feature_name.is_equal ("f")  

            then  

            … 
        f_return ?= current_feature_args.item (3) 
   f_return_mutex ?= current_feature_args.item (4) 
   f_return.copy(f) 

            f_return_mutex.unlock  

            -- now execution is back at CB at after 

            -- the second x_mutex.lock 
             …   

        … 
      

 

As we can see from the listing above the assignment x:=y.f will be translated 

into y.set_feature_to_do([Current,"f_STRING", x, x_mutex]), where x and its associated 

mutex x_mutex are passed as additional arguments (in the case of commands this is not 

necessary). We thus register the call of feature f with subsystem CA. Then we wait to 

acquire the lock on x second time (x_mutex.lock). Now we will be waiting until the 

lock is released in the CA subsystem. In feature execute of CA all the references to 

function f are retrieved with the help of the feature get_feature_to_do. The 

reference to x is placed into f_return, and the reference to x_mutex is placed into 

f_return_mutex. Then feature f is executed and its result is assigned to 

f_return, which is pointing to the same location in memory as x. Mutex 
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f_return_mutex can then be released (f_return_mutex.unlock) and the 

execution will continue in subsystem CB, which will get hold of x_mutex and will 

release it. Then the value of x can be used for the further calculations. 

4.6 One-zero example 
 

Consider the one-zero example shown in the BON diagram in Figure 4-7. This 

example will be used to illustrate the code mappings and the operation of the Generator. 

There are three classes: ROOT_CLASS (shown in Figure 4-8), PROCESS (shown in 

Figure 4-9) and DATA (Appendix C). 

 

Figure 4-7 BON diagram of zero-one 
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As can be seen from the BON diagram in Figure 4-7, class DATA has two integer 

attributes x and y, and an invariant that asserts that both must either be zero or one. 

Routine zero sets both attributers to zero and routine one sets them both to one. 

Class PROCESS has access to an instance d of type DATA. Class PROCESS also 

has an integer option, which can be passed via the make routine. An option of 0 tells 

routine run to call d’s zero routine, an option of 1 tells run to call the d’s one routine, 

and an option 2 tells run to call the d’s view routine. 

 

separate class ROOT_CLASS creation  

   make 

feature 

d: separate DATA 

p1, p2, p3: PROCESS -- separate class 

 

make is -- start three processes 

  do 

    io.putstring ("Test threads%N") 

    create d.make 

    create p1.make(d,0,"First") 

    create p2.make(d,1,"Second") 

    create p3.make(d,2,"Third") 

    p1.run 

    p2.run 

    p3.run 

  end 

 end  

Figure 4-8 ROOT_CLASS for ‘One-zero’ example 
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The creation procedure of the root class creates three processes p1, p2 and p3 (of 

type PROCESS). The same data instance is passed to each process (with options 0, 1 

and 2 respectively). Thus all three processes access the data subsystem simultaneously. 

In a simple-minded implementation, each process operates in its own thread and 

the zero and one routines in DATA are protected with a lock local to DATA. Without the 

mapping of this chapter (each subsystem with its own call buffer etc.), the resulting 

system will suffer from the concurrent precondition paradox (section 3.7). Thus, there 

will be an invariant violation in DATA because one process may change the state of x 

and y after an unlock but before the invariant is evaluated. 
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separate class PROCESS creation  

make 

feature 

option: INTEGER 

data: separate DATA 

name: STRING 

 

run is 

   local i:INTEGER 

do 

 from until false 

 loop 

  if option = 0 then 

    data.zero -- set data to zero 

   elseif option = 1 then 

    data.one -- set data to one 

  else data.view;  

    print_me 

  end 

 end 

end 

 

make(d: separate DATA; opt:INTEGER; n:STRING) is 

 do 

  data := d 

  option := opt 

  name := n 

 end 

 

print_me is 

 do 

  print("%N" + name + " just ran" + "%N") 

 end 

 end  

Figure 4-9 PROCESS for ‘One-zero’ example 
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SCOOP creation routine 
 
separate class  
ROOT_CLASS 
feature 
 
 
 
p1,p2,p3: PROCESS 
 
d: separate DATA 
 
 
make is  
do 
 
 
 
create d.make 
 
 
 
create p1.make 
(d,0,“First”) 
 
 
create p2.make 
(d,0,“Second”) 
 
 
create p3.make 
(d,0,“Third”) 
 
 
p1.run 
 
 
p2.run 
 
 
p3.run 
 
 
 
 
 
 
 
 
end 

Generated Code 
 
class ROOT_CLASS inherit 
   THREAD 
feature 
request_pended: INTEGER_REF 
requests_pended_mutex: MUTEX 
 
p1, p2, p3: PROCESS 
 
d:DATA 
d_mutex: MUTEX 
 
make is 
do 
requests_pended := 1 
 
create d_mutex 
d_mutex.lock 
create d.make 
d_mutex.unlock 
 
create  p1.make (d, d_mutex, 0,"First",   
  requests_pended, requests_pended_mutex) 
p1.launch 
 
create  p2.make (d, d_mutex, 1, "Second",  
  requests_pended, requests_pended_mutex) 
p2.launch 
 
create  p3.make (d, d_mutex, 2, "Third",  
  requests_pended, requests_pended_mutex) 
p3.launch 
 
p1.set_feature_to_do ([Current, 
"RUN_STRING"]) 

p2.set_feature_to_do ([Current, 
"RUN_STRING"]) 
 
p3.set_feature_to_do ([Current, 
"RUN_STRING"]) 

requests_pended_mutex.lock 
requests_pended.copy(requests_pended-1) 
requests_pended_mutex.unlock 
 
join_all 
 
end 

Figure 4-10 Mapping from SCOOP to generated code for creation procedure 
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We now describe how the zero-one example is mapped to generated code. 

Consider the creation procedure make in the ROOT_CLASS (Figure 4-8). The mapping 

from SCOOP to generated code for make is shown in Figure 4-10. Recall that the 

generated code for the root class must manage the requests_pended global variable 

that keeps track of all separate calls across all subsystems (Section 4.2). The mapping 

works as follows: 

1. At lines 1-2 in Figure 4-10, the generated ROOT_CLASS must inherit 

from THREAD. 

2. At lines 4-5 requests_pended is declared with its lock. 

3. At line 9, the separate keyword is stripped from d, and a corresponding 

lock d_mutex is declared (section 4.2). 

4. At line 14, requests_pended is temporarily initialized to a value of 1. 

As shown in Figure 4-3 (section 4.3) the stopping condition for the 

execute routines in the generated code for the PROCESS subsystems is 

when requests_pended reaches zero. At lines 42-44 

requests_pended will be decremented by one, but this is only after 

the top-level calls p1.run, p2.run and p3.run are registered with the 

appropriate subsystems.  Thus, the subsystem execute routines are 

guaranteed not to exit until all the top-level routines (and hence all their 

sub-calls) are registered and executed. Recall that requests_pended is 

incremented by one at every call registered and decremented by one when 

the call is later executed (section 4.2). 



 Page 79 

   

5. At lines 16-18, the call to create d is wrapped with the appropriate lock. 

6. At lines 21-23, process p1 is created. In the generated code, additional 

arguments must be passed in the creation routine. Data d must be passed 

with its lock, and requests_pended  with its lock. Then p1.launch 

is called to initiate the thread (and hence the subsystem). In turn, launch 

calls p1’s execute (effected from THREAD) as described in Section 4.2. 

7. The same is done for the other two processes p2 (at lines 25-27) and p3 

(at lines 29-31). 

8. Each call to a subsystem must be translated into a register of the calls with 

the subsystem’s buffer (section 4.2). The SCOOP call p1.run at line 33 

must thus be mapped to a buffer call via set_features_to_do. The 

same call registration must take place for p2.run (lines 36-37) and 

p3.run (lines 39-40). 

9. At lines 42-44, requests_pended must be decremented as explained 

above in step 4, wrapped with the appropriate lock. 

10. At line 47, join_all must be invoked. When all execute routines in 

the various subsystems exit (when requests_pended reaches zero), 

then the system exits and terminates. 

4.7 Mapping separate preconditions to wait conditions 
In section 3.7, we described a separate call semantics so that SCOOP 

separate preconditions are treated as wait conditions rather than correctness 
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conditions. We must now show how to map the SCOOP routine shown in Figure 4-11 to 

generated code. 

separate class SOME_CLASS ..  
a: separate TYPE 
 
r(x1: separate TYPE1, x2: separate: TYPE2; x3: TYPE3) is 
 require 
   x1_validity: x1 /=Void 
   x2_validity: x2 /= Void 
   a_validity:  a /= Void 
        x3_validity: x3 /= Void  
 do 
   -- routine’s body 
 end 
end 
… 

end 
Figure 4:11 Separate preconditions (from Section 3.7) 

The generated code is shown in Figure 4-12. 
  
r(x1: TYPE1; x1_mutex:MUTEX; x2: TYPE2; x2_mutex:MUTEX; x3: TYPE3) is 

require 
  x3_validity: x3 /= Void 

local  
  scoop_require_wait_flag: BOOLEAN 

      access_lock: ACCESS_LOCK 
 do   

from  
  scoop_require_wait_flag := False  

      create global_lock 
 until  
  scoop_require_wait_flag 
 loop  

      global_lock.data.mutex.lock 
                  x1_mutex.lock 
                  x2_mutex.lock 
                  a_mutex.lock  
                  global_lock.data.mutex.unlock     

if  (x1 /=Void) and (x2 /=Void) and (a /=Void) 
                    then  
    -- body 
    scoop_require_wait_flag := True  
   end   
              x1_mutex.unlock 
              x2_mutex.unlock 
              a_mutex.unlock 
   sleep(n) --  default n = 50 millisceconds 
         end 
        end 

Figure 4.12 Mapping of separate preconditions to wait conditions 
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The non-separate precondition remains a regular require clause as shown in 

Figure 4-12. A busy-wait loop must be constructed for the separate preconditions. In 

the loop: 

• We block until we obtain a lock on all the separate entities; 

• Once all the separate entities are locked, we evaluate all the 

separate preconditions and set an exit flag if they all evaluate to true; 

• We unlock all the separate entities thus allowing other subsystems to 

access them; 

• Finally we sleep for a number of time units that is an option in the 

Generator before checking the separate preconditions again. This 

ensures that the busy-wait loop does not use up time cycles unnecessarily. 

The code 
global_lock.data.mutex.lock 

                  x1_mutex.lock 
                  x2_mutex.lock 
                  a_mutex.lock  
                  global_lock.data.mutex.unlock 
makes use of the singleton design pattern to create a global lock. The class 

GLOBAL_LOCK has a feature mutex. The class ACCESS_LOCK has a once routine 

data of type GLOBAL_LOCK. Thus, global_lock.data.mutex always refers to the 

same global mutex. This prevents the type of deadlock in which one process has a handle 

on x1_mutex and another process on x2_mutex. 

4.8 The Generator 
 
The Generator is invoked as follows: 
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generator <input-folder> <scoop-project-file-name> <output-folder> [<sleep>] 

where sleep is a nonnegative integer in milliseconds (the sleep parameter in the busy-wait 

loop). All SCOOP separate classes in corresponding *.es files must be in the input-

folder. The generated standard Eiffel *.e files are placed in the output-folder. The scoop-

project-file-name is an Eiffel SCOOP project file (*.esp) as described in Section 4.1. It is 

similar to an Eiffel Ace file. 

The Generator extracts each class C in the project *.esp file and processes the 

SCOOP classes one by one. Each class C is translated to generated class CG and saved as 

an appropriate text file in the output folder. 

Case 1: If C is the root class then the Generator proceeds as follows: 

• CG inherits from THREAD_CONTROL and uses the mapping in Sections 4.1 and 

4.2 for requests_pended and the creation routine.  

• The Generator scans the rest of the file line by line until the separate keyword is 

found. 

• The Generator then uses the appropriate mapping depending on whether the 

keyword is involved in: 

o a separate attribute (section 4.2); 

o a separate routine (section 4.5) 

Case 2: If C is a separate class that is not the root, then 

• CG inherits from THREAD. 
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• The request_buffer queue and execute routines are inserted into CG as 

described in sections 4.3 and 4.4. 

• The Generator scans the rest of the file line by line until the separate keyword is 

found. 

• The Generator then uses the appropriate mapping depending on whether the 

keyword is involved in: 

o a separate attribute (section 4.2); 

o a separate routine (section 4.5) 

The Generator’s accepting grammar is a subset of the Eiffel grammar.  It has the 

following restrictions: 

• Each command must be on a separate line; 

• Consequently the use of ‘;’ to separate commands on one line is unsupported; 

• The keywords must be lower case and the creation clauses are denoted only by the 

keyword creation.   

• Other than the separate keyword, Generator assumes that we are dealing with 

legal Eiffel text. 

• The separate keyword is illegal as a local entity of a routine. Since local 

entities can only be accessed by the encapsulating feature clause, it would be 

nonsensical to declare a local entity as separate due to the guarantee that only 

one processor is allocated per object, and therefore there will only be one thread at 

the feature level handling it. 
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• Only one instance of the root class is allowed, as this class manages 

requests_pended. 

 
The original version of the Generator was developed using ISE EiffelStudio 5.0. It 

has remained compatible up to an including the current version 5.4. While the ISE Eiffel 

compiler was used to translate the generated code from Eiffel to C, the Microsoft C 

compiler (included with Visual Studio .NET) was used to compile from C to executable 

code.  Due to major differences in C to executable code compilation, the Borland C 

compiler generates invalid code when compiling the generator.  At the time of this 

writing, ISE is investigating the problem. 

The Generator was tested on a number of examples of different complexity. The 

target code produced by Generator was compiled on different platforms (Windows, Unix, 

Linux, Mac) using standard Eiffel compilers. 
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Chapter 5 – Conclusion 
 

Eiffel’s powerful features such as Design by Contract, genericity, multiple 

inheritance, and seamless and reversible design and code generation via BON, make it a 

productive environment for developing quality code.  

The SCOOP framework adds concurrency to Eiffel, via the addition of only one 

keyword (separate), while preserving all the other features of Eiffel. This concurrent 

framework removes many areas of difficulty in concurrent programming. In particular, 

constructs involving mutual exclusion, atomicity, condition variables and synchronization 

are considerably simplified, and issues such as the inheritance anomaly are virtually 

removed. 

Until this thesis, the only SCOOP implementation was that of (Compton 2000). 

The Compton implementation was a groundbreaking work implementing many of the 

features of SCOOP for the first time. The Compton implementation did not however 

implement some main features of SCOOP. For example, the conversion of separate 

preconditions into wait conditions was not supported. Nor were “once” globals correctly 

implemented. Also, Compton’s implementation was via a compiler modification to an 

open source compiler called SmallEiffel. However, Compton’s work is no longer 

compatible with the latest version of this compiler (called SmartEiffel).   

In this thesis we followed a different approach. Instead of modifying a compiler, 

we describe and build a Generator that automatically maps SCOOP programs to standard 

Eiffel together with a cross-platform thread library (Eiffel+Threads). This approach 

allows us to study SCOOP while maintaining compatibility with new compiler 
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developments. The downside is that we do not have a SCOOP debugger but must use the 

standard Eiffel debuggers instead. The main contributions of this thesis include: 

• An analysis of Meyer’s SCOOP framework especially the various 

implementation issues that arise in this context. In chapter 3, we develop a 

model of SCOOP using the notion of a subsystem. 

• In Chapter 4 we provide a mapping from SCOOP programs to code in 

Eiffel+Threads in terms of the model; 

• Chapter 4 also describes a Generator, implemented in standard Eiffel that 

automatically translates SCOOP code to executable multi-threaded Eiffel 

using the mapping.  

• We thus provide the first workable and complete cross-platform SCOOP 

capability that should prove easy to maintain even in the face of new Eiffel 

compiler enhancements. 

• This SCOOP implementation is fully compatible with all standard Eiffel 

features such as DbC, genericity and multiple inheritance. 

The SCOOP Generator should be seen as a (“proof of concept”) prototype at this point 

rather than industrial strength, until such time as its efficiency and correctness has been 

validated against many large examples. 

5.1 Future work 
Some design decisions in the current Generator may need to be re-evaluated. 
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• In section 4.2, the decision was made to implement separate attributes 

as conceptual subsystems rather than as actual subsystems. Further study 

of the whole issue is needed as indicated in Section 4.2. 

• In section 4.5.2, the busy-wait loop for converting separate 

preconditions into wait conditions used a sleep mechanism so as not to 

waste CPU cycles. A solution using condition variables might prove to be 

more efficient. 

5.2 Model Driven Development 
As (Selic 2003) points out, using models to design complex systems is an 

important part of traditional development. Models help us understand a complex problem 

and its potential solutions through abstraction. Therefore, it seems obvious that software 

systems, which are often among the most complex engineering systems, can benefit 

greatly from using models and modelling techniques. 

Surprisingly models in software engineering are used infrequently and, even when 

used, they often play a secondary role. Yet, as (Selic 2003) writes, the potential benefits 

of using models are significantly greater in software than in any other engineering 

discipline. Model-driven development (MDD) methods were devised to take advantage of 

this opportunity, and the claim is now being made that accompanying technologies have 

matured to the point where they are generally useful (Mellor 2002).  

UML version 2.0 has been developed with MDD in mind. The major advantage of 

the model-enhanced UML is that we express models using concepts that are much less 

bound to the underlying implementation technology and are much closer to the problem 
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domain relative to most popular programming languages. This level of abstraction makes 

the models easier to specify, understand, and maintain. 

The UML notion of structured classes and components having their own thread of 

execution is considered to be an important building block of MDD, together with 

traditional models such as class diagrams, statecharts and collaboration diagrams. A 

separate SCOOP class would appear to be an abstract version of the UML notion of a 

structured class. For example, if we want to create a diagram of Producer-Consumer in 

Java, we will need to go quite low-level to show inheritance from THREAD, synchronized 

methods, wait-notifyAll (Figure 5-2). To present the same in SCOOP we will just have to 

declare CONSUMER and PRODUCER as separate in our diagram (Figure 5-1). 

This brings us into totally different level of abstraction, allowing us to model software on 

much higher level. Thus SCOOP may have an important role to play in the currently 

evolving MDD frameworks. 

 

 
F 

Figure 5-1 Producer-Consumer SCOOP 
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Figure 5-2 Producer-Consumer Java 
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Appendices 
 

Appendix A. Eiffel Thread Class 
 
 
indexing  
 description: "Class defining an Eiffel thread." 
 status: "See notice at end of class." 
 date: "$Date: 2003/04/25 22:53:21 $" 
 revision: "$Revision: 1.1 $" 
 
deferred  class   
 THREAD 
 
inherit  
 THREAD_CONTROL 
 
feature  -- Access 
 
 thread_id: POINTER 
   -- Pointer to the thread-id of the current thread object. 
  
feature  -- Basic operations 
 
 execute is  
   -- Routine executed by new thread. 
  deferred  
  end  
 
 launch is  
   -- Initialize a new thread running `execute'. 
  do  
   create_thread (Current, $thr_main) 
   thread_id := last_created_thread 
  end  
 
 launch_with_attributes (attr: THREAD_ATTRIBUTES) is  
   -- Initialize a new thread running `execute', using attributes. 
  do  
   create_thread_with_args (Current, $thr_main, attr.priority, 
     attr.scheduling_policy, attr.detached) 
   thread_id := last_created_thread 
  end  
  
feature  {NONE} -- Implementation 
 
 frozen  thr_main is  
  do  
   thread_id := get_current_id 
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   execute 
  end  
  
feature  {NONE} -- Externals 
 
 create_thread (current_obj: THREAD; init_func: POINTER) is  
   -- Initialize and start thread. 
  external  
   "C signature (EIF_OBJECT, EIF_POINTER) use %"eif_threads.h%"" 
  alias  
   "eif_thr_create" 
  end  
 
 create_thread_with_args (current_obj: THREAD; init_func: POINTER; priority, policy: 
     INTEGER; detach: BOOLEAN) is  
   -- Initialize and start thread, after setting its priority 
   -- and scheduling policy. 
  external  
   "C signature (EIF_OBJECT, EIF_POINTER, EIF_INTEGER, 
   EIF_INTEGER, EIF_BOOLEAN) use %"eif_threads.h%"" 
  alias  
   "eif_thr_create_with_args" 
  end  
  
end  -- class THREAD 
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Appendix B. Eiffel Mutex Class  
 
 
indexing  
 description: "Mutex synchronization object, allows threads to access global data through critical        
sections." 
 status: "See notice at end of class." 
 date: "$Date: 2003/07/25 20:48:08 $" 
 revision: "$Revision: 1.4 $" 
 
class   
 MUTEX 
 
inherit  
 MEMORY 
  redefine  
   dispose, 
   default_create 
  end  
 
create   
 default_create, 
 make 
 
feature  -- Initialization 
 
 default_create is  
   -- Create mutex. 
  do  
   mutex_pointer := eif_thr_mutex_create 
  ensure  then  
   valid_mutex: mutex_pointer /= default_pointer 
  end  
 
 make is  
  obsolete  "Use `default_create'" 
   -- Create mutex 
  do  
   default_create 
  ensure  
   valid_mutex: mutex_pointer /= default_pointer 
  end  
  
feature  -- Access 
 
 is_set: BOOLEAN is  
   -- Is mutex initialized? 
  do  
   Result := (mutex_pointer /= default_pointer) 
  end  
  
feature  -- Status setting 
 
 trylock: BOOLEAN is  
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   -- Has client been successful in locking mutex without waiting? 
   -- Was declared in MUTEX as synonym of `has_locked'. 
  require  
   valid_mutex: is_set 
  do  
   Result := eif_thr_mutex_trylock (mutex_pointer) 
  end  
 
 has_locked: BOOLEAN is  
   -- Has client been successful in locking mutex without waiting? 
   -- Was declared in MUTEX as synonym of `trylock'. 
  require  
   valid_mutex: is_set 
  do  
   Result := eif_thr_mutex_trylock (mutex_pointer) 
  end  
 
 lock is  
   -- Lock mutex, waiting if necessary until that becomes possible. 
  require  
   valid_mutex: is_set 
  do  
   eif_thr_mutex_lock (mutex_pointer) 
  end  
 
 unlock is  
   -- Unlock mutex. 
  require  
   valid_mutex: is_set 
  do  
   eif_thr_mutex_unlock (mutex_pointer) 
  end  
 
 destroy is  
   -- Destroy mutex. 
  require  
   valid_mutex: is_set 
  do  
   eif_thr_mutex_destroy (mutex_pointer) 
   mutex_pointer := default_pointer 
  end  
  
feature  {CONDITION_VARIABLE} -- Implementation 
 
 mutex_pointer: POINTER 
   -- C reference to the mutex. 
  
feature  {NONE} -- Removal 
 
 dispose is  
   -- Called by the garbage collector when the mutex is 
   -- collected. 
  do  
   if  is_set then  
    destroy 
   end  
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  end  
  
feature  {NONE} -- Externals 
 
 eif_thr_mutex_create: POINTER is  
  external  
   "C | %"eif_threads.h%"" 
  end  
 
 eif_thr_mutex_lock (a_mutex_pointer: POINTER) is  
  external  
   "C blocking use %"eif_threads.h%"" 
  end  
 
 eif_thr_mutex_unlock (a_mutex_pointer: POINTER) is  
  external  
   "C | %"eif_threads.h%"" 
  end  
 
 eif_thr_mutex_trylock (a_mutex_pointer: POINTER): BOOLEAN is  
  external  
   "C blocking use %"eif_threads.h%"" 
  end  
 
 eif_thr_mutex_destroy (a_mutex_pointer: POINTER) is  
  external  
   "C | %"eif_threads.h%"" 
  end  
  
end  -- class MUTEX 
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 Appendix C. One-zero example 
 

Listing 1a. SCOOP ROOT_CLASS 
 
 
class   
 ROOT_CLASS  
 
create   
 make 
 
feature  
 
 
 d: separate  DATA 
 
 p1: PROCESS 
 
 p2: PROCESS 
 
 p3: PROCESS 
 
 make is  
  do  
   io.putstring ("Test threads%N") 
   create  d.make 
   create  p1.make (d, 0, "First") 
   create  p2.make (d, 1, "Second") 
   create  p3.make (d, 2, "Third") 
   p1.run 
   p2.run 
   p3.run 
  end  
  
end  -- class ROOT_CLASS 
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Listing 1b. Generated ROOT_CLASS 
 
    
class   
 ROOT_CLASS 
 
inherit  
  
 
 THREAD_CONTROL 
 
create   
 make 
 
feature   
 
 requests_pended: INTEGER_REF 
   -- added by generator 
 
 d_mutex: MUTEX 
   -- Added by generator 
 
 requests_pended_mutex: MUTEX 
   -- added by generator 
 
 is_requests_pended: BOOLEAN is  
  do  
   Result := True  
   requests_pended_mutex.lock 
   if  requests_pended.is_equal (0) then  
    Result := False  
   end  
   requests_pended_mutex.unlock 
  end  
 
  
 d: DATA 
 
 p1: PROCESS 
 
 p2: PROCESS 
 
 p3: PROCESS 
 
 make is  
  do  
   create  requests_pended_mutex.default_create 
   requests_pended := 1 
   create  d_mutex.default_create 
   io.putstring ("Test threads%N") 
   d_mutex.lock 
   create  d.make 
   d_mutex.unlock 
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create  p1.make (d, d_mutex, 0, "First", requests_pended, 
                                                                                                requests_pended_mutex) 
   p1.launch 
   create  p2.make (d, d_mutex, 1, "Second", requests_pended, 

                                                                                 requests_pended_mutex) 
   p2.launch 
   create  p3.make (d, d_mutex, 2, "Third", requests_pended, 

                                                                                 requests_pended_mutex) 
   p3.launch 
   p1.set_feature_to_do ([Current, "RUN_STRING"]) 
   p2.set_feature_to_do ([Current, "RUN_STRING"]) 
   p3.set_feature_to_do ([Current, "RUN_STRING"]) 
    
    requests_pended_mutex.lock 
    requests_pended.copy (requests_pended - 1) 
    requests_pended_mutex.unlock 
   join_all 
  end  
  
end  -- class ROOT_CLASS 
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Listing 2a. SCOOP PROCESS Class 
 
separate class   
 PROCESS  
 
create   
 make 
 
feature  
 
 
 option: INTEGER 
   -- option 0 sets x,y in shared data d to zero 
   -- option 1 sets x,y in shared data d to one 
   -- option 2 just views and prints the shared data 
    
 
 data: separate DATA -- shared data from calling process 
 
 name: STRING 
   -- name of this process 
    
 make (d: separate DATA; opt: INTEGER; n: STRING) is  
  do  
   data := d 
   option := opt 
   name := n 
  end  
 
 run is  
   -- option 0 sets x,y in shared data d to zero 
   -- option 1 sets x,y in shared data d to one 
   -- option 2 just views and prints the shared data 
  do  
   from  
   until  
    False  
   loop  
    if  option = 0 then  
     data.zero 
    elseif  option = 1 then  
     data.one 
    else  
     data.view 
     print_me 
    end  
   end  
  end  
 
  
 
 
 
 



 Page 99 

   

print_me is  
   -- print this process name 
  do  
   print ("%N" + name + " just ran" + "%N") 
  end  
  
end  -- class PROCESS 
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Listing 2b. Generated PROCESS Class 
 
 
class   
 PROCESS 
 
inherit  
 THREAD 
 
 
create   
 make 
 
feature    
 
 execute is  
  do  
   from  
   until  
    not  is_requests_pended 
   loop  
    current_feature_args := get_feature_to_do 
    current_feature_name ?= current_feature_args.item (2) 
    if  not  current_feature_name.is_equal ("NOTHING") then  
     if  current_feature_name.is_equal ("RUN_STRING") then  
      run 
     end  
     if  current_feature_name.is_equal ("PRINT_ME_STRING") 
                                                                                                                                                              then  
      print_me 
     end  
     requests_pended_mutex.lock 
     requests_pended.copy (requests_pended - 1) 
     requests_pended_mutex.unlock 
     request_buffer_mutex.lock 
     request_buffer.start 
     request_buffer.remove 
     request_buffer_mutex.unlock 
    end  
   end  
  end  
 
 data_mutex: MUTEX -- Added by generator 
  
               -- Added by generator   
 
 requests_pended: INTEGER_REF 
 
 requests_pended_mutex: MUTEX 
 
 request_buffer: LINKED_LIST [TUPLE] 
 
 request_buffer_mutex: MUTEX 
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 current_feature_args: TUPLE 
 
 current_feature_name: STRING 
 
 is_requests_pended: BOOLEAN is  
  do  
   Result := True  
   requests_pended_mutex.lock 
   if  requests_pended.is_equal (0) then  
    Result := False  
   end  
   requests_pended_mutex.unlock 
  end  
 
 set_feature_to_do (feature_params_arg: TUPLE) is  
  do  
   requests_pended_mutex.lock 
   requests_pended.copy (requests_pended + 1) 
   requests_pended_mutex.unlock 
   request_buffer_mutex.lock 
   request_buffer.extend (feature_params_arg) 
   request_buffer_mutex.unlock 
  end  
 
 get_feature_to_do: TUPLE is  
  do  
   request_buffer_mutex.lock 
   if  not  request_buffer.is_empty then  
    Result := request_buffer.first 
   else  
    Result := [Current, "NOTHING"] 
   end  
   request_buffer_mutex.unlock 
  end  
 
  
 option: INTEGER 
   -- option 0 sets x,y in shared data d to zero 
   -- option 1 sets x,y in shared data d to one 
   -- option 2 just views and prints the shared data 
 
 data: DATA 
   -- shared data from calling process 
 
 name: STRING 
   -- name of this process 
 
  
 
 
make (d: DATA; d_mutex: MUTEX; opt: INTEGER; n: STRING; requests_pended_arg: INTEGER_REF; 
                                                                                                    requests_pended_mutex_arg: MUTEX) is  
  do  
   requests_pended := requests_pended_arg 
   requests_pended_mutex := requests_pended_mutex_arg 
   current_feature_name := "NOTHING" 
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   create  current_feature_args.make 
   create  request_buffer.make 
   create  request_buffer_mutex.default_create 
   create  data_mutex.default_create 
   data_mutex := d_mutex 
   data := d 
   option := opt 
   name := n 
  end  
 
 run is  
   -- option 0 sets x,y in shared data d to zero 
   -- option 1 sets x,y in shared data d to one 
   -- option 2 just views and prints the shared data 
  do  
   from  
   until  
    False  
   loop  
    if  option = 0 then  
     data_mutex.lock 
     data.zero 
     data_mutex.unlock 
    elseif  option = 1 then  
     data_mutex.lock; 
     data.one; 
     data_mutex.unlock 
    else  
     data_mutex.lock 
     data.view 
     data_mutex.unlock 
     print_me 
    end  
   end  
  end  
 
 print_me is  
   -- print this process name 
  do  
   print ("%N" + name + " just ran" + "%N") 
  end  
  
end  -- class PROCESS 
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Listing 3. DATA class 
indexing  
 description: "data to illustrate pthreads" 
 author: "JSO" 
 date: "$Date: $" 
 revision: "$Revision: $" 
 
class   
 DATA 
 
inherit  
 ANY 
 
create   
 make 
 
feature   
 
 x: INTEGER 
   -- Was declared in DATA as synonym of `y'. 
 
 y: INTEGER 
   -- Was declared in DATA as synonym of `x'. 
 
 make is  
   -- set to zero 
  do  
   x := 0 
   y := 0 
  end  
 
 zero is  
  do  
   x := 0 
   y := 0 
  end  
 
 one is  
  do  
   x := 1 
   y := 1 
  end  
 
 get_x: INTEGER is  
   -- gets value of x 
  do  
   Result := x 
  end  
 
 view is  
  do  
   io.put_string ("%NPrinting data x, y%N") 
   io.put_integer (x) 
   io.put_string ("%T") 
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   io.put_integer (y) 
   check  
    date_view_check: (x = 1 and  y = 1) or  (x = 0 and  y = 0) 
   end  
  end  
  
end  -- class DATA 
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Listing 4. ONE-ZERO class diagram 
 

d: separate DATA

p1:PROCESS

p2:PROCESS

p3:PROCESS
make

separate ROOT_CLASS

Invariant

DATA

x,y: INTEGER

zero
ensure x=0 and y= 0one
ensure x=1 and y=1view

make

(x=0 and y=0) or (x=1 and y=1))

option: INTEGER

run

make(d:separate DATA, opt: INTEGER, n: STRING)

d: separate DATA

print_me

separate PROCESS

 
 

Figure C-1: ONE-ZERO class diagram 
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Appendix D. Consumer – Producer Examples 
 

Listing 1a. SCOOP ROOT_CLASS class 
 
class   
 ROOT_CLASS  
 
create   
 make 
 
feature  -- Initialization 
  
 
 b: separate BUFFER 
 
 p: PRODUCER 
 
 c: CONSUMER 
 
 make is  
   -- Creation procedure. 
  do  
   create  b.make 
   create  p.make (b) 
   create  c.make (b) 
  end  
  
end  -- class ROOT_CLASS  
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Listing 1b. Generated ROOT_CLASS class 
 
class   
 ROOT_CLASS 
 
inherit  
 EXCEPTIONS 
 
 THREAD_CONTROL 
 
create   
 make 
 
feature   
 
 requests_pended: INTEGER_REF 
   -- added by generator 
 
 b_mutex: MUTEX 
   -- Added by generator 
 
 requests_pended_mutex: MUTEX 
   -- added by generator 
 
 is_requests_pended: BOOLEAN is  
  do  
   Result := True  
   requests_pended_mutex.lock 
   if  requests_pended.is_equal (0) then  
    Result := False  
   end  
   requests_pended_mutex.unlock 
  end  
 
 rescue_scoop (who_caused: STRING; what_caused: STRING) is  
  do  
   io.put_string ("Assertion violated in " + who_caused + ": " + what_caused) 
   raise ("Assertion " + what_caused + " violated in " + who_caused) 
  end  
 
 b: BUFFER 
 
 p: PRODUCER 
 
 c: CONSUMER 
 
 make is  
   -- Creation procedure. 
  do  
   create  requests_pended_mutex.default_create 
   requests_pended := 1 
   create  b_mutex.default_create 
   b_mutex.lock 
   create  b.make 
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   b_mutex.unlock 
   create  p.make (b, b_mutex, requests_pended, requests_pended_mutex) 
   p.launch 
   create  c.make (b, b_mutex, requests_pended, requests_pended_mutex) 
   c.launch 
   from  
    requests_pended_mutex.lock 
    requests_pended.copy (requests_pended - 1) 
    requests_pended_mutex.unlock 
   until  
    not  is_requests_pended 
   loop  
   end  
   join_all 
  end  
  
end  -- class ROOT_CLASS 
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Listing 2a. SCOOP PRODUCER class 
 
 
separate class   
 PRODUCER 
create   
 make 
 
feature  {NONE}  
 
 buffer: separate BUFFER 
    
 
 make (b: separate BUFFER) is  
   -- Initialize `Current'. 
  do  
   buffer := b 
   keep_producing 
  end  
 
 keep_producing is  
  local  
   i: INTEGER 
  do  
   from  
   until  
    False  
   loop  
    i := (i + 1) \\ 5 
    produce (buffer, i) 
   end  
  end  
 
 produce (b: BUFFER; i: INTEGER) is  
  require  
   b.count <= 2 
  do  
   b.put (i) 
  end  
  
end  -- class PRODUCER  
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Listing 2b. Generated PRODUCER class 
 
class   
 PRODUCER 
 
inherit  
 THREAD 
 
 EXCEPTIONS 
 
create   
 make 
 
feature  {NONE}  
 
 execute is  
  local  
   produce_b: BUFFER 
   produce_b_mutex: MUTEX 
   produce_i: INTEGER 
  do  
   from  
   until  
    not  is_requests_pended 
   loop  
    current_feature_args := get_feature_to_do 
    current_feature_name ?= current_feature_args.item (2) 
    if  not  current_feature_name.is_equal ("NOTHING") then  
     if  current_feature_name.is_equal 
                                                                            ("KEEP_PRODUCING_STRING") then  
      keep_producing 
     end  
     if  current_feature_name.is_equal ("PRODUCE_STRING") 
                                                                                 then  
      produce_b ?= current_feature_args.item (3) 
      produce_b_mutex ?= current_feature_args.item (4) 
      produce_i := current_feature_args.integer_item (5) 
      produce (produce_b, produce_b_mutex, produce_i) 
     end  
     requests_pended_mutex.lock 
     requests_pended.copy (requests_pended - 1) 
     requests_pended_mutex.unlock 
     request_buffer_mutex.lock 
     request_buffer.start 
     request_buffer.remove 
     request_buffer_mutex.unlock 
    end  
   end  
  end  
 
 buffer_mutex: MUTEX 
   -- Added by generator 
   -- Added by generator 
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 requests_pended: INTEGER_REF 
 
 requests_pended_mutex: MUTEX 
 
 request_buffer: LINKED_LIST [TUPLE] 
 
 request_buffer_mutex: MUTEX 
 
 current_feature_args: TUPLE 
 
 current_feature_name: STRING 
 
 is_requests_pended: BOOLEAN is  
  do  
   Result := True  
   requests_pended_mutex.lock 
   if  requests_pended.is_equal (0) then  
    Result := False  
   end  
   requests_pended_mutex.unlock 
  end  
 
 set_feature_to_do (feature_params_arg: TUPLE) is  
  do  
   requests_pended_mutex.lock 
   requests_pended.copy (requests_pended + 1) 
   requests_pended_mutex.unlock 
   request_buffer_mutex.lock 
   request_buffer.extend (feature_params_arg) 
   request_buffer_mutex.unlock 
  end  
 
 get_feature_to_do: TUPLE is  
  do  
   request_buffer_mutex.lock 
   if  not  request_buffer.is_empty then  
    Result := request_buffer.first 
   else  
    Result := [Current, "NOTHING"] 
   end  
   request_buffer_mutex.unlock 
  end  
 
  buffer: BUFFER 
 
 make (b: BUFFER; b_mutex: MUTEX; requests_pended_arg: INTEGER_REF; 
requests_pended_mutex_arg: MUTEX) is  
   -- Initialize `Current'. 
  do  
   requests_pended := requests_pended_arg 
   requests_pended_mutex := requests_pended_mutex_arg 
   current_feature_name := "NOTHING" 
   create  current_feature_args.make 
   create  request_buffer.make 
   create  request_buffer_mutex.default_create 
   create  buffer_mutex.default_create 
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   buffer_mutex := b_mutex 
   buffer := b 
   set_feature_to_do ([Current, "KEEP_PRODUCING_STRING"]) 
  end  
 
 keep_producing is  
  local  
   i: INTEGER 
  do  
   from  
   until  
    False  
   loop  
    i := (i + 1) \\ 5 
    produce (buffer, buffer_mutex, i) 
   end  
  end  
 
 produce (b: BUFFER; b_mutex: MUTEX; i: INTEGER) is  
  local  
   scoop_require_wait_flag: BOOLEAN 
  do  
   from  
    scoop_require_wait_flag := False  
   until  
    scoop_require_wait_flag 
   loop  
    b_mutex.lock 
    if  (b.count <= 2) then  
     b.put (i) 
     scoop_require_wait_flag := True  
    end  
    b_mutex.unlock 
   end  
  end  
  
end  -- class PRODUCER 
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Listing 3a. SCOOP CONSUMER class 
 
separate class   
 CONSUMER  
 
create   
 make 
 
feature  {NONE}  
 
 buffer: separate  BUFFER 
    
 make (b: separate BUFFER) is  
   -- Initialize `Current'. 
  do  
   buffer := b 
   keep_consuming 
  end  
 
 keep_consuming is  
  do  
   from  
   until  
    False  
   loop  
    consume (buffer) 
   end  
  end  
 
 consume (b: separate  BUFFER) is  
  require  
   b.count > 0 
  do  
   b.remove 
  end  
  
end  -- class CONSUMER  
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Listing 3b. Generated CONSUMER class 
 
class   
 CONSUMER 
 
inherit  
 THREAD 
 
 EXCEPTIONS 
 
create   
 make 
 
feature  {NONE}  
 
 execute is  
  local  
   consume_b: BUFFER 
   consume_b_mutex: MUTEX 
  do  
   from  
   until  
    not  is_requests_pended 
   loop  
    current_feature_args := get_feature_to_do 
    current_feature_name ?= current_feature_args.item (2) 
    if  not  current_feature_name.is_equal ("NOTHING") then  
     if  current_feature_name.is_equal 
                                                                             ("KEEP_CONSUMING_STRING") then  
      keep_consuming 
     end  
     if  current_feature_name.is_equal ("CONSUME_STRING") 
                                                                                then  
      consume_b ?= current_feature_args.item (3) 
      consume_b_mutex ?= current_feature_args.item (4) 
      consume (consume_b, consume_b_mutex) 
     end  
     requests_pended_mutex.lock 
     requests_pended.copy (requests_pended - 1) 
     requests_pended_mutex.unlock 
     request_buffer_mutex.lock 
     request_buffer.start 
     request_buffer.remove 
     request_buffer_mutex.unlock 
    end  
   end  
  end  
 
 buffer_mutex: MUTEX 
   -- Added by generator 
   -- Added by generator 
 
 requests_pended: INTEGER_REF 
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 requests_pended_mutex: MUTEX 
 
 request_buffer: LINKED_LIST [TUPLE] 
 
 request_buffer_mutex: MUTEX 
 
 current_feature_args: TUPLE 
 
 current_feature_name: STRING 
 
 is_requests_pended: BOOLEAN is  
  do  
   Result := True  
   requests_pended_mutex.lock 
   if  requests_pended.is_equal (0) then  
    Result := False  
   end  
   requests_pended_mutex.unlock 
  end  
 
 set_feature_to_do (feature_params_arg: TUPLE) is  
  do  
   requests_pended_mutex.lock 
   requests_pended.copy (requests_pended + 1) 
   requests_pended_mutex.unlock 
   request_buffer_mutex.lock 
   request_buffer.extend (feature_params_arg) 
   request_buffer_mutex.unlock 
  end  
 
 get_feature_to_do: TUPLE is  
  do  
   request_buffer_mutex.lock 
   if  not  request_buffer.is_empty then  
    Result := request_buffer.first 
   else  
    Result := [Current, "NOTHING"] 
   end  
   request_buffer_mutex.unlock 
  end  
 
  
 buffer: BUFFER 
 
 
make (b: BUFFER; b_mutex: MUTEX; requests_pended_arg: INTEGER_REF; 
                                                             requests_pended_mutex_arg: MUTEX) is  
   -- Initialize `Current'. 
  do  
   requests_pended := requests_pended_arg 
   requests_pended_mutex := requests_pended_mutex_arg 
   current_feature_name := "NOTHING" 
   create  current_feature_args.make 
   create  request_buffer.make 
   create  request_buffer_mutex.default_create 
   create  buffer_mutex.default_create 
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   buffer_mutex := b_mutex 
   buffer := b 
   set_feature_to_do ([Current, "KEEP_CONSUMING_STRING"]) 
  end  
 
 keep_consuming is  
  do  
   from  
   until  
    False  
   loop  
    consume (buffer, buffer_mutex) 
   end  
  end  
 
 consume (b: BUFFER; b_mutex: MUTEX) is  
  local  
   scoop_require_wait_flag: BOOLEAN 
  do  
   from  
    scoop_require_wait_flag := False  
   until  
    scoop_require_wait_flag 
   loop  
    b_mutex.lock 
    if  (b.count > 0) then  
     b.remove 
     scoop_require_wait_flag := True  
    end  
    b_mutex.unlock 
   end  
  end  
  
end  -- class CONSUMER 
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Listing 4. BUFFER class 
 
class   
 BUFFER 
 
create   
 make 
 
feature   
 
 count: INTEGER is  
  do  
   Result := q.count 
  end  
 
 item: INTEGER is  
   -- front 
  do  
   Result := q.item 
  end  
 
 put (x: INTEGER) is  
   -- enquue `x' 
  require  
   count <= 3 
  do  
   q.put (x) 
   print ("PUT") 
   io.new_line 
  ensure  
   count = old  count + 1 
   q.has (x) 
  end  
 
 remove is  
   -- dequeue 
  require  
   count > 0 
  do  
   q.remove 
   print ("REMOVE") 
   io.new_line 
  ensure  
   count = old  count - 1 
  end  
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feature  {NONE}  
 
 q: QUEUE [INTEGER] 
 
 make is  
   -- initialize buffer 
  do  
   create  {ARRAYED_QUEUE [INTEGER]} q.make (3) 
  end  
  
invariant  
 
 inv: count <= 3 
 
end  -- class BUFFER 
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Listing 5. PRODUCER-CONSUMER class diagram 
 

 
 

Figure D-1: PRODUCER-CONSUMER class diagram 
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Listing 6a. Java main Producer-Consumer Class 
 
public class ProducerConsumer 

{ 

  public static void main(String [] args) 

  { 

     Buffer b = new Buffer(4); 

     Producer p = new Producer(b); 

     Consumer c = new Consumer(b); 

 

     p.start(); 

     c.start(); 

  } 

} 
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Listing 6b. Java Buffer Class 
 

public class Buffer { 

protected Object[] buf; 

protected int MAX; 

protected int current = 0; 

 

Buffer(int max) { 

                           MAX = max; 

                           buf = new Object[MAX]; 

                           } 

 

public synchronized Object get()  

                                  throws Exception { 

                                       while (current<=0) { wait(); } 

                                       current--; 

                                      Object ret = buf[current]; 

                                       notifyAll(); 

                                       return ret; 

                                       } 

 

public synchronized void put(Object v) 

                                  throws Exception { 

                                         while (current>=MAX) { wait(); } 

                                         buf[current] = v; 

                                         current++; 

                                        notifyAll(); 

                                      } 
} 
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Listing 6c. Java Producer Class 
 

class Producer extends Thread { 

   private Buffer buffer; 

      

   Producer(Buffer b) { buffer = b; } 

   public void run() { 

     for(int i = 0; ; (i+1)%5) { 

        buffer.Put(i); } 

   } 

}     
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Listing 6d. Java Consumer Class 
 

class Consumer extends Thread { 

   private Buffer buffer; 

    

   Consumer(Buffer b) { buffer = b; } 

   public void run() { 

     for(int i = 0; ; i++) { 

        buffer.Get(); } 

   } 

} 
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Appendix E. THREAD_CONTROL Class 
 
indexing  
 description: "Control over thread execution." 
 status: "See notice at end of class." 
 date: "$Date: 2003/07/25 20:48:08 $" 
 revision: "$Revision: 1.2 $" 
 
class   
 THREAD_CONTROL 
 
feature  -- Basic operations 
 
 yield is  
   -- The calling thread yields its execution in favor of another 
   -- thread. 
  external  
   "C | %"eif_threads.h%"" 
  alias  
   "eif_thr_yield" 
  end  
 
 join_all is  
   -- The calling thread waits for all other threads to terminate. 
  external  
   "C blocking use %"eif_threads.h%"" 
  alias  
   "eif_thr_join_all" 
  end  
 
 join is  
   -- The calling thread waits for the current child thread to 
   -- terminate. 
  do  
   thread_wait (Current) 
  end  
 
 native_join (term: POINTER) is  
   -- Same as `join' except that the low-level architecture-dependant 
   -- routine is used. The thread must not be created detached. 
  do  
   thread_join (term) 
  end  
  
feature  {NONE} -- Implementation 
 
 terminated: BOOLEAN 
   -- True if the thread has terminated. 
  
feature  {NONE} -- Externals 
 
 thread_wait (term: THREAD_CONTROL) is  
   -- The calling C thread waits for the current Eiffel thread to 
   -- terminate. 
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  external  
   "C blocking use %"eif_threads.h%"" 
  alias  
   "eif_thr_wait" 
  end  
 
 thread_join (term: POINTER) is  
   -- The calling thread uses the low-level join routine to 
   -- join the current Eiffel thread. 
  external  
   "C blocking use %"eif_threads.h%"" 
  alias  
   "eif_thr_join" 
  end  
 
 get_current_id: POINTER is  
   -- Returns a pointer to the thread-id of the thread. 
  external  
   "C | %"eif_threads.h%"" 
  alias  
   "eif_thr_thread_id" 
  end  
 
 last_created_thread: POINTER is  
   -- Returns a pointer to the thread-id of the last created thread. 
  external  
   "C | %"eif_threads.h%"" 
  alias  
   "eif_thr_last_thread" 
  end  
 
 exit is  
   -- Exit calling thread. Must be called from the thread itself. 
  external  
   "C | %"eif_threads.h%"" 
  alias  
   "eif_thr_exit" 
  end  
  
end  -- class THREAD_CONTROL 
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Appendix F. Demo_Process Examples 
 

Listing 1a. SCOOP ROOT_CLASS class 
 
separate class   
 ROOT_CLASS 
 
create   
 make 
 
feature   
 d:  separate DATA 
               p: separate PROCESS 
 
  
 
 demo_process: DEMO_PROCESS 
 
 make is  
  do  
   create  d.make 
   create  p.make (d) 
   p.some_feature (d) 
   create  demo_process.make (p) 
   demo_process.demo_feature (d) 
  end  
  
end  -- class ROOT_CLASS 
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Listing 1b. Generated ROOT_CLASS class 
 
class   
 ROOT_CLASS 
 
inherit  
 
 THREAD_CONTROL 
 
create   
 make 
 
feature   
 
 requests_pended: INTEGER_REF 
   -- added by generator 
 
 d_mutex: MUTEX 
   -- Added by generator 
 
 p_mutex: MUTEX 
   -- Added by generator 
 
 requests_pended_mutex: MUTEX 
   -- added by generator 
 
 is_requests_pended: BOOLEAN is  
  do  
   Result := True  
   requests_pended_mutex.lock 
   if  requests_pended.is_equal (0) then  
    Result := False  
   end  
   requests_pended_mutex.unlock 
  end  
 
 d: DATA 
 
 p: PROCESS 
 
 demo_process: DEMO_PROCESS 
   -- int_result: INTEGER 
 
 make is  
  do  
   create  requests_pended_mutex.default_create 
   requests_pended := 1 
   create  d_mutex.default_create 
   create  p_mutex.default_create 
   d_mutex.lock 
   create  d.make 
   d_mutex.unlock 
   p_mutex.lock 
   create  p.make (d, d_mutex, requests_pended, requests_pended_mutex) 
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   p_mutex.unlock 
   p_mutex.lock 
   p.launch 
   p_mutex.unlock 
   p_mutex.lock 
   p.set_feature_to_do ([Current, "SOME_FEATURE_STRING", d, d_mutex]) 
   p_mutex.unlock 
   create  demo_process.make (p, p_mutex, requests_pended, 
requests_pended_mutex) 
   demo_process.launch 
   demo_process.set_feature_to_do ([Current, "DEMO_FEATURE_STRING", d, 
d_mutex]) 
   requests_pended_mutex.lock 
   requests_pended.copy (requests_pended - 1) 
   requests_pended_mutex.unlock 
   join_all 
  end  
  
end  -- class ROOT_CLASS 
 



 Page 129 

   

Listing 2a. SCOOP PROCESS class 
 
separate class   
 PROCESS 
 
create   
 make, 
 second_make 
 
feature   
 
 data: separate DATA 
               
              make(d:separate DATA) is 
 
  do  
   data := d 
   data.one 
  end  
 
 second_make is  
  do  
  end  
 
 no_arg_no_res_feature is  
  do  
  end  
 
 some_feature (d: DATA) is  
  require  
   d_not_void: d /= void 
   d_equal_to_zero: d.x = 0 and  d.y = 0 
  do  
   d.one 
   io.put_integer (d.x) 
   io.put_integer (d.y) 
  ensure  
   d_equal_to_one: d.x = 1 and  d.y = 1 
  end  
 
 another_feature: INTEGER is  
  do  
   Result := data.x 
  end  
 
 third_feature (d: DATA; i: INTEGER) is  
  require  
   d_equal_to_one: d.x = 1 and  d.y = 1 
   i_not_zero: i /= 0 
  do  
   check  
    d_not_void: d /= void 
   end  
   d.zero 
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   io.put_integer (d.x) 
   check  
    d_not_void: d /= void 
   end  
   io.put_integer (d.y) 
  ensure  
   d_equal_to_zero: d.x = 0 and  d.y = 0 
  end  
  
end  -- class PROCESS 
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Listing 2b. Generated PROCESS class 
 
class   
 PROCESS 
 
inherit  
 THREAD  
 
create   
 make, 
 second_make 
 
feature   
 
 data: DATA 
 
 execute is  
  local  
   some_feature_d: DATA 
   some_feature_d_mutex: MUTEX 
   third_feature_d: DATA 
   third_feature_d_mutex: MUTEX 
   third_feature_i: INTEGER 
  do  
   from  
   until  
    not  is_requests_pended 
   loop  
    current_feature_args := get_feature_to_do 
    current_feature_name ?= current_feature_args.item (2) 
    if  not  current_feature_name.is_equal ("NOTHING") then  
     if  current_feature_name.is_equal 
                                                                           ("NO_ARG_NO_RES_FEATURE_STRING") then  
      no_arg_no_res_feature 
     end  
     if  current_feature_name.is_equal 
                                                                           ("SOME_FEATURE_STRING") then  
             some_feature_d ?= current_feature_args.item (3) 
             some_feature_d_mutex ?= current_feature_args.item (4) 
             some_feature (some_feature_d, some_feature_d_mutex) 
     end  
     if  current_feature_name.is_equal 
                                                                                ("THIRD_FEATURE_STRING") then  
             third_feature_d ?= current_feature_args.item (3) 
             third_feature_d_mutex ?= current_feature_args.item (4) 
             third_feature_i := current_feature_args.integer_item (5) 
             third_feature (third_feature_d, third_feature_d_mutex, 
                                                                                                                                                   third_feature_i) 
     end  
     requests_pended_mutex.lock 
     requests_pended.copy (requests_pended - 1) 
     requests_pended_mutex.unlock 
     request_buffer_mutex.lock 
     request_buffer.start 



 Page 132 

   

     request_buffer.remove 
     request_buffer_mutex.unlock 
    end  
   end  
  end  
 
 data_mutex: MUTEX 
   -- Added by generator 
   -- Added by generator 
 
 requests_pended: INTEGER_REF 
 
 requests_pended_mutex: MUTEX 
 
 request_buffer: LINKED_LIST [TUPLE] 
 
 request_buffer_mutex: MUTEX 
 
 current_feature_args: TUPLE 
 
 current_feature_name: STRING 
 
 is_requests_pended: BOOLEAN is  
  do  
   Result := True  
   requests_pended_mutex.lock 
   if  requests_pended.is_equal (0) then  
    Result := False  
   end  
   requests_pended_mutex.unlock 
  end  
 
 set_feature_to_do (feature_params_arg: TUPLE) is  
  do  
   requests_pended_mutex.lock 
   requests_pended.copy (requests_pended + 1) 
   requests_pended_mutex.unlock 
   request_buffer_mutex.lock 
   request_buffer.extend (feature_params_arg) 
   request_buffer_mutex.unlock 
  end  
 
 get_feature_to_do: TUPLE is  
  do  
   request_buffer_mutex.lock 
   if  not  request_buffer.is_empty then  
    Result := request_buffer.first 
   else  
    Result := [Current, "NOTHING"] 
   end  
   request_buffer_mutex.unlock 
  end  
 
 make (d: DATA; d_mutex: MUTEX; requests_pended_arg: INTEGER_REF; 
requests_pended_mutex_arg: MUTEX) is  
  do  
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   requests_pended := requests_pended_arg 
   requests_pended_mutex := requests_pended_mutex_arg 
   current_feature_name := "NOTHING" 
   create  current_feature_args.make 
   create  request_buffer.make 
   create  request_buffer_mutex.default_create 
   create  data_mutex.default_create 
   data_mutex := d_mutex 
   data := d 
   data_mutex.lock 
   data.one 
   data_mutex.unlock 
  end  
 
 second_make (requests_pended_arg: INTEGER_REF; requests_pended_mutex_arg: MUTEX) is  
  do  
   requests_pended := requests_pended_arg 
   requests_pended_mutex := requests_pended_mutex_arg 
   current_feature_name := "NOTHING" 
   create  current_feature_args.make 
   create  request_buffer.make 
   create  request_buffer_mutex.default_create 
   create  data_mutex.default_create 
  end  
 
 no_arg_no_res_feature is  
  do  
  end  
 
 some_feature (d: DATA; d_mutex: MUTEX) is  
  local  
   scoop_require_wait_flag: BOOLEAN 
  do  
   from  
    scoop_require_wait_flag := False  
   until  
    scoop_require_wait_flag 
   loop  
    d_mutex.lock 
    if  (d /= void) then  
     if  (d.x = 0 and  d.y = 0) then  
      d.one 
      io.put_integer (d.x) 
      io.put_integer (d.y) 
      scoop_require_wait_flag := True  
     end  
    end  
    d_mutex.unlock 
   end  
  end  
 
 another_feature: INTEGER is  
  do  
   data_mutex.lock 
   Result := data.x 
   data_mutex.unlock 
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  end  
 
 third_feature (d: DATA; d_mutex: MUTEX; i: INTEGER) is  
  require  
   i_not_zero: i /= 0 
  local  
   scoop_require_wait_flag: BOOLEAN 
  do  
   from  
    scoop_require_wait_flag := False  
   until  
    scoop_require_wait_flag 
   loop  
    d_mutex.lock 
    if  (d.x = 1 and  d.y = 1) then  
     check  
      d_not_void: d /= void 
     end  
     d.zero 
     io.put_integer (d.x) 
     check  
      d_not_void: d /= void 
     end  
     io.put_integer (d.y) 
     scoop_require_wait_flag := True  
    end  
    d_mutex.unlock 
   end  
  end  
  
end  -- class PROCESS 
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Listing 3a. SCOOP DEMO_PROCESS class 
 
separate class   
 DEMO_PROCESS 
 
create   
 make 
 
feature  -- process_var: separate PROCESS 
 
 process_var: PROCESS 
    
 make (p: separate PROCESS) is  
  do  
   process_var := p 
  end  
 
 demo_feature (d: separate DATA) is  
     local  
   i: INTEGER 
  do  
   i := 10 
   process_var.third_feature (d, i) 
  end  
  
end  -- class DEMO_PROCESS 
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Listing 3b. Generated DEMO_PROCESS class 
 
class   
 DEMO_PROCESS 
 
inherit  
 THREAD 
  
 
create   
 make 
 
feature   
 
 process_var: PROCESS 
 
 execute is  
  local  
   demo_feature_d: DATA 
   demo_feature_d_mutex: MUTEX 
  do  
   from  
   until  
    not  is_requests_pended 
   loop  
    current_feature_args := get_feature_to_do 
    current_feature_name ?= current_feature_args.item (2) 
    if  not  current_feature_name.is_equal ("NOTHING") then  
     if  current_feature_name.is_equal 
                                                                           ("DEMO_FEATURE_STRING") then  
          demo_feature_d ?= current_feature_args.item (3) 
          demo_feature_d_mutex ?= current_feature_args.item (4) 
          demo_feature (demo_feature_d, demo_feature_d_mutex) 
     end  
     requests_pended_mutex.lock 
     requests_pended.copy (requests_pended - 1) 
     requests_pended_mutex.unlock 
     request_buffer_mutex.lock 
     request_buffer.start 
     request_buffer.remove 
     request_buffer_mutex.unlock 
    end  
   end  
  end  
 
 process_var_mutex: MUTEX 
   -- Added by generator 
   -- Added by generator 
 
 requests_pended: INTEGER_REF 
 
 requests_pended_mutex: MUTEX 
 
 request_buffer: LINKED_LIST [TUPLE] 



 Page 137 

   

 
 request_buffer_mutex: MUTEX 
 
 current_feature_args: TUPLE 
 
 current_feature_name: STRING 
 
 is_requests_pended: BOOLEAN is  
  do  
   Result := True  
   requests_pended_mutex.lock 
   if  requests_pended.is_equal (0) then  
    Result := False  
   end  
   requests_pended_mutex.unlock 
  end  
 
 set_feature_to_do (feature_params_arg: TUPLE) is  
  do  
   requests_pended_mutex.lock 
   requests_pended.copy (requests_pended + 1) 
   requests_pended_mutex.unlock 
   request_buffer_mutex.lock 
   request_buffer.extend (feature_params_arg) 
   request_buffer_mutex.unlock 
  end  
 
 get_feature_to_do: TUPLE is  
  do  
   request_buffer_mutex.lock 
   if  not  request_buffer.is_empty then  
    Result := request_buffer.first 
   else  
    Result := [Current, "NOTHING"] 
   end  
   request_buffer_mutex.unlock 
  end  
 
 make (p: PROCESS; p_mutex: MUTEX; requests_pended_arg: INTEGER_REF; 
                                                                             requests_pended_mutex_arg: MUTEX) is  
  do  
   requests_pended := requests_pended_arg 
   requests_pended_mutex := requests_pended_mutex_arg 
   current_feature_name := "NOTHING" 
   create  current_feature_args.make 
   create  request_buffer.make 
   create  request_buffer_mutex.default_create 
   create  process_var_mutex.default_create 
   process_var_mutex := p_mutex 
   process_var := p 
  end  
 
 demo_feature (d: DATA; d_mutex: MUTEX) is  
  local  
   i: INTEGER 
  do  
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   i := 10 
   process_var_mutex.lock 
   process_var.set_feature_to_do ([Current, "THIRD_FEATURE_STRING", d, 
                                                                                                                                                    d_mutex, i]) 
   process_var_mutex.unlock 
  end  
  
end  -- class DEMO_PROCESS 
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Appendix G. Inheritance Anomaly 
 
Listing 1. Java Buffer class 
 
public class Buffer { 
 
    protected Object[] buf; 
    protected int MAX; 
    protected int current = 0; 
 
    Buffer(int max) { 
 MAX = max; 
 buf = new Object[MAX]; 
    } 
    public synchronized Object item() 
        throws Exception { 
 while (current<=0) { wait(); } 
 current--; 
 Object ret = buf[current]; 
 notifyAll(); 
 return ret; 
    } 
    public synchronized void put(Object v) 
        throws Exception { 
 while (current>=MAX) { wait(); } 
 buf[current] = v; 
 current++; 
 notifyAll(); 
    } 
} 
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Listing 2. Java Buffer2 class 
 
public class Buffer2 extends Buffer { 
    boolean afterGet = false; 
 
    public HistoryBuffer(int max) { super(max); 
 
    public synchronized Object item2() 
        throws Exception { 
 while ((current<=0)||(afterGet)) { 
 wait(); 
 } 
 afterGet = false; 
 return super.get(); 
    } 
    public synchronized Object item() 
        throws Exception { 
 Object o = super.get(); 
 afterGet = true; 
 return o; 
    } 
    public synchronized void put(Object v) 
        throws Exception { 
 super.put(v); 
 afterGet = false; 
    } 
} 
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