
SIMPLE CONCURRENT OBJECT – ORIENTED

PROGRAMMING:

A GENERATOR BASED IMPLEMENTATION

by

Oleksandr Fuks

A Thesis (will be) Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

MASTER OF SCIENCE

YORK UNIVERSITY

2 0 0 4

 Page i

Copyright Page (ii — not typed)

 Page ii

Certificate Page (iii — not typed)

 Page 3

Abstract

Concurrent programming is notoriously error prone. SCOOP is a simple but

powerful notation for concurrent programming built on top of standard Eiffel (Meyer

1997). The SCOOP extension to standard Eiffel covers fully-fledged concurrency and

distribution constructs, but is as minimal as it can get. Starting from the standard

sequential Eiffel notation, there is the addition of a single new keyword — separate. This

simplifies mutual exclusion and synchronization, and almost completely removes

problems such as the inheritance anomaly.

In this thesis, we describe a SCOOP to Eiffel Generator. The Generator is the first

workable and complete cross-platform implementation of SCOOP. We show how

SCOOP constructs can be mapped to standard Eiffel and the use of a cross-platform

threads library (Eiffel+Threads). The Generator automatically converts SCOOP programs

to running Eiffel+Threads code.

Eiffel has powerful features such as Design by Contract, genericity, multiple

inheritance, and seamless and reversible design and code generation via BON. The

addition of a SCOOP concurrent facility, fully compatible with all the standard Eiffel

features, makes the resulting framework a productive environment for developing quality

concurrent code.

 Page 4

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Jonathan Ostroff,

whose expertise, understanding, and patience added considerably to my graduate

experience. I appreciate his vast knowledge and skill in many areas much beyond the

limits of Computer Science. His personal qualities and his life experience never stopped

surprising me, and always made me think of him as of a person who is a great example of

modesty, wisdom and kindness. I cannot overestimate Jonathan’s contribution to this

project.

I also would like to thank Dr. Vassilos Tzerpos for suggestions on my thesis and

for serving as a member of my thesis committee.

I would like to thank the other members of my committee, Dr. Yves Lesperance,

and Dr. Luiz Marcio Cysneiros for the assistance they provided at all levels of the

research project.

My special thanks goes to my friend, Borys Derevyanchenko, who was always

there when I needed any fresh idea or just a push. My special thanks also to David

Makalsky for his many good suggestions and editorial changes.

I would like to thank my close friend Ian Wahn who’s editing assistance and an

ability to always be there for me helped me a lot while writing this thesis.

I would also like to thank my family for the support they provided me through my

entire life and in particular. They are as happy for my every achievement as I am.

 Page 5

Table of Contents

CHAPTER 1 – INTRODUCTION .. 8

CHAPTER 1 – INTRODUCTION .. 8
1.1 EIFFEL AND SCOOP... 12
1.2 PRODUCER-CONSUMER EXAMPLE .. 14

1.2.1 separate call rule... 22
1.2.2 Wait by necessity.. 24

1.3 SCOOP SYNTAX... 25
1.4 CONTRIBUTION AND ORGANIZATION OF THIS THESIS .. 26

CHAPTER 2 – RELATED WORK ... 27
2.1 THE LIBRARY APPROACH ... 27
2.2 THE INTEGRATIVE APPROACH .. 28

2.2.1 Active objects ... 28
2.2.2 Synchronized objects.. 30
2.2.3 Distributed objects.. 35

2.3 THE REFLECTIVE APPROACH.. 36
2.4 ANOTHER SCOOP-LIKE IMPLEMENTATION.. 38
2.5 THE INHERITANCE ANOMALY ... 39

CHAPTER 3 SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING
... 40

3.1 PROCESSORS AND SUBSYSTEMS.. 41
3.2 ROUTINE CALLS IN SEQUENTIAL EIFFEL.. 43
3.3 ROUTINE CALLS IN SCOOP .. 45
3.4 EIFFEL SYNTAX AND SEMANTICS FOR SCOOP... 47
3.5 SEPARATENESS CONSISTENCY RULES.. 50
3.6 SYNCHRONIZATION IN SCOOP... 53
3.7 SEMANTICS OF PRECONDITIONS AS WAIT CONDITIONS.. 54

CHAPTER 4 SCOOP TO EIFFEL+THREADS CODE GENERATOR................. 57
4.1 EIFFEL SCOOP PROJECT FILES ... 59
4.2 IMPLEMENTING SUBSYSTEMS ... 61
4.3 EFFECTING ROUTINE EXECUTE .. 65
4.4 KEEPING TRACK OF SEPARATE CALLS ... 66
4.5 COMMAND AND FUNCTION CALLS .. 68

4.5.1 Command Routines .. 68
4.5.2 Function Routines... 70

4.6 ONE-ZERO EXAMPLE... 72
4.7 MAPPING SEPARATE PRECONDITIONS TO WAIT CONDITIONS 79
4.8 THE GENERATOR .. 81

CHAPTER 5 – CONCLUSION ... 85
5.1 FUTURE WORK.. 86
5.2 MODEL DRIVEN DEVELOPMENT ... 87

APPENDICES ... 90

 Page 6

APPENDIX A. EIFFEL THREAD CLASS ... 90
APPENDIX B. EIFFEL MUTEX CLASS... 92
APPENDIX C. ONE-ZERO EXAMPLE ... 95

Listing 1a. SCOOP ROOT_CLASS ... 95
Listing 1b. Generated ROOT_CLASS ... 96
Listing 2a. SCOOP PROCESS Class ... 98
Listing 2b. Generated PROCESS Class ... 100
Listing 3. DATA class .. 103
Listing 4. ONE-ZERO class diagram... 105

APPENDIX D. CONSUMER – PRODUCER EXAMPLES .. 106
Listing 1a. SCOOP ROOT_CLASS class .. 106
Listing 1b. Generated ROOT_CLASS class .. 107
Listing 2a. SCOOP PRODUCER class ... 109
Listing 2b. Generated PRODUCER class ... 110
Listing 3a. SCOOP CONSUMER class ... 113
Listing 3b. Generated CONSUMER class ... 114
Listing 4. BUFFER class.. 117
Listing 5. PRODUCER-CONSUMER class diagram ... 119
Listing 6a. Java main Producer-Consumer Class .. 120
Listing 6b. Java Buffer Class... 121
Listing 6c. Java Producer Class... 122
Listing 6d. Java Consumer Class... 123

APPENDIX E. THREAD_CONTROL CLASS ... 124
APPENDIX F. DEMO_PROCESS EXAMPLES.. 126

Listing 1a. SCOOP ROOT_CLASS class .. 126
Listing 1b. Generated ROOT_CLASS class .. 127
Listing 2a. SCOOP PROCESS class ... 129
Listing 2b. Generated PROCESS class.. 131
Listing 3a. SCOOP DEMO_PROCESS class ... 135
Listing 3b. Generated DEMO_PROCESS class.. 136

REFERENCES .. 139

 Page 7

 List of Figures

Figure 1-1 produce routine for ‘producer-consumer’ example ... 11
Figure 1-2 ‘producer-consumer’ BON Diagram ... 16
Figure 1-3 PRODUCER class for ‘producer-consumer’ example 17
Figure 1-4 produce routine for ‘producer-consumer’ example ... 17
Figure 1-5 CONSUMER class for ‘producer-consumer’ example 18
Figure 1-6 ROOT_CLASS for ‘producer-consumer’ example ... 18
Figure 1-7 BUFFER for ‘producer-consumer’ example ... 20
Figure 3-1: Processors ... 41
Figure 3-2: SCOOP System .. 44
Figure 3-3 : SCOOP Syntax .. 48
Figure 3-4: SCOOP Semantics.. 49
Figure 3-5: SCOOP Separate consistency rules .. 52
Figure 3-6: removing elements from buffer using the SCOOP execution model 54
Figure 3-7: adding elements to buffer using the SCOOP execution model 54
Figure 4-1 BON diagram of Threads library... 58
Figure 4-2 THREAD inheritance .. 64
Figure 4-3 the execute feature .. 66
Figure 4-4 A buffer to queue separate calls to a subsystem.. 67
Figure 4-5 Commands ... 69
Figure 4-6 Function calls... 71
Figure 4-7 BON diagram of zero-one ... 73
Figure 4-8 ROOT_CLASS for ‘One-zero’ example ... 74
Figure 4-9 PROCESS for ‘One-zero’ example ... 76
Figure 4-10 Mapping from SCOOP to generated code for creation procedure 77
Figure 4:11 Separate preconditions (from Section 3.7)... 80
Figure 4.12 Mapping of separate preconditions to wait conditions 80
Figure C-1: ONE-ZERO class diagram ... 105
Figure D-1: PRODUCER-CONSUMER class diagram.. 119

 Page 8

Chapter 1 – Introduction

Concurrent programming is considered to be a challenging and inherently error

prone process. The continuing discussions of flaws in the Java memory model (originally

described in Chapter 17 of the Java Language Specification) is a symptom of the

difficulties. The Java memory model gives constraints on how threads interact through

memory. But the model was hard to interpret and poorly understood. Many JVMs actually

violated the constraints of the memory model (Lea 1999), and thus there has been a

concerted and ongoing effort to eliminate the flaws.

In this thesis we provide an implementation of SCOOP (Simple Concurrent Object

Oriented Programming) as defined by Meyer (Meyer 1997) for concurrent programming.

SCOOP provides a simple framework for concurrent development that also helps the

developer to isolate and avoid common problems. The nice integration of Object-Oriented

Design, contracts and the simple concurrency model of SCOOP is a good motivation for

developing actual executable target code. We describe and implement a prototype

Generator. As part of the work for this thesis:

• a manual, the code and the Generator executable was first made available in

March 2003 to the Eiffel and open source communities at the URL

http://scoop2eiffel.sourceforge.net; and

• a journal paper describing SCOOPGEN is to appear in the November/December

2004 issue of JOT - Journal of Object Technology.

Many mechanisms exist for introducing concurrency into object-oriented (OO)

programming languages. The pervasiveness of multi-tasking operating systems, in which

 Page 9

several programs can use various resources concurrently, has increased the potential of

parallel computations. These approaches support the use of multiple, and sometimes

distributed processors, each of which may be executing multiple processes. Different

techniques are provided with various languages to support synchronization, interruption,

mutually exclusive access to object state, and atomic execution of routines.

However, the process of development and, in particular, debugging of programs

using parallel programming is complex and labour-intensive resulting in large financial

expenses due to programmer time (McDowell 1989). To implement concurrency,

compiler writers had to use special hardware/system calls. To bring concurrency up into

the programming language and out of low-level system calls, language developers started

adding concurrency language constructs into the language and compiler, to support

automatic translation into the appropriate low-level behaviour. Use of these language

constructs allows developers to treat concurrency at an abstract level, not wasting time

and effort on the details of the implementation of parallel calculations.

In the late 1980s, there was a paradigm shift in programming, as Object-Oriented

languages became prevalent. With popular Object-Oriented languages such as Modula-3,

SmallTalk, Eiffel and C++, development time was reduced, program analysis was

simplified and code reuse was made possible via information hiding and encapsulation.

Subsequently, language constructs were also added to implement parallel calculations in

Object-Oriented languages (Tsichritzis 1995).

There are various approaches to concurrency in object-oriented programming

languages. The development of concurrency constructs is found in languages such as

C++, Java, SmallTalk (which uses Active Objects) and Eiffel.

 Page 10

In C++, two approaches have been used to add concurrency. In the first approach,

the language is extended in order to add the concurrency constructs. The second approach

uses the facilities of OOP to encapsulate the lower-level details of concurrency in a

library. In the library approach, a library class (generally referred to as a Task class)

provides the concurrent facilities. A user wishing to write concurrent code can use Task,

normally by inheriting from it. In this library approach, the concurrency constructs are

kept outside of the language. As stated in (Arjormandi 1995), the library approach “keeps

the language small, allows the programmer to work with familiar compilers and tools,

provides the option of supporting many concurrent models through a variety of libraries,

and eases porting of code to other architectures (usually, a small amount of assembler

code needs to be changed). Software developers typically have large investments in

existing code and are reluctant to adopt a new language. A class library with sufficient

flexibility that can provide most of the functionality of a new or extended language is

often more palatable. On the other hand, new or extended languages can use the compiler

to provide higher-level constructs, compile-time type checking, and enhanced

performance”.

Concurrency is currently supported in Eiffel via the library approach. However,

Meyer (Meyer 1997) has provided an approach called SCOOP (see below) for extending

the language with concurrency. The novelty of Meyer’s approach is that only one new

keyword “separate” is required. Yet this single construct provides all the main properties

of concurrent computation, even simplifying the resultant code.

(Compton 2000) was the first to implement SCOOP. In Compton’s work, SCOOP

is implemented via changes in the open source SmallEiffel compiler. However, this

 Page 11

implementation of SCOOP is now incompatible with later versions of the SmallEiffel

compiler (now called SmartEiffel). It also did not implement the full set of SCOOP

constructs (such as contracts and “once” routines). A once routine has a body that will be

executed only once, for the first call; subsequent calls will have no further effect and, in

the case of a function, will return the same result as the first. This provides a simple way

of sharing objects in an object-oriented context.

In this thesis, we provide the first full implementation of SCOOP in a multi-

threaded setting1 that is fully compatible with the current commercial Eiffel Software

compiler (www.eiffel.com). This work is reported (in part) in the journal article (JOT

2004).

Figure 1-1 SCOOP Architecture

SCOOP has a two-level architecture as shown in Figure 1-1. The top layer is the

platform independent layer. A SCOOP program (at the top layer) can be implemented on

different underlying platforms (such as Posix and .NET) as shown in the bottom layer in

1 This implementation does not support distributed computation via CCF files and duel mechanism
interrupts.

SCOOP platform-independent

Eiffel +
Threads

.NET
Framework

POSIX

…

 Page 12

the figure. The implementation in this thesis is in terms of a multi-threaded model (see the

box labeled “Eiffel+Threads”).

Subsequent to the work reported in this thesis, another implementation of SCOOP

in the .NET framework has been developed (Nienaltowski 2003). We will compare our

approach and the .NET approach in the sequel, but currently, the .NET implementation is

not as complete as our approach (e.g. it does not support exclusive locking of multiple

concurrent objects). On the other hand, the .NET implementation allows for distributed

computing.

1.1 Eiffel and SCOOP
Eiffel includes many modern object-oriented language features through which it

aids developers in creating robust, reusable, secure, extensible, portable and maintainable

software (Meyer 1997). Eiffel supports Design by Contract (DbC), genericity, multiple

inheritance, static typing/dynamic binding, garbage collection, “once” routines, self-

documentation, and other advanced language features.

As mentioned earlier, the Eiffel language can be provided with concurrency

constructs via SCOOP (Simple Concurrent Object-Oriented Programming). The

concurrency constructs of SCOOP extend the Eiffel language by adding one keyword

(“separate”) that can be applied to classes, attributes, and formal routine arguments.

The application of separate to a class (or equivalently, declaring an attribute

associated with a class as separate) indicates that the class executes in its own thread

of control. The application of separate to routine arguments indicates that these

objects are points of synchronization, and can be safely shared among concurrent threads.

 Page 13

The commercial Eiffel Software compiler, as well as the open source SmartEiffel

compiler, are both planning to implement SCOOP. The Eiffel Software compiler already

reserves the separate keyword to this end, although no implementation of SCOOP has

been released yet (ISE 2003).

In this thesis we will describe a tool, called the SCOOPGEN Generator. The

Generator translates Eiffel SCOOP programs (using the separate keyword) into

standard Eiffel threaded applications (that make use of Eiffel’s THREAD class). This

approach has multiple benefits:

• The resulting code is pure Eiffel that compiles on standard Eiffel compilers

(provided the compiler supports Eiffel Software’s THREAD class).

• Class THREAD is described in detail in Appendix A, and its

implementation is in terms of standard POSIX threads. It is relatively easy

to port it to other compilers such as SmartEiffel.

• The Generator is not dependent on changes to the standard Eiffel

compilers. Only significant changes to Eiffel syntax would require

(probably minor) changes to the Generator.

• The target code will run on any platform supported by the compiler. For

example, Eiffel Software’s compiler runs on Windows, Linux, Macintosh

and various embedded systems.

The main disadvantage of this approach is that debugging must currently be performed in

the standard runtime systems of the target code rather than being able to work at the

abstract level of SCOOP code.

 Page 14

The Generator is implemented and works successfully with the latest Eiffel

Software compiler and Integrated Development Environment EiffelStudio (Version 5.4).

As mentioned earlier, (Compton 2000) was the first to implement SCOOP. In

Compton’s work, SCOOP is implemented via changes in the open source SmallEiffel

compiler, and its runtime system and debugger thus has the advantage of supporting

SCOOP programs directly. However, this implementation of SCOOP is now incompatible

with later versions of SmallEiffel compiler (now called SmartEiffel). It also does not

implement the full set of SCOOP constructs (such as contracts and “once” routines).

. The producer-consumer example in the next subsection will illustrate some of

the features of a SCOOP program.

1.2 A Producer-Consumer example

The producer-consumer problem illustrates the need for synchronization in

systems where many processes share a resource. In this section, we will provide an

informal introduction to SCOOP using this problem.

In the producer-consumer problem, two processes share a fixed-size buffer. One

process produces information and puts it in the buffer, while the other process consumes

information from the buffer. These processes do not take turns accessing the buffer, they

both work concurrently. Herein lays the problem. What happens if the producer tries to

put an item into a full buffer? What happens if the consumer tries to take an item from an

empty buffer? In order to safely synchronize these processes, we (a) use some mechanism

to provide mutual exclusion so that only one process at a time can access the buffer

 Page 15

(otherwise the information in the buffer might be garbled), and (b) we must block the

producer when the buffer is full, and block the consumer when the buffer is empty.

A standard Java solution is shown in Appendix D (Listing 6). Three separate

constructs are needed for the final solution. (a) Class PRODUCER and CONSUMER

must inherit from a THREAD class, (b) the put and get methods of BUFFER must be

declared synchronized, and (c) the put and get methods must wait() to be notified (via

notifyAll())that the buffer is available. Alternatively, we may use a sleep method

instead of wait/notify (to ensure that we do not use up CPU cycles with an

unnecessary busy-wait).

The SCOOP version of the producer-consumer provides the same behavior as the

Java solution, but with the simplification that only one extra keyword separate is used

(instead of Thread, synchronize and wait/notify). In addition, the SCOOP

solution uses contracts with all the benefits of DbC, although as we will see, the meaning

of a precondition will change (postconditions, class invariants, and loop variants and

invariants retain the original semantics).

The BON diagram shown in Figure 1-2 specifies the various classes. The

ROOT_CLASS (shown in Figure 1-6) has three attributes: buffer b, producer p and

consumer c. The buffer b (of type BUFFER) is declared separate, thus indicating that

it executes in its own logical thread (called a subsystem). This means that BUFFER

(Figure 1-7) is just a standard class having routines put and remove (without any

regard to concurrency). Thus it has no concurrent keywords in it, and when used in

sequential programs has none of the concurrent overheads. By declaring buffer attribute b

 Page 16

in the root class separate, we thereby specify that it executes in its own subsystem and

that all its routines are “synchronized” (using Java notions).

Figure 1-2 ‘producer-consumer’ BON Diagram

The contracts of BUFFER are as expected (Figure 1-7). For example, the routine

put in BUFFER has a precondition that asserts that you cannot put more than three

elements in the buffer. Its postcondition asserts that after a put, the number of items in

the buffer is incremented by one, and that the buffer actually has the new element

inserted.

 By contrast to BUFFER, classes PRODUCER and CONSUMER are declared

separate right at the beginning (Figure 1-3 and Figure 1-5). This is because they are

inherently concurrent and always execute in their own subsystems. When classes

PRODUCER and CONSUMER are first created (via their constructor routine make), we

pass to them (as an argument of make) the reference to the same buffer (b). Thus both

PRODUCER and CONSUMER have an attribute

buffer: separate BUFFER

to store this reference to b. Attribute buffer must be declared separate to indicate

that its routines execute in a different subsystem to the current object (either the producer

or the consumer).

 Page 17

separate class PRODUCER create
 make

feature {NONE}
 buffer: separate BUFFER

 make (b: separate BUFFER) is
 -- Initialize `Current'.
 do
 buffer := b
 keep_producing
 end

 keep_producing is
 local
 i: INTEGER
 do
 from
 until
 False
 loop
 i := (i + 1) \\ 5
 produce (buffer, i)

 -- buffer.put or buffer.remove

 -- is forbidden here
 end
 end
 produce (b: separate BUFFER; i: INTEGER) is
 require
 b.count <= 2
 do
 b.put (i)
 end
end -- class PRODUCER

Figure 1-3 PRODUCER class for ‘producer-consumer’ example

PRODUCER (via routine produce) and CONSUMER (via routine consume)

must not access the buffer at the same time. Normally, we would protect the buffer with a

mutex or a similar construct.

 produce (b: separate BUFFER; i: INTEGER) is
 require
 b.count <= 2

 i >= 0
 do
 b.put (i)
 end

Figure 1-4 produce routine for ‘producer-consumer’ example

 Page 18

separate class CONSUMER create
 make
feature {NONE}

 buffer: separate BUFFER

 make (b: separate BUFFER) is
 -- Initialize `Current'.
 do
 buffer := b
 keep_consuming
 end

 keep_consuming is
 do
 from
 until
 False
 loop
 consume (buffer)

 -- buffer.put or buffer.remove is forbidden here
 end
 end

 consume (b: separate BUFFER) is
 require
 b.count > 0
 do
 b.remove
 end

end -- class CONSUMER

Figure 1-5 CONSUMER class for ‘producer-consumer’ example

class
 ROOT_CLASS
 create
 make
 feature -- Initialization

 b: separate BUFFER
 p: PRODUCER
 c: CONSUMER

 make is
 -- Creation procedure.
 do
 create b.make
 create p.make (b)
 create c.make (b)
 end
end -- class ROOT_CLASS

Figure 1-6 ROOT_CLASS for ‘producer-consumer’ example

 Page 19

In SCOOP, we use argument passing, where the argument of a routine is declared

separate, as a reservation (or synchronization) mechanism. For example, routine

produce is presented on figure 1-4. A call to this routine will block until (a) the

producer gets sole access to the buffer, and at the same time (b) the buffer must not be full

as indicated in the precondition. If either (a) or (b) is false, the call waits until both are

satisfied. Thus both mutual exclusion and the validity of the contract are ensured. A

precondition clause involving a call with a separate target (b.count <= 2) is

called a separate precondition. The other clause (i >= 0) is not separate.

However, the meaning of the precondition has now been changed. In sequential

processing, the precondition is a correctness condition. If the precondition is true

execution immediately proceeds to the body of the routine. If the precondition is false, an

exception is generated. In the concurrent case, the precondition becomes a wait condition

and the producer waits until the precondition evaluates to true.

 Page 20

class BUFFER create
 make

feature

 count: INTEGER is
 do
 Result := q.count
 end

 item: INTEGER is
 -- front
 do
 Result := q.item
 end

 put (x: INTEGER) is
 -- enqueue `x'
 require
 count <= 3
 do
 q.put (x)
 io.new_line
 ensure
 count = old count + 1
 q.has (x)
 end

 remove is
 -- dequeue
 require
 count > 0
 do
 q.remove
 io.new_line
 ensure
 count = old count - 1
 end

feature {NONE}

 q: QUEUE [INTEGER]

 make is
 -- initialize buffer
 do
 create {ARRAYED_QUEUE [INTEGER]} q.make (3)
 end

 invariant
 0 <= count and count <= 3
end -- class BUFFER

Figure 1-7 BUFFER for ‘producer-consumer’ example

 Page 21

It is only a separate precondition that delays. A non-separate precondition will

act as a regular correctness condition.

How would we implement a SCOOP program into executable target code using

POSIX-like threads and mutex locks? To call consume from routine

keep_consuming, the consumer will pass buffer as an argument. When one or

more arguments of a routine are separate objects, the client must obtain exclusive

locks on all these objects before executing the routine. In our case, the consumer object

must obtain an exclusive lock on buffer before executing consume. If another object

(e.g. the producer) is currently holding the lock, the client must wait until the lock has

been released, then try to acquire it. A default policy of first-in/first-out can be adopted.

As described in (Meyer 2003) when the client succeeds in acquiring the lock:

• The separate precondition clauses are evaluated. If they all hold, the

routine will execute, and then release the lock.

• Otherwise, the object releases the lock and restarts the whole process from

the beginning: acquiring the locks, and then checking the separate

precondition clauses. This allows other clients to access the supplier object

and change its state, so that the wait conditions required by our client may

eventually be met.

The locking policy facilitates building correct concurrent programs and reasoning about

them:

 Page 22

• No interference between client objects is possible since at most one client

may hold a lock on a supplier object at any time. This helps find which

object is responsible for possible breaches in the contract, such as breaking

the supplier invariant.

• The precondition rules ensure that correct calls do not violate the integrity

of the supplier object.

1.2.1 separate call rule

As shown in Figure 1-3, we make it a syntactic error to call buffer.put in the

routine keep_producing of the producer. This is because buffer is declared as a

separate supplier. Instead we wrap the call in produce as discussed in the previous

section. The main advantage of this approach is that the programmer does not need to

worry about how to get access to the target object: this was taken care of by the call to

produce, which had to reserve the object waiting if necessary until it is free.

SCOOP makes this scheme the only one for separate calls (i.e. calls to

separate objects’ routines) by introducing the Separate Call Rule, which asserts that the

target of a separate call must be a formal argument of the routine in which the call

appears. This rule may appear to put an undue burden on the developer of concurrent

programs. In fact, what it really does is encourage developers to identify accesses to

separate objects and separate them from the rest of the computation. This will actually

help the developer avoid common concurrent development errors that normally make

concurrent programming an error prone undertaking. We provide two examples to

 Page 23

illustrate how SCOOP promotes good concurrent programming while helping the

developer to avoid problems.

As one illustration of reservation via separate arguments, suppose we want to

remove two integers, one after the other, from the buffer. The normal code

buffer.remove;

buffer.remove

will not work because any other client might jump in and interrupt (and hence disrupt) the

execution. What we must do is wrap the above code in a routine with a separate

argument:

remove_two (b: separate BUFFER) is

 do

 b.remove;

 b.remove;

 end

We can do the double remove merely by invoking the call remove_two (buffer).

As another example, consider the code

 if not buffer.empty then

 value := buffer.item

 buffer.remove

 end

Without protection on buffer, another client may add or remove an element between

the calls to item and remove. What makes things really bad is that the runtime

behaviour is non-deterministic since it depends on the relative speeds of the clients. The

 Page 24

bug will be intermittent and hard to reproduce. By encapsulating this error prone code in a

separate routine, all these problems are eliminated.

1.2.2 Wait by necessity

A separate call to a supplier object only blocks until it acquires the resource

and checks the preconditions as described above. The separate routine then executes

its body in its own subsystem, and the calling object continues with the next statement in

its own subsystem, i.e. it can continue with the rest of its computation.

Later on, the client may need to resynchronize with the supplier. Rather than

introducing a specific language mechanism for this purpose, SCOOP relies on a “wait by

necessity” mechanism in which the client waits on a query (but not on a command

routine).

Consider the following code

1. x: separate X

…

2. x.compute_fourier_transform

3. do_some_other_processing

4. y := x.get_fourier_transform -- wait by necessity

5. print(y)

In Java, as an example, execution would be blocked at line 2 until the routine to compute

the Fourier transform runs to completion.

 Page 25

As explained above, wait by necessity just means that we do not block on commands,

only on queries. As will be explained in more detail in 3-3, there is a refinement to wait

by necessity introduced by (Compton 2000). However, in this thesis, we use the basic

mechanism as explained above and as recommended by (Meyer 1997).

1.3 SCOOP syntax

The buffer example in the previous section illustrates the complete SCOOP

syntax, i.e. we add to Eiffel the extra keyword separate. A separate SUPPLIER

may be declared either as

• x: separate SUPPLIER, or

• separate class SUPPLIER .. end
x: S

Suppose C1 is a separate class and C2 is an ordinary class. A separate routine call

r in some class has the general form

r (x1: C1; x2: C1;

y1: separate C2; y2: separate C2; z: C2) is

 do

 x1.feature_1

 y1.feature_2

 z.feature_2 … -- etc.

end

i.e. you may have as many arguments of any type as you want.

 Page 26

1.4 Contribution and organization of this thesis
Concurrent programming is an inherently difficult undertaking. We have argued

that SCOOP as defined by Meyer (Meyer 97) provides a simple framework for concurrent

programming that also helps the developer to isolate and avoid common problems. The

nice integration of OO, contracts and the simple concurrency model of SCOOP is a good

motivation for developing actual executable target code. Hence, the contribution of this

thesis is to develop a SCOOP-to-Eiffel Code Generator that will

• parse SCOOP programs using the syntax outlined in Section 1.3;

• detect syntax errors in the SCOOP code such as violations of the separate call

rule;

• translate syntactically correct SCOOP programs to standard Eiffel code that uses

the Eiffel POSIX libraries for multi-threaded applications, so that the target code

behaves according to the SCOOP semantics (outlined informally in Section 1.2).

The Generator is itself written in Eiffel.

The organization of this thesis is as follows:

• In chapter 2 we review existing approaches to concurrent OO programming.

• In chapter 3, we develop the SCOOP model in more detail than the original

presentation in Meyer (Meyer 1997). The additional details were needed for

implementation.

• In chapter 4, we describe the Generator in detail using the model developed in

chapter 3.

• Chapter 5 provides the final discussion and conclusions.

 Page 27

Chapter 2 – Related Work

The idea of integrating concurrent or parallel computation into the object-oriented

programming paradigm received wide acceptance relatively recently. There are many

approaches to integration, as testified by extensive activity in this area.

The authors of (Briot 1998) define three basic approaches that make it possible to

carry out the integration of parallel computation in object-oriented languages. These

approaches include the library approach, the integrative approach, and the reflective

approach. We discuss each of these approaches, and also their specific implementations.

The SCOOP mechanism, implemented in this thesis, can be classified as integrative

(using synchronized objects). Therefore attention in this chapter will be given mostly to a

description of the integrative approach and method.

2.1 The Library Approach

In the library approach, class libraries are developed that make the implementation

of parallel computation possible. These libraries include classes that encapsulate different

components, necessary for parallel programs, such as threads, semaphores, critical

sections, mutexes and others. This makes it possible to develop parallel programs (and

thus to increase the effectiveness of the software development) without a change in the

syntax of the programming language itself.

Usually class libraries are developed taking into account the specific character of

the given object-oriented programming language. Many OO programming languages (for

example, C++, Eiffel, and SmallTalk) have such libraries. The library approach is a low-

 Page 28

level approach, since the developer remains responsible for many concurrency pissues

such as resource management and synchronization), which require professional

knowledge in this area, and are time intensive to develop.

The main merit of the library approach is its low-level flexibility. The approach is

thus often used where low level system or embedded programming is required. However,

the approach does not address the problem of the complexity of concurrent software

development (Bruno 1993). What we need is the ability to program at a higher level of

abstraction.

2.2 The Integrative Approach

The integrative approach introduces new concurrent constructs into the syntax of

the OO language, which facilitate concurrent programming. These constructs then hide

the details of how the parallel implementation is actually achieved (Wegner 1990).

There are several methods for integrating object-oriented programming and

concurrent processing: active objects, synchronized objects and distributed objects.

2.2.1 Active objects

An active object integrates the concepts of an object and a process. An active

object is a standard object, with attributes and methods, which also has its own thread of

calculations, i.e., its own actions. Active objects can support two types of parallel

calculations: introobject and inter-object. Depending on what type of parallel calculations

is implemented, active objects can be of the following types (Wegner 1990):

 Page 29

 Serial. Active objects of this type can process only one message at a time. In

other words, these objects do not use internal parallel processing. Languages

using serial active objects are POOL (P.H.M. America: A. Yonezawa and M.

Tokoro 1987) and Eiffel// (Caromel 1990);

 Quasi-concurrent. In such active objects several methods of activation can

exist simultaneously, but only one of them is in the state of execution. This

approach is used in the languages ABCHL/1 (Yonezawa 1986) and

ConcurrentSmallTalk (Tokoro 1987);

 Concurrent. Active objects of this type allow parallel calculations inside the

object itself, i.e., processing several queries simultaneously. In this case a

certain degree of control of the execution, determined by the programmer, can

be present. Among the languages, which use concurrent active objects are

CEiffel (Lohr 1993) and ACT++ (Kafura 1990);

According to a key principle of object-oriented programming, an object must at

the very least be reactive, i.e. react to events or messages. Active objects not only react,

but also have their own thread, which is started immediately after the creation of the

object. Thus, two types of active objects are distinguishable: reactive active objects and

autonomous active objects. The first correspond to the principle of reactivity and are

activated only on receipt of a message (ACT++, CEiffel), whereas the second type can

independently execute in addition to responding to events (POOL, Eiffel//).

Another detail concerning the reactivity of active objects is the method for

message acceptance. There are two methods for message acceptance: explicit and implicit.

In the explicit method, the object is forced to accept all messages it receives (although its

 Page 30

execution can be postponed). Implicit acceptance means that the object may refuse to

accept a message according to some rules or constraints.

As an example of implicit acceptance, many languages (e.g. POOL and Eiffel//)

have autonomous active objects with the notion of a 'body'. A 'body' indirectly describes

the types and a sequence of queries that the object will accept during its activity. Eiffel//

has a class PROCESS. An active class is a subclass of PROCESS. These objects have a

routine ‘live’, which is the 'body' of the object. This function is defined in class

PROCESS. However, to give it specific functionality, it is usually overridden in the

subclasses. Other features of class PROCESS make it possible for the active object to

manage the acceptance of calls in the ‘live’ feature.

2.2.2 Synchronized objects

Synchronized objects represent a further level of integration, in which

synchronization is associated with the creation of objects. Messages are the explicit

mechanism of synchronization between the sending object and the receiving object. The

literature discusses two levels of synchronization: synchronization at the Message-Passing

Level and synchronization at the Object Level. The difference is best illustrated via an

example.

Assume there are two objects: sender – the object, which sends the message, and

receiver – the object to which this message is addressed. There are two possible

interaction behaviours for these objects. In the first of them, called synchronous transfer,

sender blocks until the receiver completes execution of the message.

 Page 31

In the case of active objects, the sender and receiver execute independently of

each other. This leads to the possibility of using asynchronous communication. The

sender does not block; instead, it sends the message and then continues its execution. This

type of object interaction can be implemented in different ways. One approach involves

separating the call from the waiting object. Only when a calling object requires a result

(to perform some actions on it) is synchronization with the called object required. This is

known as Wait-by-necessity, implemented in the Eiffel// language (Caromel 1990).

Synchronization at the object level is of three types: intra-object synchronization,

behavioral synchronization and inter-object synchronization.

In the case of intra-object parallel processing (in which the object simultaneously

processes several requests), it is necessary to monitor the operations in order to guarantee

the state of the object. Usually control is achieved by mutual exclusion between the

operations. Intra-object synchronization can be illustrated with the “readers-writers”

problem. All the existing readers can simultaneously access the shared book but the

presence of one writer excludes access for all readers and writers. The shared book would

be responsible for ensuring mutual exclusion, i.e. only one writer at any one time.

In behavioral synchronization, an object delays until a condition is met, instead of

reporting an error. For example, in a bounded buffer, the buffer accepts values until it

becomes full. When it is full, it simply waits until a value is removed, at which point it

can insert the next value. Inter-object synchronization is used when it’s necessary to

synchronize the interacting objects.

To implement these methods of synchronization, different models of concurrency

have been developed, which are subdivided into centralized (synchronization is achieved

 Page 32

at the object level) and decentralized (synchronization is achieved at the method level)

models.

An example of the use of the centralized synchronization model is Procol (Van

den Bos 1991). The Path Expressions concept is implemented in this language, where the

interleaving of invocations is determined with the aid of a special notation.

The body concept (discussed earlier) is another example of the centralized

synchronizing model. However, the use of the body concept has difficulties associated

with its implementation. This is due to the fact that in some situations the body can

describe both the behavior specific to the application and the logic for accepting

invocations. Taking into account that invocations are managed in a centralized way, and

also that the body by its nature is defined imperatively, a number of problems have been

raised concerning its implementation (Lohr 1993).

Another implementation of a centralized synchronization model is Behavioral

Replacement. This model is used within the framework of the Actor language (Agha

1986). An actor has a mail address and a behavior. The mail address of an actor may be

freely communicated – a feature which results both in the ability to reconfigure the

system, and in the ability to extend a system (since mail addresses from the outside may

be communicated). In response to processing a communication targeted to an actor, the

behavior of an actor consists of three kinds of actions. An actor may send

communications to specific actors it knows the mail address of. In particular, an actor

may send communications to itself. An actor may create new actors. Initially, the mail

address of such actors may be known only to the creator and possibly to the actor itself.

However, the mail address can be subsequently communicated. An actor must specify a

 Page 33

replacement, which will accept the next communication. The replacement may process

the next communication even as other actions occurring as a result of processing the

previous communication are still being executed. This model implies intra-object parallel

calculations and synchronization.

The combination of Behavior Replacement and behavioral synchronization (when

the active object appears serial) leads to the concept of abstract states. If one has a

bounded buffer, we might need three abstract states: empty, full and partial. The abstract

state of partial within the framework of this concept is expressed with the aid of the union

of the states of full and empty. After the object processes the query, the next abstract state

is calculated so that if it is possible to renew the state and the accessibility of the services

of the object. The ACT++ language is an example of this concept (Matsuoka 1993).

The decentralized synchronization model is implemented via Guards, Locks or

Annotations.

In the case of Guards, each feature of the object has a guard (or Boolean

condition) associated with it for the object to become activated. The use of guards is

convenient with the integration approach, since synchronization expressions need not be

placed in the object. Actions are blocked or unblocked explicitly. However, this model of

execution appears relatively slow. An example of the use of this synchronization model is

the Guide language (Voss 1999).

An example of the use of Locks is to be found in the Java language. To

synchronize threads, Java uses monitors, which are a high-level mechanism for allowing

only one thread at a time to execute a region of code protected by the monitor. The

behavior of monitors is explained in terms of locks. There is a lock associated with each

 Page 34

object. The synchronized statement performs two special actions relevant only to

multithreaded operation: (a) after computing a reference to an object but before executing

its body, it locks a lock associated with the object, and (b) after execution of the body has

completed, either normally or abruptly, it unlocks that same lock. As a convenience, a

method may be declared synchronized; such a method behaves as if its body were

contained in a synchronized statement2.

The Java Virtual Machine allows an application to have multiple threads of

execution running concurrently. There are two ways to create a new thread of execution.

One is to declare a class to be a subclass of Thread. This subclass should override the run

method of class Thread. An instance of the subclass can then be allocated and started. The

other way to create a thread is to declare a class that implements the Runnable interface.

That class then implements the run method. An instance of the class can then be

allocated, and passed as an argument when creating a thread.

There is also a concept, where two locks are associated with an object: one for the

reader methods, and another – for the writer methods. This concept is used in the

Distributed Eiffel language (Gunaseelan 1992), which is a modification of the Eiffel

language. Any operation can be declared as ACCESSES (for the reader methods) or

MODIFIES (for writer methods). If any of these declarations are present, then the

operation must obtain the read or write lock for the object before it will be able to begin

its execution. Locking will not be achieved without those qualifiers.

Another modification of the Eiffel language is CEiffel (Lohr 1993), which uses

the synchronization model called Annotations. In this language it is possible to determine

2 http://java.sun.com/docs/books/jls/first_edition/html/17.doc.html

 Page 35

the binary symmetrical relation of compatibility between the operations of an object. If

one operation is declared as compatible with another, then such operations can be

executed in an overlapping manner (they can use the same resources). Incompatible

operations are by definition mutually exclusive.

2.2.3 Distributed objects

The third level of integration of parallel calculations into the object-oriented

languages of programming is a distributed object. This level of integration assumes that

an object can be a distributed module, which can be distributed or replicated among

several processors. To make the program able to carry out its parallel calculations

concurrently, this program must be implemented with a multiprocessor or a multi-

computer network. Some approaches using distributed objects are discussed below.

EPEE (Jezequel 1993) uses parallel calculations for the data of the type SPMD

(single-program, multiple-data). The large structures of data, utilized in the EPEE

language, are divided into fragments, which are distributed together with the replicated

code between CPUs of a multi-computer. Each CPU processes a fragment of data while

interacting with others CPUs if necessary. The syntax of EPEE is identical to Eiffel.

Another language, which uses distributed objects, Charm++, supports both

parallel calculations for SPMD type data and parallel processing of the type MIMD

(multiple program/data). In this language, reactive active objects are used. To define such

an object, the keywords ‘chare class’ are used. There is also a version called 'branched

chare class'. The code of this class is replicated between the nodes of a computer network

and each of the nodes performs operations on a certain fragment of the replicated object.

 Page 36

The 'branched chare class' interface reflects fragmentation by describing the messages,

which it can accept data from other fragments, and also from external fragments. Overall,

Charm++ reaches a higher degree of integration by comparison with EPEE. Charm++ is

an extension of C++.

The majority of the approaches mentioned in this subsection require syntactic

changes to the associated programming languages. These approaches assume the use of a

number of the keywords, connected with the implementation of parallel computation, in

the declarations of objects and methods. As explained in chapter 1, SCOOP adds only

one keyword to the Eiffel language. This issue will be explained in more detail at the

beginning of Chapter 3.

2.3 The Reflective Approach

We explained earlier in this chapter that the Library Approach is more suitable for

low-level system programming, while the integrative approach is useful in applications.

The Reflective Approach attempts to combine the two, preserving the merits of each (the

simplicity of the Integrative Approach and the flexibility of the Library Approach).

Reflection is a general methodology for describing, controlling, and adapting the

behavior of a computational system. The basic idea is to provide a representation of the

important characteristics/parameters of the system in terms of the system itself. The

characteristics of static presentation and dynamic execution of applications are

determined in one or several programs (which can be an interpreter, a compiler or other

programs), which present the behavior of the system while doing calculations. Such

 Page 37

programs are called meta-programs. Reflection fits especially well with object concepts,

which enforce good encapsulation of levels and modularity of effects.

Based on the fact that the meta-programs are objects, this system is called meta-

object protocol (Kiczales 1991).

Below are some examples of the Meta-Object Protocols (MOP) implementation.

The CodA platform (McAffer 1995)] is the general reflex architecture, built on the

objects and based on meta-objects. By default CodA is examining seven meta-objects,

connected to each of the objects. These meta-objects are message sending, receiving,

buffering, selection, method lookup, execution, state accessing. The object, which has

default meta-objects, behaves as usual passive, sequential object. The connection of

special meta-objects makes it possible to selectively change the specific aspect of the

presentation model of idea or execution for a certain object.

Other two reflexive architectures, namely Actalk and GARF, are more specialized

and propose smaller collections of meta-objects. The Actalk platform (Briot 1996) helps

to experiment with different models of synchronization and communication for a

predetermined program by changing different components: activity (for example, implicit

or explicit acceptance of requests, intra-object concurrency), synchronization (for

example, abstract behavior, guards), communication (for example, synchronous or

asynchronous), invocation (for example, time stamp, priority).

The GARF platform (Garbinato 1994) for distributed and resistant to errors

programming allows a wide variety of mechanisms around two components: object

control and communication.

 Page 38

2.4 Another SCOOP-like Implementation

(Jalloul 2000) proposes a method for the integration of parallel processing into

object-oriented languages called CSS (Communicating Sequential Systems). On the basis

of this method, he created CEE (Concurrent Extension to Eiffel).

Similarly to Meyer's SCOOP, keyword separate is also used in CEE. However, in

contrast to SCOOP, CEE provides critical regions and conditional critical regions, but

does not rely on procedure calls and require conditions.

In CEE, a program is subdivided into many "internally concurrent sequential

systems". These systems work in parallel. Each of them in this case can have internal

parallel calculations. To wait for returned values, a wait-by-necessity mechanism is used.

CEE has a kernel, implemented in the Eiffel language, which is located on the upper level

of communication software for distributed processes. Thus the implementation of parallel

processing is hidden from the programmer.

Based on the separate declarations, the compiler divides an Eiffel program into

several systems, each of which then is compiled by the Eiffel compiler. During the

execution, interaction with other systems is translated into the queries to the kernel, which

are then sent to the controller of the matching system.

 Page 39

2.5 The inheritance anomaly

The term inheritance anomaly was coined in 1993 by Matsuoka and Yonezawa

(Matsuoka 1993) to refer to the problems arising from the interweaving of behavioural

and synchronization code in descendant classes.

For example, consider class BUFFER (Appendix G) that has a function routine

item that returns the oldest element in the buffer. In modern languages such as Java and

C#, the burden of enforcing the synchronization constraints must ultimately lie with the

buffer itself. Suppose we have a new class BUFFER2 (Appendix G) that inherits from

BUFFER. In this new class we would like to define a new function item2 that works like

item, except that it cannot be executed immediately after a call to item. In Java and C#,

not only must the behaviour of item be redefined (e.g. by introducing a history variable),

but this redefinition must be intertwined with synchronization code. This interweaving of

behavioural and synchronization code makes such programs difficult to develop and

understand.

According to (Milicia 2003), SCOOP also suffers from the inheritance anomaly.

However, Meyer in (Meyer 1999) disagrees. Meyer appears to be correct in this regard. It

is true that in SCOOP, item must be redefined, but only behaviourally. No

synchronization code is needed at all (as shown in detail in Appendix D). In fact,

BUFFER can be a regular Eiffel class. If it is needed as a concurrent buffer, it can be

declared as a separate supplier, and the preconditions of item and item2 immediately

become wait conditions. However, in Java and C#, item must be redefined both

behaviourally and with synchronization code (using synchronize and throw/catch).

 Page 40

Chapter 3

Simple Concurrent Object-Oriented Programming

In this chapter, we review the framework developed by Meyer (Meyer 1997),

called Simple Concurrent Object-Oriented Programming (SCOOP). Meyer’s notation will

be used to describe SCOOP. Compton (Compton 2000) developed a prototype

implementation of SCOOP, including a run-time system. Compton also contributed new

notations and refinements of existing concepts, which assist in the implementation of

SCOOP in practice.

SCOOP is an extension of Eiffel that allows for parallel object-oriented

calculations by adding a single reserved word separate into the syntax. Meyer makes

an interesting claim: a single new keyword (separate) provides for a full-fledged

concurrency mechanism. A general rule of software construction is that a semantic

difference should always be reflected by a difference in the software text (Meyer 1997).

A SCOOP compiler (or in our case the Generator) will translate the separate

constructs into target code according to the SCOOP model. Even though the SCOOP

model uses only one extra keyword “separate” to take care of all the concurrency issues,

separate has a different semantic meaning when used with class declarations, attributes,

and routine parameters. In the sequel, the model will be described along with various

aspects of the SCOOP mechanism for Eiffel. We also describe problems arising with the

model, and possible solutions.

 Page 41

In chapter 4 we will describe the implementation of the SCOOP-to-Eiffel code

Generator and we will discuss the implementation of various SCOOP elements into Eiffel

target code.

3.1 Processors and Subsystems

One of the key concepts of SCOOP is the processor. As shown in Figure 3-1, a

computation is performed by a processor that applies certain actions (or routines) to

certain objects. In the sequential case, there is only one processor. In the concurrent

context, we have two or more processors. This is what concurrency is all about and can be

taken as the definition of concurrent processing.

Figure 3-1: Processors

According to Meyer’s definition, a processor is an autonomous thread of control

capable of supporting the sequential execution of instructions for one or more objects

(Meyer 1997, page 964).

This definition assumes that the processor is some device, which can be

implemented as hardware (e.g. a computer equipped with its own central processor), or as

ACTION

PROCESSOR

OBJECT

 Page 42

software (e.g. a thread, task or stream). The given definition describes an abstract

processor and enables the system to use as many actual processors as required.

A subsystem is the processor together with the set of objects it performs actions

on. Within a subsystem, communication is synchronous, and execution follows the usual

Eiffel sequential model. Communication between subsystems is asynchronous and

processing is in parallel. This potential parallelism is the result of different processors

handling each subsystem (Compton 2000, page 18).

A separate object is any object that from the viewpoint of one object is in a

different subsystem. At run time, any separate object can only be referenced (if

reachable at all) through a separate entity (Compton 2000, page 19). An entity is

either an attribute of a class, a formal argument of routines, or a local variable of a

routine.

A separate reference is a reference to a separate object. This reference must be

through a separate entity that is not void, and not attached to a local object (Compton

2000, page 20).

A separate call is any routine call x.f (...), from the current object in

which the call is made, where the target, x, is a separate object (Compton 2000, page

20).

A subsystem is created simultaneously with the creation of a separate objects

and executes the object’s instructions. Several processors that run different separate

objects allow concurrent execution. Processors may themselves contain subprocessors.

 Page 43

Separate objects, in turn, can create objects. Those objects can be shared with

other processes; they can receive references to the objects that are carried out by other

processors. Thus the processor can carry out operations not only on one separate

object, but also on a set of objects. While sequential Eiffel contains one subsystem, the

use of SCOOP provides an unlimited number of subsystems.

A new subsystem is created with the creation of a separate object. Non-

separate objects are created in the same subsystem as the object that has created it. Thus,

it will be considered as a separate object by other subsystems. Any object (whether

separate or non-separate) can belong to only one subsystem. For communications

(connections) between the objects that take place in different subsystems, separate

references are used. Fig. 3.2 illustrates a SCOOP runtime system consisting of a number

of subsystems.

3.2 Routine calls in sequential Eiffel

Feature call in sequential Eiffel is defined as follows:

x.f(a)

i.e., execute routine f with argument a on target x

 Page 44

Processor 1

Processor N

Processor 3

Processor 2 Non-separate reference

Separate reference

Subsystem

Object

Figure 3-2: SCOOP System

According to the semantics of object-oriented programming, we can distinguish

two types of procedure calls:

 Case 1: A command feature call
x.c (a)

 Case 2: Assignment involving a query call
y := x.q(a)

In Eiffel, there is a strong distinction between a command and a query. A query

has a corresponding type; a command does not. Consequently, a command is an

independent statement, while a query is on the right hand side of an assignment.

In Case 1, c is a command. The command is executed on the target x, and when

completed, processing continues at the instruction following x.c(a).

 Page 45

 In Case 2, since the assignment statement has q on the right hand side, q must be

a query. Execution switches to the object attached to x, and when

completed, the result is assigned to y. Execution then continues at the instruction

following the query.

There is only one processor, and therefore only one subsystem. This processor

executes the current routine as well as the routines c and q.

The syntax of Eiffel does allow queries to change the state of the object on which

it is called. However, this is discouraged in practice since contract checking would cause

the state of the checked object to change. Therefore, in Eiffel there is a strong semantic

separation between a command and a query. While a command changes the state of an

object, the query should not.

3.3 Routine calls in SCOOP
Generalizing program execution to concurrent object-oriented models requires a

change in the feature call definition.

 Suppose as before that x is a separate entity. There must then exist at least

two subsystems, the current subsystem in which the code x.c(a)occurs, and the

subsystem associated with x. The call to x.c(a)will be executed in the latter subsystem,

and the current object making this call continues executing in its own subsystem.

In the case of the assignment y := x.q(a), the current system blocks while the

subsystem associated with x executes query q to completion (called wait-by-necessity as

explained in chapter 1).

 Page 46

Commands may be executed in parallel as different processors process them. A

query may need to return a result before the program can continue. For example, in the

code below the query q is called on entity x:

y := x.q (a)
 …

z := y + 1

Execution does not continue until the result is computed and assigned to y.

Caromel (Caromel 1989) was the first to define the notion of “Wait by Necessity".

In the original definition, some cases were allowed which enabled the continuation of

parallel calculations even in the case of a query. For example, in the code fragment above,

entity y is not used until later in the statement z := y +1. Thus, we could wait until y

is actually used before synchronizing with the other subsystem.

(Compton 2000) implemented Caromel’s proposal, but the resulting

implementation turned out to be inefficient. In this thesis, we follow the original proposal

of SCOOP (Meyer 1997), and thus, the calling subsystem always waits at y:=x.q(a)

before continuing to execute. This is much simpler to implement than Caromel’s

proposal.

Having considered existing types of calls and the ways they can be processed in

the SCOOP program, it becomes evident that there can be two options for feature calls. In

the first case in which the target is not separate, the execution of a call is made by the

same processor that executes the calling object (the object on behalf of which the call is

made). In the second case in which the target is separate, some other processor processes

the call (not the one that processes the calling object). To specify how and where it is

necessary to execute a call, some syntactic construct is required to reflect the semantic

 Page 47

intentions in the text of the program. The syntactic keyword separate is used to reflect

this semantic difference.

3.4 Eiffel Syntax and Semantics for SCOOP
According to Meyer, for the SCOOP implementation in Eiffel, it is necessary to

add only one keyword separate. The object declaration as separate specifies that a

new processor will execute it. Possible ways of applying the separate keyword and

syntax patterns are presented in figure 3-3.

A class can be declared as separate as follows:

separate class TY

Figure 3-4 will help to understand the semantics of SCOOP using the syntax

patterns presented in figure 3-3.The declaration

x : TX

…

create x.make

means that object O1 of type TX will be created in Root Subsystem (Ho) and entity x is

attached to it. The declaration

y: separate TY

…

create y.make

means that the entity y is attached to objects whose routines are executed by other

processors. Another subsystem Hy is created. Object O2 of type TY is created in

subsystem Hy. Entity y is attached to object O2.

 separate class TY

 x : TX

 y : separate TY

 Page 48

 z : separate TZ

 c (a : separate …)

is

 do

…

 end

…

r is

 do

 create x.make

 create y.make

 create z.make

 x.c1 (a1)

 y.c2 (a2)

 x := x.q3 (a3)

 y := z.q4 (a4)

 c(a5)

 end

 Figure 3-3 : SCOOP Syntax

According to (Meyer 1997, page 967) all three qualifiers used at the declaration of

classes (separate, expanded (the values are objects) and deferred (classes that leave the

implementation of some of their features entirely to proper descendants)) are mutually

exclusive. This follows directly from the sense of the appropriate qualifier and from the

semantics of the Eiffel language. Descendant classes do not inherit these qualifiers. Thus

such a declaration is invalid if TY is already declared expanded or deferred.

 Page 49

Hz

Root Subsystem Ho

Hy

TX

TY

TY

TZ

x

z

y
x.make

y:=...

z:=...

y.make

O1

O5

O6

O2

Figure 3-4: SCOOP Semantics

The statement

x.c1(a1)

means that subsystem Ho performs command c1 with an argument a1 on object O1.

The statement

y.c2(a2)

 Page 50

means that subsystem Hy performs command c2 with an argument a2 on object O2.

The statement

y := z.q4(a4)

means that subsystem Hz executes query q4 with an argument a4 on object O5. Object

O6 is created (this is the result of the query) and entity y is attached to it.

The statement

c(a5)

means that subsystem Ho gets unique access and locks the separate object attached to

a5 and executes the command c through to completion after which it releases the lock.

3.5 Separateness consistency rules
A problem arises when a non-separate object is used in place of a separate

object. This non-separate object is known as a traitor object. Meyer introduced four

separateness consistency rules. These rules guarantee that no traitor object situation can

occur. The Generator must flag any traitor as a compile time error. The rules are listed

below.

The separateness consistency rule (1): If the source (y) of an attachment in an

assignment instruction (or equivalently, argument passing) is separate, its target entity

(x) must be separate too. In practice, this means that if we have the entities declared

as

x: SOME_TYPE

y: separate SOME_TYPE

then operations such as x:=y are forbidden.

 Page 51

For example, suppose we allow x:=y in the above case. The compiler assumes

that x is in y’s subsystem as x is attached to the same separate object that y is

attached to. Thus when x.c is executed, the precondition of c may (incorrectly) be

treated as a wait condition rather than a correctness condition. Thus the object to which y

is attached is now a traitor.

Separateness consistency rule (2): If an actual argument of a separate call is

of a reference type, the corresponding formal argument must be declared as separate

(Meyer 1997).

Assume we have the declarations in figure 3-5. Different processors handle

objects x and y. Having declared x and arg as non-separate we have created a situation

in which the subsystem of x will treat y as a local (i.e. non-separate) object. But this is

wrong because y is really in a different subsystem. Hence, it is necessary to declare arg

as separate.

Separateness consistency rule (3): If the source of an attachment is the result of

a separate call to a function returning a reference type, the target must be declared as

separate (Meyer 1997).

 Page 52

class FIRST_CLASS feature

 y: SOME_TYPE -- non-separate

 x: SECOND_CLASS -- x is declared ‘separate’

 some_feature is

 do

 x.f(y)

 end

end

separate class SECOND_CLASS feature

 f (arg: SOME_TYPE) is

 do

 . . .

 end

 end

Figure 3-5: SCOOP Separate consistency rules

The third rule means that in a separate call, the reference to the returned value

can be placed only in a variable described as separate.

Separateness consistency rule (4): If an attachment or the result of a separate

call is of an expanded type, its base class may not include, directly or indirectly, any non-

separate attribute of a reference type (Meyer 1997).

This rule means that we can pass an expanded object as an argument in a

separate call, only if such expanded objects have no references to other objects. Non-

observance of this rule can result in the occurrence of a traitor. This will result in the

compiler treating this call mistakenly as a synchronous local call, while the attached

object is separate and needs to be handled asynchronously.

 Page 53

3.6 Synchronization in SCOOP

In his work, Meyer considers various existing mechanisms of synchronization and

their applicability in the context of parallel object-oriented calculations. For use in the

SCOOP mechanism, Meyer describes a method for synchronized access to shared objects,

which does not contradict the principle of inheritance, works well with DbC, and also

guarantees that actions on objects are made in the sequence that we expect.

In SCOOP, at each moment of time there is at most one executing routine on a

given object. Furthermore, synchronization is carried out at the level of an object instead

of at the level of its entities (attributes or variables). Also, a subsystem executes calls to it

from other subsystems in the order received.

Consider the following example (Meyer 1997). Suppose we have a requirement to

remove two consecutive elements from a shared structure buffer (see chapter 1). To

remove one element, procedure remove is used. For a double remove, we might choose

to write:

…

buffer.remove

buffer.remove

…

However, between these two calls, another object can obtain access to the buffer

and execute any actions on it. Hence, it is impossible to guarantee that those two required

elements will be removed.

To solve this problem in SCOOP, it is necessary to write down the two

consecutive calls inside one procedure (to encapsulate them) and to pass to the procedure

the reference to the shared object.

 Page 54

remove_two (buffer: separate BUFFER) is

 do

 buffer.remove

 buffer.remove

 end

Figure 3-6: removing elements from buffer using the SCOOP execution model

In this case the buffer will be inaccessible to other clients until the termination of

of the body of remove_two. This behaviour results in the following SCOOP rule:

Separate Call rule: The target of a separate call must be a formal argument of

the routine in which the call appears (Meyer 1997, page 985).

As another example, suppose we want to call feature put on a separate

buffer we then write the code for buffer_put as shown below (instead of

buffer.put(…)):

buffer_put (some_buffer: separate BUFFER) is

 ...

 do

 -- calling put on some_b

 some_b.put(…)

 end

Figure 3-7: adding elements to buffer using the SCOOP execution model

3.7 Semantics of preconditions as wait conditions

As described earlier, in the case of sequential execution, preconditions work as

expected as a correctness condition. In SCOOP, however, the precondition is no longer a

correctness condition but a wait condition.

Consider a situation in which we have three subsystems S1, S2 and S3. Suppose

S1 calls a routine r in S2. S2 checks the precondition of r and then executes the body of r.

 Page 55

The problem is that in between the evaluation of the precondition and the execution the

body, another subsystem may falsify the precondition. This situation has been named the

concurrent precondition paradox. Suppose routine r is as follows:

 -- subsystem S2

a: separate TYPE

r(x1: separate TYPE1, x2: separate: TYPE2; x3: TYPE3) is

 require

 x1_validity: x1 /=Void

 x2_validity: x2 /= Void

 a_validity: a /= Void

 x3_validity: x3 /= Void

 do

 -- routine’s body

 end

The precondition clauses x1_validity, x2_validity and a_validity are called

separate preconditions as they have occurrences of the routine arguments or class

attributes that are declared separate. The non-separate precondition x3_validity

remains a correctness condition (if false an exception is immediately raised).

By contrast, the subsystem must gain a lock on all the separate entities before

checking the separate preconditions. If these preconditions evaluate to true, the body

is executed and then the separate entities are unlocked. If the separate preconditions

evaluate to false, then the separate entities are unlocked, and the separate preconditions

rechecked at some subsequent time. We thus have the following constraint:

 Page 56

Separate call semantics: Before a separate call can start executing the routine’s

body, the separate call must wait until every blocked object is free, and every

separate precondition clause is satisfied.

 Page 57

Chapter 4

SCOOP to Eiffel+Threads Code Generator

The purpose of this chapter is to develop a Generator that will translate a SCOOP

program (that uses the separate keyword) to code in Eiffel+Threads (as described in

section 1.1). In order to develop the Generator, the development of an appropriate

mapping from SCOOP programs to generated Eiffel+Threads code is required. While

(Meyer 1997) provides a comprehensive overview of the proposed SCOOP functionality

and use, no implementation details are provided. In this chapter we develop and describe

the mapping that the Generator uses to do the translation. The mapping must be done in

such a way as to obey the SCOOP model developed in the previous chapter.

SCOOP functionality includes

1. Declaration and instantiation of separate objects;

2. Call of features on separate objects;

3. Argument passing (expanded and reference types);

4. Exclusive locking of single and multiple separate objects;

5. Declaration of separate features including both attributes and routines;

6. Wait conditions and DbC;

7. Wait by necessity;

8. Support for distributed execution and Concurrency Control Files (CCFs).

 Page 58

The Generator fully implements items 1 to 7. The cross-platform multi-threaded

Eiffel+Threads runtime does not support distributed execution, which means that 8 is not

implemented by our Generator. Thus, as far as we are able to ascertain, the Generator is

currently the most complete implementation of SCOOP.

The other SCOOP implementations (Compton 2000; Meyer 2003) also do not

support distributed execution, although the intention is to ultimately support distributed

execution in (Meyer 2003). (Compton 2000) does not support wait conditions and DbC

(item 6), and (Meyer 2003) does not yet support locking of multiple separate objects

(item 4).

As described in the first chapter, Eiffel+Threads is standard Eiffel together with a

cross-platform threads library for concurrent execution. A BON diagram for the Thread

library is shown in Figure 4-1, and Appendices A, B and E contain more details.

THREADS

THREAD

launch

make

THREAD_CONTROL

join_all

MUTEX

lock

unlock

make

ROOT_CLASSPROCESS

execute*

Figure 4-1 BON diagram of Threads library

 Page 59

Suppose we have a ROOT_CLASS that launches two threads p1 and p2 each of

type PROCESS. The ROOT_CLASS does this in its creation procedure as follows:

p1.launch

p2.launch

join_all

The PROCESS threads must effect execute inherited from class THREAD (figure 4-2). A

launch invokes the implemented execute routine. When all the execute routines terminate,

then join_all terminates the system. Class MUTEX supports data locking in the standard

way. A mutex can be created to protect data. Routine lock waits until access is granted

and unlock frees the mutex to other threads. It is assumed that the underlying OS

implementation of mutexes is fair (an assumption that has been verified under Windows

and Linux).

4.1 Eiffel SCOOP project files
As explained in the previous chapter, the keyword separate is used as follows:

separate class A_CLASS …

a_entity : separate A_TYPE …

another_routine (separate_argument: separate SOME_TYPE) is
 require
 separate_argument …

The Generator is invoked on an Eiffel Scoop Project file (with extension “.esp”).

Consider the producer-consumer example described in Section 1.2. Classes

ROOT_CLASS, PRODUCER and CONSUMER all have occurrences of the separate

 Page 60

keyword in their text. Class BUFFER does not have any occurrences of the separate

keyword.

The text of each class C that has occurrences of the separate keyword is placed

in a file c.es. The Generator will automatically transform each SCOOP class C to a new

generated class CG, and the text of CG is placed in a file c.e. The Eiffel SCOOP Project

file for the producer-consumer example is as follows:

root root_class.es

 consumer.es

 producer.es

The project file does not specify file buffer.e as the keyword separate does not

appear in it. The root class is distinguished from the other classes in the project file. This

is because:

1. the generated root class must inherit from THREAD_CONTROL which

does not have routine execute. Instead of execute, the creation

procedure of the root class is initially called. At the end of the creation

procedure, join_all must be invoked for the system to exit;

2. the generated root class will have the responsibility for managing a global

shared integer variable called requests_pended, that keeps track of

the total number of separate calls across all subsystems. This variable

is used by all the subsystems to determine when to safely exit (as will be

explained in the sequel).

All other classes in the project file inherit from THREAD and effect execute.

 Page 61

4.2 Implementing Subsystems

Suppose we have SCOOP classes as follows:

separate class A_CLASS feature

c1: C1

c2: separate C2

…

create c1.make

create c2.make

…

end

separate class C1 … end

class C2 … end

Conceptually, c1 and c2 each have their own subsystem. However, it is usually the case

that non-separate classes such as C2 are usually passive data containers, such as BUFFER

in the producer-consumer example. The main requirement is that any call to such classes

must run atomically in order to be protected from interference by other threads. They do

not really need their own thread. By contrast, classes such as C1 are independent

processes that must run in their own thread (e.g. the producer, or consumer).

The Generator therefore treats these two cases differently. For each entity such as

c2, we merely declare an associated mutex c2_mutex. Any feature call c2.f is always

“wrapped” with a lock to the mutex:

 Page 62

c2_mutex.lock

c2.f

c2_mutex.unlock

Thus, in the generated code, any routine with c2 as an argument must also be passed

c2_mutex at the same time. Such a procedure guarantees that the shared data object

associated with c1 is only accessed by one routine (atomically) at a time.

By contrast, c1 must execute in its own thread. To implement c1’s subsystem, we

must therefore proceed differently. Let C1G denote the generated code associated with

the SCOOP class C1.

1) Each generated class such as C1G (other than the root class) inherits

from THREAD and effects execute.

2) Each instance of C1G has its own buffer request_buffer which is a

queue of separate calls (to routines of C1G) coming from other

subsystems. Other subsystems must first obtain the lock to the buffer

(called request_buffer_mutex) before being allowed to queue its

routine call request. Each addition to the buffer increments by one a global

integer variable requests_pended (which has a corresponding lock

request_pended_mutex). Thus, at any moment in time, the value of

requests_pended is the number of separate buffered calls across

all subsystems.

3) The deferred feature execute (of THREAD) is implemented in C1G by

repeatedly requesting a lock on the buffer and executing the oldest

routine call request (say for routine r). When r (and all its sub-calls)

 Page 63

terminates, then requests_pended is decremented by one to indicate

that there is one less call request to process. The global variable

requests_pended must be zero before execute terminates, thus

terminating the subsystem.

4) If any of the sub-calls of r is itself a separate call to some subsystem,

then the same procedure is followed, i.e. the sub-call is registered with the

buffer of requests for that subsystem, and that subsystem must complete

the sub-call before control is returned to r. Thus requests_pended

will not reduce to zero until every separate call (and its separate

sub-calls) has been handled by the appropriate subsystem.

Steps 1-4 ensure (a) that every separate call is registered and executed, and (b) that

subsystems only terminate when no more separate calls are possible.

The root class in the project file (say CR) has an associated generated root

class called CRG. As described earlier, CRG inherits from THREAD_CONTROL and has

the responsibility for managing the requests_pended global variable and its lock.

The generated creation feature of class CRG:

1. initializes the requests_pended and its lock;

2. launches the appropriate threads. Any create statements in CR (e.g.

create c1.make) involving separate calls (of type C1) must be

followed by a launch in the corresponding generated code, i.e.

(c1.make; c1.launch…). The launch command invokes the effected

execute routine in C1G;

 Page 64

3. registers any separate calls in the creation feature of CR with the

appropriate subsystems;

4. calls join_all for system termination.

There are thus three cases, each handled differently by the Generator:

a) the root class CR;

b) C2 (i.e. passive data that must be protected);

c) C1 (i.e. active processes that need their own threads in the generated code).

 class SOME_TYPE

 inherit

 THREAD

 feature

 execute is

 do

 …

 end

 class SECOND_CLASS

some_var: SOME_TYPE

make is

 do

 …

 create some_var.make

 some_var.launch

 …

 end

Figure 4-2 THREAD inheritance

 Page 65

Further experience with SCOOP may cause us to treat C2 similarly to C1, but with a loss

of the efficiency of the current model. The current generated code will run correctly with

less thread overhead; it’s only downside is that it over-serializes calls to passive C2 type

structures. Further experience with SCOOP is needed to evaluate which translation is

better.

The Generator scans through all the classes mentioned in project file. The root

class and other separate classes are each translated to generated code, as described in

the overview presented above, and with further detail supplied in the rest of this chapter.

4.3 Effecting routine execute

Consider an instance of a C1 type class. It is launched (by calling launch),

which in turn calls routine execute. It is the responsibility of execute to manage

this thread (i.e. subsystem). Figure 4-3 shows a pseudo-code version of the effected

execute routine. The body of the routine repeatedly accesses the oldest separate call

to this subsystem (from other subsystems) in the request buffer, executes the call and then

removes the call from the buffer. Thus separate calls are atomically processed in the

subsystem in the order they are received (while other subsystems concurrently process

their calls in the same manner). This is because any separate call must be registered

with the subsystem, and only such calls are invoked by execute.

An example of the precise execute code is provided in Appendix C. The

stop_condition involves an access to the global variable requests_pended,

which is described in more detail below.

 Page 66

class C1G feature

execute is

 do

 from

 until not (stop_condition)

 loop

 get_next_call_from_request_buffer

 execute_call
 …

 end

 end

…

end

Figure 4-3 the execute feature

4.4 Keeping track of separate calls

The execute routine in the generated code C1G needs to access the separate

calls in the order received by this subsystem. Figure 4-4 illustrates the way in which this

is done via a buffer request_buffer and routines to add a separate call to the

buffer and remove a call (set_feature_to_do, get_feature_to_do). The

request buffer is a list of TUPLE:

request_buffer: LINKED_LIST[TUPLE]

Tuples are a mathematical cross product, implemented as an indexed linear data structure.

The number of elements in TUPLE beforehand is not determined. Tuples are extremely

useful in SCOOP, as no decorator classes are necessary to wrap the features, their

arguments and other associated data. TUPLE will be used to store separate calls (e.g.

the name of the call, and its arguments).

 Page 67

class C1G feature

 execute …

request_buffer: LINKED_LIST[TUPLE]

set_feature_to_do(feature_params_arg:TUPLE) is

do

 requests_pended_mutex.lock

 requests_pended.copy(requests_pended + 1)

 requests_pended_mutex.unlock

 request_buffer_mutex.lock

 request_buffer.extend(feature_params_arg)

 request_buffer_mutex.unlock

end

get_feature_to_do:TUPLE is

do

 request_buffer_mutex.lock

 if not request_buffer.is_empty then

 Result := request_buffer.first

 else

 Result := [Current,"NOTHING"]

 end

 request_buffer_mutex.unlock

end

…

end

 Figure 4-4 A buffer to queue separate calls to a subsystem

 Separate calls can be placed on the subsystem buffer using the routine:

set_feature_to_do(feature_params_arg: TUPLE)

 Page 68

Routine set_feature_to_do places the call data at the end of the buffer and is

public (it can be called from any subsystem). If another subsystem wants to execute a

separate call to this subsystem, it registers the call using set_feature_to_do.

The other subsystem can then continue executing (for a feature that is a command),

without blocking, and the execute routine of the current subsystem will get the call

from the buffer and execute in the proper order. Queries and wait by necessity will be

discussed in the next subsection.

Routine get_feature_to_do is called by routine execute:

get_feature_to_do: TUPLE.

It gets the oldest call (stored as a TUPLE on the buffer). Thus the buffer is organized

under a FIFO scheme.

4.5 Command and function calls

Separate command and function calls to a subsystem are both registered in the

subsystem buffer, as explained above. However, function calls (queries) are subject to the

wait by necessity rule. In this section we discuss the differences between command and

function calls.

4.5.1 Command Routines

Consider the SCOOP code for two subsystems C1A and C1B in figure 4-5. C1A

makes a separate call request f.some_command(arg) to C1B. In C1B, the

argument arg is declared as separate.

 Page 69

separate class C1A …

c1b: C1B

…

c1b.some_command(arg)

…

end

separate class C1B …

some_command(separate arg: TYPE1) is

…

end

Figure 4-5 Commands

As it currently stands, subsystem c1a directly calls and executes the separate routine

some_command in subsystem c1b, and inappropriate interference with other threads

might occur. Instead, we require that c1a register the call some_command(arg) with

c1b’s buffer of calls so that the c1b can later execute some_command atomically and

safely in the appropriate order. The Generator must therefore map the call

c1b.some_command(arg) in C1A to

c1b.set_feature_to_do([Current,"SOME_COMMAND_STRING",arg1,
arg1_mutex])

in the generated code C1AG. Recall that set_feature_to_do is a public routine in

the generated code C1BG associated with subsystem C1B which is declared as

set_feature_to_do(feature_params_arg: TUPLE)

The formal argument feature_params_arg is a TUPLE that can store the

call c1b.some_command(arg) for later reference. The first field of the TUPLE

stores the calling subsystem (i.e. Current that refers to c1a), the second field stores the

name of the routine some_command as a string “SOME_COMMAND_STRING”, and

the third field stores the routine argument arg. Since arg is declared as a separate

 Page 70

argument, it refers to a different subsystem, and thus any accesses to arg must be via it’s

lock arg1_mutex, which is passed in the fourth field of the TUPLE.

The first field of the TUPLE (Current) allows the c1b subsystem to access the

global variable requests_pended. This variable must be incremented when the call is

registered and decremented when it is executed.

After the information on a call is placed in the buffer, the subsystem associated

with c1a continues execution while the subsystem associated with c1b will process the

call.

4.5.2 Function Routines

In the case of a command routine, the calling subsystem registers the command

call with the target subsystem, and then continues execution without blocking. In the case

of a function call (see Figure 4-6), we have some version of the “wait by necessity”

mechanism, as defined in Section 3.3. Thus, if the calling subsystem executes an

assignment x:=y.f, then it must block until the subsystem associated with x has

executed the call f.

As for commands, function calls are also registered with the target subsystem

using routine set_feature_to_do. The function call is registered in the same way as

a command with only one difference:

• An extra field of the TUPLE is reserved for the return value of the function.

 Page 71

 separate class CA feature

 f: SOME_TYPE is

 do

 …

 end

 …

end

 separate class CB feature

 x: separate SOME_TYPE

 y: CA

 some_feature is

 do

 x := y.f

 z:=x

 end

…

end

Figure 4-6 Function calls

The following code will be generated by Generator:
class CB

…

x: SOME_TYPE

x_mutex: MUTEX

y: CA

y_mutex: MUTEX …

some_feature is do …

 x_mutex.lock

 y.set_feature_to_do([Current,"f_STRING", x, x_mutex])

 x_mutex.lock

 -- We acquire mutex second time and wait until

 -- it will be released in CA

 x_mutex.unlock

 z:=x

 end

…

 Page 72

 class CA

…

 execute is
 local
 f_return: SOME_TYPE

 f_return_mutex: MUTEX

 … current_feature_args := get_feature_to_do
 …
 if current_feature_name.is_equal ("f")

 then

 …
 f_return ?= current_feature_args.item (3)
 f_return_mutex ?= current_feature_args.item (4)
 f_return.copy(f)

 f_return_mutex.unlock

 -- now execution is back at CB at after

 -- the second x_mutex.lock
 …

 …

As we can see from the listing above the assignment x:=y.f will be translated

into y.set_feature_to_do([Current,"f_STRING", x, x_mutex]), where x and its associated

mutex x_mutex are passed as additional arguments (in the case of commands this is not

necessary). We thus register the call of feature f with subsystem CA. Then we wait to

acquire the lock on x second time (x_mutex.lock). Now we will be waiting until the

lock is released in the CA subsystem. In feature execute of CA all the references to

function f are retrieved with the help of the feature get_feature_to_do. The

reference to x is placed into f_return, and the reference to x_mutex is placed into

f_return_mutex. Then feature f is executed and its result is assigned to

f_return, which is pointing to the same location in memory as x. Mutex

 Page 73

f_return_mutex can then be released (f_return_mutex.unlock) and the

execution will continue in subsystem CB, which will get hold of x_mutex and will

release it. Then the value of x can be used for the further calculations.

4.6 One-zero example

Consider the one-zero example shown in the BON diagram in Figure 4-7. This

example will be used to illustrate the code mappings and the operation of the Generator.

There are three classes: ROOT_CLASS (shown in Figure 4-8), PROCESS (shown in

Figure 4-9) and DATA (Appendix C).

Figure 4-7 BON diagram of zero-one

 Page 74

As can be seen from the BON diagram in Figure 4-7, class DATA has two integer

attributes x and y, and an invariant that asserts that both must either be zero or one.

Routine zero sets both attributers to zero and routine one sets them both to one.

Class PROCESS has access to an instance d of type DATA. Class PROCESS also

has an integer option, which can be passed via the make routine. An option of 0 tells

routine run to call d’s zero routine, an option of 1 tells run to call the d’s one routine,

and an option 2 tells run to call the d’s view routine.

separate class ROOT_CLASS creation

 make

feature

d: separate DATA

p1, p2, p3: PROCESS -- separate class

make is -- start three processes

 do

 io.putstring ("Test threads%N")

 create d.make

 create p1.make(d,0,"First")

 create p2.make(d,1,"Second")

 create p3.make(d,2,"Third")

 p1.run

 p2.run

 p3.run

 end

 end

Figure 4-8 ROOT_CLASS for ‘One-zero’ example

 Page 75

The creation procedure of the root class creates three processes p1, p2 and p3 (of

type PROCESS). The same data instance is passed to each process (with options 0, 1

and 2 respectively). Thus all three processes access the data subsystem simultaneously.

In a simple-minded implementation, each process operates in its own thread and

the zero and one routines in DATA are protected with a lock local to DATA. Without the

mapping of this chapter (each subsystem with its own call buffer etc.), the resulting

system will suffer from the concurrent precondition paradox (section 3.7). Thus, there

will be an invariant violation in DATA because one process may change the state of x

and y after an unlock but before the invariant is evaluated.

 Page 76

separate class PROCESS creation

make

feature

option: INTEGER

data: separate DATA

name: STRING

run is

 local i:INTEGER

do

 from until false

 loop

 if option = 0 then

 data.zero -- set data to zero

 elseif option = 1 then

 data.one -- set data to one

 else data.view;

 print_me

 end

 end

end

make(d: separate DATA; opt:INTEGER; n:STRING) is

 do

 data := d

 option := opt

 name := n

 end

print_me is

 do

 print("%N" + name + " just ran" + "%N")

 end

 end

Figure 4-9 PROCESS for ‘One-zero’ example

 Page 77

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

SCOOP creation routine

separate class
ROOT_CLASS
feature

p1,p2,p3: PROCESS

d: separate DATA

make is
do

create d.make

create p1.make
(d,0,“First”)

create p2.make
(d,0,“Second”)

create p3.make
(d,0,“Third”)

p1.run

p2.run

p3.run

end

Generated Code

class ROOT_CLASS inherit
 THREAD
feature
request_pended: INTEGER_REF
requests_pended_mutex: MUTEX

p1, p2, p3: PROCESS

d:DATA
d_mutex: MUTEX

make is
do
requests_pended := 1

create d_mutex
d_mutex.lock
create d.make
d_mutex.unlock

create p1.make (d, d_mutex, 0,"First",
 requests_pended, requests_pended_mutex)
p1.launch

create p2.make (d, d_mutex, 1, "Second",
 requests_pended, requests_pended_mutex)
p2.launch

create p3.make (d, d_mutex, 2, "Third",
 requests_pended, requests_pended_mutex)
p3.launch

p1.set_feature_to_do ([Current,
"RUN_STRING"])

p2.set_feature_to_do ([Current,
"RUN_STRING"])

p3.set_feature_to_do ([Current,
"RUN_STRING"])

requests_pended_mutex.lock
requests_pended.copy(requests_pended-1)
requests_pended_mutex.unlock

join_all

end

Figure 4-10 Mapping from SCOOP to generated code for creation procedure

 Page 78

We now describe how the zero-one example is mapped to generated code.

Consider the creation procedure make in the ROOT_CLASS (Figure 4-8). The mapping

from SCOOP to generated code for make is shown in Figure 4-10. Recall that the

generated code for the root class must manage the requests_pended global variable

that keeps track of all separate calls across all subsystems (Section 4.2). The mapping

works as follows:

1. At lines 1-2 in Figure 4-10, the generated ROOT_CLASS must inherit

from THREAD.

2. At lines 4-5 requests_pended is declared with its lock.

3. At line 9, the separate keyword is stripped from d, and a corresponding

lock d_mutex is declared (section 4.2).

4. At line 14, requests_pended is temporarily initialized to a value of 1.

As shown in Figure 4-3 (section 4.3) the stopping condition for the

execute routines in the generated code for the PROCESS subsystems is

when requests_pended reaches zero. At lines 42-44

requests_pended will be decremented by one, but this is only after

the top-level calls p1.run, p2.run and p3.run are registered with the

appropriate subsystems. Thus, the subsystem execute routines are

guaranteed not to exit until all the top-level routines (and hence all their

sub-calls) are registered and executed. Recall that requests_pended is

incremented by one at every call registered and decremented by one when

the call is later executed (section 4.2).

 Page 79

5. At lines 16-18, the call to create d is wrapped with the appropriate lock.

6. At lines 21-23, process p1 is created. In the generated code, additional

arguments must be passed in the creation routine. Data d must be passed

with its lock, and requests_pended with its lock. Then p1.launch

is called to initiate the thread (and hence the subsystem). In turn, launch

calls p1’s execute (effected from THREAD) as described in Section 4.2.

7. The same is done for the other two processes p2 (at lines 25-27) and p3

(at lines 29-31).

8. Each call to a subsystem must be translated into a register of the calls with

the subsystem’s buffer (section 4.2). The SCOOP call p1.run at line 33

must thus be mapped to a buffer call via set_features_to_do. The

same call registration must take place for p2.run (lines 36-37) and

p3.run (lines 39-40).

9. At lines 42-44, requests_pended must be decremented as explained

above in step 4, wrapped with the appropriate lock.

10. At line 47, join_all must be invoked. When all execute routines in

the various subsystems exit (when requests_pended reaches zero),

then the system exits and terminates.

4.7 Mapping separate preconditions to wait conditions
In section 3.7, we described a separate call semantics so that SCOOP

separate preconditions are treated as wait conditions rather than correctness

 Page 80

conditions. We must now show how to map the SCOOP routine shown in Figure 4-11 to

generated code.

separate class SOME_CLASS ..
a: separate TYPE

r(x1: separate TYPE1, x2: separate: TYPE2; x3: TYPE3) is
 require
 x1_validity: x1 /=Void
 x2_validity: x2 /= Void
 a_validity: a /= Void
 x3_validity: x3 /= Void
 do
 -- routine’s body
 end
end
…

end
Figure 4:11 Separate preconditions (from Section 3.7)

The generated code is shown in Figure 4-12.

r(x1: TYPE1; x1_mutex:MUTEX; x2: TYPE2; x2_mutex:MUTEX; x3: TYPE3) is

require
 x3_validity: x3 /= Void

local
 scoop_require_wait_flag: BOOLEAN

 access_lock: ACCESS_LOCK
 do

from
 scoop_require_wait_flag := False

 create global_lock
 until
 scoop_require_wait_flag
 loop

 global_lock.data.mutex.lock
 x1_mutex.lock
 x2_mutex.lock
 a_mutex.lock
 global_lock.data.mutex.unlock

if (x1 /=Void) and (x2 /=Void) and (a /=Void)
 then
 -- body
 scoop_require_wait_flag := True
 end
 x1_mutex.unlock
 x2_mutex.unlock
 a_mutex.unlock
 sleep(n) -- default n = 50 millisceconds
 end
 end

Figure 4.12 Mapping of separate preconditions to wait conditions

 Page 81

The non-separate precondition remains a regular require clause as shown in

Figure 4-12. A busy-wait loop must be constructed for the separate preconditions. In

the loop:

• We block until we obtain a lock on all the separate entities;

• Once all the separate entities are locked, we evaluate all the

separate preconditions and set an exit flag if they all evaluate to true;

• We unlock all the separate entities thus allowing other subsystems to

access them;

• Finally we sleep for a number of time units that is an option in the

Generator before checking the separate preconditions again. This

ensures that the busy-wait loop does not use up time cycles unnecessarily.

The code
global_lock.data.mutex.lock

 x1_mutex.lock
 x2_mutex.lock
 a_mutex.lock
 global_lock.data.mutex.unlock
makes use of the singleton design pattern to create a global lock. The class

GLOBAL_LOCK has a feature mutex. The class ACCESS_LOCK has a once routine

data of type GLOBAL_LOCK. Thus, global_lock.data.mutex always refers to the

same global mutex. This prevents the type of deadlock in which one process has a handle

on x1_mutex and another process on x2_mutex.

4.8 The Generator

The Generator is invoked as follows:

 Page 82

generator <input-folder> <scoop-project-file-name> <output-folder> [<sleep>]

where sleep is a nonnegative integer in milliseconds (the sleep parameter in the busy-wait

loop). All SCOOP separate classes in corresponding *.es files must be in the input-

folder. The generated standard Eiffel *.e files are placed in the output-folder. The scoop-

project-file-name is an Eiffel SCOOP project file (*.esp) as described in Section 4.1. It is

similar to an Eiffel Ace file.

The Generator extracts each class C in the project *.esp file and processes the

SCOOP classes one by one. Each class C is translated to generated class CG and saved as

an appropriate text file in the output folder.

Case 1: If C is the root class then the Generator proceeds as follows:

• CG inherits from THREAD_CONTROL and uses the mapping in Sections 4.1 and

4.2 for requests_pended and the creation routine.

• The Generator scans the rest of the file line by line until the separate keyword is

found.

• The Generator then uses the appropriate mapping depending on whether the

keyword is involved in:

o a separate attribute (section 4.2);

o a separate routine (section 4.5)

Case 2: If C is a separate class that is not the root, then

• CG inherits from THREAD.

 Page 83

• The request_buffer queue and execute routines are inserted into CG as

described in sections 4.3 and 4.4.

• The Generator scans the rest of the file line by line until the separate keyword is

found.

• The Generator then uses the appropriate mapping depending on whether the

keyword is involved in:

o a separate attribute (section 4.2);

o a separate routine (section 4.5)

The Generator’s accepting grammar is a subset of the Eiffel grammar. It has the

following restrictions:

• Each command must be on a separate line;

• Consequently the use of ‘;’ to separate commands on one line is unsupported;

• The keywords must be lower case and the creation clauses are denoted only by the

keyword creation.

• Other than the separate keyword, Generator assumes that we are dealing with

legal Eiffel text.

• The separate keyword is illegal as a local entity of a routine. Since local

entities can only be accessed by the encapsulating feature clause, it would be

nonsensical to declare a local entity as separate due to the guarantee that only

one processor is allocated per object, and therefore there will only be one thread at

the feature level handling it.

 Page 84

• Only one instance of the root class is allowed, as this class manages

requests_pended.

The original version of the Generator was developed using ISE EiffelStudio 5.0. It

has remained compatible up to an including the current version 5.4. While the ISE Eiffel

compiler was used to translate the generated code from Eiffel to C, the Microsoft C

compiler (included with Visual Studio .NET) was used to compile from C to executable

code. Due to major differences in C to executable code compilation, the Borland C

compiler generates invalid code when compiling the generator. At the time of this

writing, ISE is investigating the problem.

The Generator was tested on a number of examples of different complexity. The

target code produced by Generator was compiled on different platforms (Windows, Unix,

Linux, Mac) using standard Eiffel compilers.

 Page 85

Chapter 5 – Conclusion

Eiffel’s powerful features such as Design by Contract, genericity, multiple

inheritance, and seamless and reversible design and code generation via BON, make it a

productive environment for developing quality code.

The SCOOP framework adds concurrency to Eiffel, via the addition of only one

keyword (separate), while preserving all the other features of Eiffel. This concurrent

framework removes many areas of difficulty in concurrent programming. In particular,

constructs involving mutual exclusion, atomicity, condition variables and synchronization

are considerably simplified, and issues such as the inheritance anomaly are virtually

removed.

Until this thesis, the only SCOOP implementation was that of (Compton 2000).

The Compton implementation was a groundbreaking work implementing many of the

features of SCOOP for the first time. The Compton implementation did not however

implement some main features of SCOOP. For example, the conversion of separate

preconditions into wait conditions was not supported. Nor were “once” globals correctly

implemented. Also, Compton’s implementation was via a compiler modification to an

open source compiler called SmallEiffel. However, Compton’s work is no longer

compatible with the latest version of this compiler (called SmartEiffel).

In this thesis we followed a different approach. Instead of modifying a compiler,

we describe and build a Generator that automatically maps SCOOP programs to standard

Eiffel together with a cross-platform thread library (Eiffel+Threads). This approach

allows us to study SCOOP while maintaining compatibility with new compiler

 Page 86

developments. The downside is that we do not have a SCOOP debugger but must use the

standard Eiffel debuggers instead. The main contributions of this thesis include:

• An analysis of Meyer’s SCOOP framework especially the various

implementation issues that arise in this context. In chapter 3, we develop a

model of SCOOP using the notion of a subsystem.

• In Chapter 4 we provide a mapping from SCOOP programs to code in

Eiffel+Threads in terms of the model;

• Chapter 4 also describes a Generator, implemented in standard Eiffel that

automatically translates SCOOP code to executable multi-threaded Eiffel

using the mapping.

• We thus provide the first workable and complete cross-platform SCOOP

capability that should prove easy to maintain even in the face of new Eiffel

compiler enhancements.

• This SCOOP implementation is fully compatible with all standard Eiffel

features such as DbC, genericity and multiple inheritance.

The SCOOP Generator should be seen as a (“proof of concept”) prototype at this point

rather than industrial strength, until such time as its efficiency and correctness has been

validated against many large examples.

5.1 Future work
Some design decisions in the current Generator may need to be re-evaluated.

 Page 87

• In section 4.2, the decision was made to implement separate attributes

as conceptual subsystems rather than as actual subsystems. Further study

of the whole issue is needed as indicated in Section 4.2.

• In section 4.5.2, the busy-wait loop for converting separate

preconditions into wait conditions used a sleep mechanism so as not to

waste CPU cycles. A solution using condition variables might prove to be

more efficient.

5.2 Model Driven Development
As (Selic 2003) points out, using models to design complex systems is an

important part of traditional development. Models help us understand a complex problem

and its potential solutions through abstraction. Therefore, it seems obvious that software

systems, which are often among the most complex engineering systems, can benefit

greatly from using models and modelling techniques.

Surprisingly models in software engineering are used infrequently and, even when

used, they often play a secondary role. Yet, as (Selic 2003) writes, the potential benefits

of using models are significantly greater in software than in any other engineering

discipline. Model-driven development (MDD) methods were devised to take advantage of

this opportunity, and the claim is now being made that accompanying technologies have

matured to the point where they are generally useful (Mellor 2002).

UML version 2.0 has been developed with MDD in mind. The major advantage of

the model-enhanced UML is that we express models using concepts that are much less

bound to the underlying implementation technology and are much closer to the problem

 Page 88

domain relative to most popular programming languages. This level of abstraction makes

the models easier to specify, understand, and maintain.

The UML notion of structured classes and components having their own thread of

execution is considered to be an important building block of MDD, together with

traditional models such as class diagrams, statecharts and collaboration diagrams. A

separate SCOOP class would appear to be an abstract version of the UML notion of a

structured class. For example, if we want to create a diagram of Producer-Consumer in

Java, we will need to go quite low-level to show inheritance from THREAD, synchronized

methods, wait-notifyAll (Figure 5-2). To present the same in SCOOP we will just have to

declare CONSUMER and PRODUCER as separate in our diagram (Figure 5-1).

This brings us into totally different level of abstraction, allowing us to model software on

much higher level. Thus SCOOP may have an important role to play in the currently

evolving MDD frameworks.

F

Figure 5-1 Producer-Consumer SCOOP

 Page 89

Figure 5-2 Producer-Consumer Java

 Page 90

Appendices

Appendix A. Eiffel Thread Class

indexing
 description: "Class defining an Eiffel thread."
 status: "See notice at end of class."
 date: "$Date: 2003/04/25 22:53:21 $"
 revision: "$Revision: 1.1 $"

deferred class
 THREAD

inherit
 THREAD_CONTROL

feature -- Access

 thread_id: POINTER
 -- Pointer to the thread-id of the current thread object.

feature -- Basic operations

 execute is
 -- Routine executed by new thread.
 deferred
 end

 launch is
 -- Initialize a new thread running `execute'.
 do
 create_thread (Current, $thr_main)
 thread_id := last_created_thread
 end

 launch_with_attributes (attr: THREAD_ATTRIBUTES) is
 -- Initialize a new thread running `execute', using attributes.
 do
 create_thread_with_args (Current, $thr_main, attr.priority,
 attr.scheduling_policy, attr.detached)
 thread_id := last_created_thread
 end

feature {NONE} -- Implementation

 frozen thr_main is
 do
 thread_id := get_current_id

 Page 91

 execute
 end

feature {NONE} -- Externals

 create_thread (current_obj: THREAD; init_func: POINTER) is
 -- Initialize and start thread.
 external
 "C signature (EIF_OBJECT, EIF_POINTER) use %"eif_threads.h%""
 alias
 "eif_thr_create"
 end

 create_thread_with_args (current_obj: THREAD; init_func: POINTER; priority, policy:
 INTEGER; detach: BOOLEAN) is
 -- Initialize and start thread, after setting its priority
 -- and scheduling policy.
 external
 "C signature (EIF_OBJECT, EIF_POINTER, EIF_INTEGER,
 EIF_INTEGER, EIF_BOOLEAN) use %"eif_threads.h%""
 alias
 "eif_thr_create_with_args"
 end

end -- class THREAD

 Page 92

Appendix B. Eiffel Mutex Class

indexing
 description: "Mutex synchronization object, allows threads to access global data through critical
sections."
 status: "See notice at end of class."
 date: "$Date: 2003/07/25 20:48:08 $"
 revision: "$Revision: 1.4 $"

class
 MUTEX

inherit
 MEMORY
 redefine
 dispose,
 default_create
 end

create
 default_create,
 make

feature -- Initialization

 default_create is
 -- Create mutex.
 do
 mutex_pointer := eif_thr_mutex_create
 ensure then
 valid_mutex: mutex_pointer /= default_pointer
 end

 make is
 obsolete "Use `default_create'"
 -- Create mutex
 do
 default_create
 ensure
 valid_mutex: mutex_pointer /= default_pointer
 end

feature -- Access

 is_set: BOOLEAN is
 -- Is mutex initialized?
 do
 Result := (mutex_pointer /= default_pointer)
 end

feature -- Status setting

 trylock: BOOLEAN is

 Page 93

 -- Has client been successful in locking mutex without waiting?
 -- Was declared in MUTEX as synonym of `has_locked'.
 require
 valid_mutex: is_set
 do
 Result := eif_thr_mutex_trylock (mutex_pointer)
 end

 has_locked: BOOLEAN is
 -- Has client been successful in locking mutex without waiting?
 -- Was declared in MUTEX as synonym of `trylock'.
 require
 valid_mutex: is_set
 do
 Result := eif_thr_mutex_trylock (mutex_pointer)
 end

 lock is
 -- Lock mutex, waiting if necessary until that becomes possible.
 require
 valid_mutex: is_set
 do
 eif_thr_mutex_lock (mutex_pointer)
 end

 unlock is
 -- Unlock mutex.
 require
 valid_mutex: is_set
 do
 eif_thr_mutex_unlock (mutex_pointer)
 end

 destroy is
 -- Destroy mutex.
 require
 valid_mutex: is_set
 do
 eif_thr_mutex_destroy (mutex_pointer)
 mutex_pointer := default_pointer
 end

feature {CONDITION_VARIABLE} -- Implementation

 mutex_pointer: POINTER
 -- C reference to the mutex.

feature {NONE} -- Removal

 dispose is
 -- Called by the garbage collector when the mutex is
 -- collected.
 do
 if is_set then
 destroy
 end

 Page 94

 end

feature {NONE} -- Externals

 eif_thr_mutex_create: POINTER is
 external
 "C | %"eif_threads.h%""
 end

 eif_thr_mutex_lock (a_mutex_pointer: POINTER) is
 external
 "C blocking use %"eif_threads.h%""
 end

 eif_thr_mutex_unlock (a_mutex_pointer: POINTER) is
 external
 "C | %"eif_threads.h%""
 end

 eif_thr_mutex_trylock (a_mutex_pointer: POINTER): BOOLEAN is
 external
 "C blocking use %"eif_threads.h%""
 end

 eif_thr_mutex_destroy (a_mutex_pointer: POINTER) is
 external
 "C | %"eif_threads.h%""
 end

end -- class MUTEX

 Page 95

 Appendix C. One-zero example

Listing 1a. SCOOP ROOT_CLASS

class
 ROOT_CLASS

create
 make

feature

 d: separate DATA

 p1: PROCESS

 p2: PROCESS

 p3: PROCESS

 make is
 do
 io.putstring ("Test threads%N")
 create d.make
 create p1.make (d, 0, "First")
 create p2.make (d, 1, "Second")
 create p3.make (d, 2, "Third")
 p1.run
 p2.run
 p3.run
 end

end -- class ROOT_CLASS

 Page 96

Listing 1b. Generated ROOT_CLASS

class
 ROOT_CLASS

inherit

 THREAD_CONTROL

create
 make

feature

 requests_pended: INTEGER_REF
 -- added by generator

 d_mutex: MUTEX
 -- Added by generator

 requests_pended_mutex: MUTEX
 -- added by generator

 is_requests_pended: BOOLEAN is
 do
 Result := True
 requests_pended_mutex.lock
 if requests_pended.is_equal (0) then
 Result := False
 end
 requests_pended_mutex.unlock
 end

 d: DATA

 p1: PROCESS

 p2: PROCESS

 p3: PROCESS

 make is
 do
 create requests_pended_mutex.default_create
 requests_pended := 1
 create d_mutex.default_create
 io.putstring ("Test threads%N")
 d_mutex.lock
 create d.make
 d_mutex.unlock

 Page 97

create p1.make (d, d_mutex, 0, "First", requests_pended,
 requests_pended_mutex)
 p1.launch
 create p2.make (d, d_mutex, 1, "Second", requests_pended,

 requests_pended_mutex)
 p2.launch
 create p3.make (d, d_mutex, 2, "Third", requests_pended,

 requests_pended_mutex)
 p3.launch
 p1.set_feature_to_do ([Current, "RUN_STRING"])
 p2.set_feature_to_do ([Current, "RUN_STRING"])
 p3.set_feature_to_do ([Current, "RUN_STRING"])

 requests_pended_mutex.lock
 requests_pended.copy (requests_pended - 1)
 requests_pended_mutex.unlock
 join_all
 end

end -- class ROOT_CLASS

 Page 98

Listing 2a. SCOOP PROCESS Class

separate class
 PROCESS

create
 make

feature

 option: INTEGER
 -- option 0 sets x,y in shared data d to zero
 -- option 1 sets x,y in shared data d to one
 -- option 2 just views and prints the shared data

 data: separate DATA -- shared data from calling process

 name: STRING
 -- name of this process

 make (d: separate DATA; opt: INTEGER; n: STRING) is
 do
 data := d
 option := opt
 name := n
 end

 run is
 -- option 0 sets x,y in shared data d to zero
 -- option 1 sets x,y in shared data d to one
 -- option 2 just views and prints the shared data
 do
 from
 until
 False
 loop
 if option = 0 then
 data.zero
 elseif option = 1 then
 data.one
 else
 data.view
 print_me
 end
 end
 end

 Page 99

print_me is
 -- print this process name
 do
 print ("%N" + name + " just ran" + "%N")
 end

end -- class PROCESS

 Page 100

Listing 2b. Generated PROCESS Class

class
 PROCESS

inherit
 THREAD

create
 make

feature

 execute is
 do
 from
 until
 not is_requests_pended
 loop
 current_feature_args := get_feature_to_do
 current_feature_name ?= current_feature_args.item (2)
 if not current_feature_name.is_equal ("NOTHING") then
 if current_feature_name.is_equal ("RUN_STRING") then
 run
 end
 if current_feature_name.is_equal ("PRINT_ME_STRING")
 then
 print_me
 end
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended - 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.start
 request_buffer.remove
 request_buffer_mutex.unlock
 end
 end
 end

 data_mutex: MUTEX -- Added by generator

 -- Added by generator

 requests_pended: INTEGER_REF

 requests_pended_mutex: MUTEX

 request_buffer: LINKED_LIST [TUPLE]

 request_buffer_mutex: MUTEX

 Page 101

 current_feature_args: TUPLE

 current_feature_name: STRING

 is_requests_pended: BOOLEAN is
 do
 Result := True
 requests_pended_mutex.lock
 if requests_pended.is_equal (0) then
 Result := False
 end
 requests_pended_mutex.unlock
 end

 set_feature_to_do (feature_params_arg: TUPLE) is
 do
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended + 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.extend (feature_params_arg)
 request_buffer_mutex.unlock
 end

 get_feature_to_do: TUPLE is
 do
 request_buffer_mutex.lock
 if not request_buffer.is_empty then
 Result := request_buffer.first
 else
 Result := [Current, "NOTHING"]
 end
 request_buffer_mutex.unlock
 end

 option: INTEGER
 -- option 0 sets x,y in shared data d to zero
 -- option 1 sets x,y in shared data d to one
 -- option 2 just views and prints the shared data

 data: DATA
 -- shared data from calling process

 name: STRING
 -- name of this process

make (d: DATA; d_mutex: MUTEX; opt: INTEGER; n: STRING; requests_pended_arg: INTEGER_REF;
 requests_pended_mutex_arg: MUTEX) is
 do
 requests_pended := requests_pended_arg
 requests_pended_mutex := requests_pended_mutex_arg
 current_feature_name := "NOTHING"

 Page 102

 create current_feature_args.make
 create request_buffer.make
 create request_buffer_mutex.default_create
 create data_mutex.default_create
 data_mutex := d_mutex
 data := d
 option := opt
 name := n
 end

 run is
 -- option 0 sets x,y in shared data d to zero
 -- option 1 sets x,y in shared data d to one
 -- option 2 just views and prints the shared data
 do
 from
 until
 False
 loop
 if option = 0 then
 data_mutex.lock
 data.zero
 data_mutex.unlock
 elseif option = 1 then
 data_mutex.lock;
 data.one;
 data_mutex.unlock
 else
 data_mutex.lock
 data.view
 data_mutex.unlock
 print_me
 end
 end
 end

 print_me is
 -- print this process name
 do
 print ("%N" + name + " just ran" + "%N")
 end

end -- class PROCESS

 Page 103

Listing 3. DATA class
indexing
 description: "data to illustrate pthreads"
 author: "JSO"
 date: "$Date: $"
 revision: "$Revision: $"

class
 DATA

inherit
 ANY

create
 make

feature

 x: INTEGER
 -- Was declared in DATA as synonym of `y'.

 y: INTEGER
 -- Was declared in DATA as synonym of `x'.

 make is
 -- set to zero
 do
 x := 0
 y := 0
 end

 zero is
 do
 x := 0
 y := 0
 end

 one is
 do
 x := 1
 y := 1
 end

 get_x: INTEGER is
 -- gets value of x
 do
 Result := x
 end

 view is
 do
 io.put_string ("%NPrinting data x, y%N")
 io.put_integer (x)
 io.put_string ("%T")

 Page 104

 io.put_integer (y)
 check
 date_view_check: (x = 1 and y = 1) or (x = 0 and y = 0)
 end
 end

end -- class DATA

 Page 105

Listing 4. ONE-ZERO class diagram

d: separate DATA

p1:PROCESS

p2:PROCESS

p3:PROCESS
make

separate ROOT_CLASS

Invariant

DATA

x,y: INTEGER

zero
ensure x=0 and y= 0one
ensure x=1 and y=1view

make

(x=0 and y=0) or (x=1 and y=1))

option: INTEGER

run

make(d:separate DATA, opt: INTEGER, n: STRING)

d: separate DATA

print_me

separate PROCESS

Figure C-1: ONE-ZERO class diagram

 Page 106

Appendix D. Consumer – Producer Examples

Listing 1a. SCOOP ROOT_CLASS class

class
 ROOT_CLASS

create
 make

feature -- Initialization

 b: separate BUFFER

 p: PRODUCER

 c: CONSUMER

 make is
 -- Creation procedure.
 do
 create b.make
 create p.make (b)
 create c.make (b)
 end

end -- class ROOT_CLASS

 Page 107

Listing 1b. Generated ROOT_CLASS class

class
 ROOT_CLASS

inherit
 EXCEPTIONS

 THREAD_CONTROL

create
 make

feature

 requests_pended: INTEGER_REF
 -- added by generator

 b_mutex: MUTEX
 -- Added by generator

 requests_pended_mutex: MUTEX
 -- added by generator

 is_requests_pended: BOOLEAN is
 do
 Result := True
 requests_pended_mutex.lock
 if requests_pended.is_equal (0) then
 Result := False
 end
 requests_pended_mutex.unlock
 end

 rescue_scoop (who_caused: STRING; what_caused: STRING) is
 do
 io.put_string ("Assertion violated in " + who_caused + ": " + what_caused)
 raise ("Assertion " + what_caused + " violated in " + who_caused)
 end

 b: BUFFER

 p: PRODUCER

 c: CONSUMER

 make is
 -- Creation procedure.
 do
 create requests_pended_mutex.default_create
 requests_pended := 1
 create b_mutex.default_create
 b_mutex.lock
 create b.make

 Page 108

 b_mutex.unlock
 create p.make (b, b_mutex, requests_pended, requests_pended_mutex)
 p.launch
 create c.make (b, b_mutex, requests_pended, requests_pended_mutex)
 c.launch
 from
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended - 1)
 requests_pended_mutex.unlock
 until
 not is_requests_pended
 loop
 end
 join_all
 end

end -- class ROOT_CLASS

 Page 109

Listing 2a. SCOOP PRODUCER class

separate class
 PRODUCER
create
 make

feature {NONE}

 buffer: separate BUFFER

 make (b: separate BUFFER) is
 -- Initialize `Current'.
 do
 buffer := b
 keep_producing
 end

 keep_producing is
 local
 i: INTEGER
 do
 from
 until
 False
 loop
 i := (i + 1) \\ 5
 produce (buffer, i)
 end
 end

 produce (b: BUFFER; i: INTEGER) is
 require
 b.count <= 2
 do
 b.put (i)
 end

end -- class PRODUCER

 Page 110

Listing 2b. Generated PRODUCER class

class
 PRODUCER

inherit
 THREAD

 EXCEPTIONS

create
 make

feature {NONE}

 execute is
 local
 produce_b: BUFFER
 produce_b_mutex: MUTEX
 produce_i: INTEGER
 do
 from
 until
 not is_requests_pended
 loop
 current_feature_args := get_feature_to_do
 current_feature_name ?= current_feature_args.item (2)
 if not current_feature_name.is_equal ("NOTHING") then
 if current_feature_name.is_equal
 ("KEEP_PRODUCING_STRING") then
 keep_producing
 end
 if current_feature_name.is_equal ("PRODUCE_STRING")
 then
 produce_b ?= current_feature_args.item (3)
 produce_b_mutex ?= current_feature_args.item (4)
 produce_i := current_feature_args.integer_item (5)
 produce (produce_b, produce_b_mutex, produce_i)
 end
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended - 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.start
 request_buffer.remove
 request_buffer_mutex.unlock
 end
 end
 end

 buffer_mutex: MUTEX
 -- Added by generator
 -- Added by generator

 Page 111

 requests_pended: INTEGER_REF

 requests_pended_mutex: MUTEX

 request_buffer: LINKED_LIST [TUPLE]

 request_buffer_mutex: MUTEX

 current_feature_args: TUPLE

 current_feature_name: STRING

 is_requests_pended: BOOLEAN is
 do
 Result := True
 requests_pended_mutex.lock
 if requests_pended.is_equal (0) then
 Result := False
 end
 requests_pended_mutex.unlock
 end

 set_feature_to_do (feature_params_arg: TUPLE) is
 do
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended + 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.extend (feature_params_arg)
 request_buffer_mutex.unlock
 end

 get_feature_to_do: TUPLE is
 do
 request_buffer_mutex.lock
 if not request_buffer.is_empty then
 Result := request_buffer.first
 else
 Result := [Current, "NOTHING"]
 end
 request_buffer_mutex.unlock
 end

 buffer: BUFFER

 make (b: BUFFER; b_mutex: MUTEX; requests_pended_arg: INTEGER_REF;
requests_pended_mutex_arg: MUTEX) is
 -- Initialize `Current'.
 do
 requests_pended := requests_pended_arg
 requests_pended_mutex := requests_pended_mutex_arg
 current_feature_name := "NOTHING"
 create current_feature_args.make
 create request_buffer.make
 create request_buffer_mutex.default_create
 create buffer_mutex.default_create

 Page 112

 buffer_mutex := b_mutex
 buffer := b
 set_feature_to_do ([Current, "KEEP_PRODUCING_STRING"])
 end

 keep_producing is
 local
 i: INTEGER
 do
 from
 until
 False
 loop
 i := (i + 1) \\ 5
 produce (buffer, buffer_mutex, i)
 end
 end

 produce (b: BUFFER; b_mutex: MUTEX; i: INTEGER) is
 local
 scoop_require_wait_flag: BOOLEAN
 do
 from
 scoop_require_wait_flag := False
 until
 scoop_require_wait_flag
 loop
 b_mutex.lock
 if (b.count <= 2) then
 b.put (i)
 scoop_require_wait_flag := True
 end
 b_mutex.unlock
 end
 end

end -- class PRODUCER

 Page 113

Listing 3a. SCOOP CONSUMER class

separate class
 CONSUMER

create
 make

feature {NONE}

 buffer: separate BUFFER

 make (b: separate BUFFER) is
 -- Initialize `Current'.
 do
 buffer := b
 keep_consuming
 end

 keep_consuming is
 do
 from
 until
 False
 loop
 consume (buffer)
 end
 end

 consume (b: separate BUFFER) is
 require
 b.count > 0
 do
 b.remove
 end

end -- class CONSUMER

 Page 114

Listing 3b. Generated CONSUMER class

class
 CONSUMER

inherit
 THREAD

 EXCEPTIONS

create
 make

feature {NONE}

 execute is
 local
 consume_b: BUFFER
 consume_b_mutex: MUTEX
 do
 from
 until
 not is_requests_pended
 loop
 current_feature_args := get_feature_to_do
 current_feature_name ?= current_feature_args.item (2)
 if not current_feature_name.is_equal ("NOTHING") then
 if current_feature_name.is_equal
 ("KEEP_CONSUMING_STRING") then
 keep_consuming
 end
 if current_feature_name.is_equal ("CONSUME_STRING")
 then
 consume_b ?= current_feature_args.item (3)
 consume_b_mutex ?= current_feature_args.item (4)
 consume (consume_b, consume_b_mutex)
 end
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended - 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.start
 request_buffer.remove
 request_buffer_mutex.unlock
 end
 end
 end

 buffer_mutex: MUTEX
 -- Added by generator
 -- Added by generator

 requests_pended: INTEGER_REF

 Page 115

 requests_pended_mutex: MUTEX

 request_buffer: LINKED_LIST [TUPLE]

 request_buffer_mutex: MUTEX

 current_feature_args: TUPLE

 current_feature_name: STRING

 is_requests_pended: BOOLEAN is
 do
 Result := True
 requests_pended_mutex.lock
 if requests_pended.is_equal (0) then
 Result := False
 end
 requests_pended_mutex.unlock
 end

 set_feature_to_do (feature_params_arg: TUPLE) is
 do
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended + 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.extend (feature_params_arg)
 request_buffer_mutex.unlock
 end

 get_feature_to_do: TUPLE is
 do
 request_buffer_mutex.lock
 if not request_buffer.is_empty then
 Result := request_buffer.first
 else
 Result := [Current, "NOTHING"]
 end
 request_buffer_mutex.unlock
 end

 buffer: BUFFER

make (b: BUFFER; b_mutex: MUTEX; requests_pended_arg: INTEGER_REF;
 requests_pended_mutex_arg: MUTEX) is
 -- Initialize `Current'.
 do
 requests_pended := requests_pended_arg
 requests_pended_mutex := requests_pended_mutex_arg
 current_feature_name := "NOTHING"
 create current_feature_args.make
 create request_buffer.make
 create request_buffer_mutex.default_create
 create buffer_mutex.default_create

 Page 116

 buffer_mutex := b_mutex
 buffer := b
 set_feature_to_do ([Current, "KEEP_CONSUMING_STRING"])
 end

 keep_consuming is
 do
 from
 until
 False
 loop
 consume (buffer, buffer_mutex)
 end
 end

 consume (b: BUFFER; b_mutex: MUTEX) is
 local
 scoop_require_wait_flag: BOOLEAN
 do
 from
 scoop_require_wait_flag := False
 until
 scoop_require_wait_flag
 loop
 b_mutex.lock
 if (b.count > 0) then
 b.remove
 scoop_require_wait_flag := True
 end
 b_mutex.unlock
 end
 end

end -- class CONSUMER

 Page 117

Listing 4. BUFFER class

class
 BUFFER

create
 make

feature

 count: INTEGER is
 do
 Result := q.count
 end

 item: INTEGER is
 -- front
 do
 Result := q.item
 end

 put (x: INTEGER) is
 -- enquue `x'
 require
 count <= 3
 do
 q.put (x)
 print ("PUT")
 io.new_line
 ensure
 count = old count + 1
 q.has (x)
 end

 remove is
 -- dequeue
 require
 count > 0
 do
 q.remove
 print ("REMOVE")
 io.new_line
 ensure
 count = old count - 1
 end

 Page 118

feature {NONE}

 q: QUEUE [INTEGER]

 make is
 -- initialize buffer
 do
 create {ARRAYED_QUEUE [INTEGER]} q.make (3)
 end

invariant

 inv: count <= 3

end -- class BUFFER

 Page 119

Listing 5. PRODUCER-CONSUMER class diagram

Figure D-1: PRODUCER-CONSUMER class diagram

 Page 120

Listing 6a. Java main Producer-Consumer Class

public class ProducerConsumer

{

 public static void main(String [] args)

 {

 Buffer b = new Buffer(4);

 Producer p = new Producer(b);

 Consumer c = new Consumer(b);

 p.start();

 c.start();

 }

}

 Page 121

Listing 6b. Java Buffer Class

public class Buffer {

protected Object[] buf;

protected int MAX;

protected int current = 0;

Buffer(int max) {

 MAX = max;

 buf = new Object[MAX];

 }

public synchronized Object get()

 throws Exception {

 while (current<=0) { wait(); }

 current--;

 Object ret = buf[current];

 notifyAll();

 return ret;

 }

public synchronized void put(Object v)

 throws Exception {

 while (current>=MAX) { wait(); }

 buf[current] = v;

 current++;

 notifyAll();

 }
}

 Page 122

Listing 6c. Java Producer Class

class Producer extends Thread {

 private Buffer buffer;

 Producer(Buffer b) { buffer = b; }

 public void run() {

 for(int i = 0; ; (i+1)%5) {

 buffer.Put(i); }

 }

}

 Page 123

Listing 6d. Java Consumer Class

class Consumer extends Thread {

 private Buffer buffer;

 Consumer(Buffer b) { buffer = b; }

 public void run() {

 for(int i = 0; ; i++) {

 buffer.Get(); }

 }

}

 Page 124

Appendix E. THREAD_CONTROL Class

indexing
 description: "Control over thread execution."
 status: "See notice at end of class."
 date: "$Date: 2003/07/25 20:48:08 $"
 revision: "$Revision: 1.2 $"

class
 THREAD_CONTROL

feature -- Basic operations

 yield is
 -- The calling thread yields its execution in favor of another
 -- thread.
 external
 "C | %"eif_threads.h%""
 alias
 "eif_thr_yield"
 end

 join_all is
 -- The calling thread waits for all other threads to terminate.
 external
 "C blocking use %"eif_threads.h%""
 alias
 "eif_thr_join_all"
 end

 join is
 -- The calling thread waits for the current child thread to
 -- terminate.
 do
 thread_wait (Current)
 end

 native_join (term: POINTER) is
 -- Same as `join' except that the low-level architecture-dependant
 -- routine is used. The thread must not be created detached.
 do
 thread_join (term)
 end

feature {NONE} -- Implementation

 terminated: BOOLEAN
 -- True if the thread has terminated.

feature {NONE} -- Externals

 thread_wait (term: THREAD_CONTROL) is
 -- The calling C thread waits for the current Eiffel thread to
 -- terminate.

 Page 125

 external
 "C blocking use %"eif_threads.h%""
 alias
 "eif_thr_wait"
 end

 thread_join (term: POINTER) is
 -- The calling thread uses the low-level join routine to
 -- join the current Eiffel thread.
 external
 "C blocking use %"eif_threads.h%""
 alias
 "eif_thr_join"
 end

 get_current_id: POINTER is
 -- Returns a pointer to the thread-id of the thread.
 external
 "C | %"eif_threads.h%""
 alias
 "eif_thr_thread_id"
 end

 last_created_thread: POINTER is
 -- Returns a pointer to the thread-id of the last created thread.
 external
 "C | %"eif_threads.h%""
 alias
 "eif_thr_last_thread"
 end

 exit is
 -- Exit calling thread. Must be called from the thread itself.
 external
 "C | %"eif_threads.h%""
 alias
 "eif_thr_exit"
 end

end -- class THREAD_CONTROL

 Page 126

Appendix F. Demo_Process Examples

Listing 1a. SCOOP ROOT_CLASS class

separate class
 ROOT_CLASS

create
 make

feature
 d: separate DATA
 p: separate PROCESS

 demo_process: DEMO_PROCESS

 make is
 do
 create d.make
 create p.make (d)
 p.some_feature (d)
 create demo_process.make (p)
 demo_process.demo_feature (d)
 end

end -- class ROOT_CLASS

 Page 127

Listing 1b. Generated ROOT_CLASS class

class
 ROOT_CLASS

inherit

 THREAD_CONTROL

create
 make

feature

 requests_pended: INTEGER_REF
 -- added by generator

 d_mutex: MUTEX
 -- Added by generator

 p_mutex: MUTEX
 -- Added by generator

 requests_pended_mutex: MUTEX
 -- added by generator

 is_requests_pended: BOOLEAN is
 do
 Result := True
 requests_pended_mutex.lock
 if requests_pended.is_equal (0) then
 Result := False
 end
 requests_pended_mutex.unlock
 end

 d: DATA

 p: PROCESS

 demo_process: DEMO_PROCESS
 -- int_result: INTEGER

 make is
 do
 create requests_pended_mutex.default_create
 requests_pended := 1
 create d_mutex.default_create
 create p_mutex.default_create
 d_mutex.lock
 create d.make
 d_mutex.unlock
 p_mutex.lock
 create p.make (d, d_mutex, requests_pended, requests_pended_mutex)

 Page 128

 p_mutex.unlock
 p_mutex.lock
 p.launch
 p_mutex.unlock
 p_mutex.lock
 p.set_feature_to_do ([Current, "SOME_FEATURE_STRING", d, d_mutex])
 p_mutex.unlock
 create demo_process.make (p, p_mutex, requests_pended,
requests_pended_mutex)
 demo_process.launch
 demo_process.set_feature_to_do ([Current, "DEMO_FEATURE_STRING", d,
d_mutex])
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended - 1)
 requests_pended_mutex.unlock
 join_all
 end

end -- class ROOT_CLASS

 Page 129

Listing 2a. SCOOP PROCESS class

separate class
 PROCESS

create
 make,
 second_make

feature

 data: separate DATA

 make(d:separate DATA) is

 do
 data := d
 data.one
 end

 second_make is
 do
 end

 no_arg_no_res_feature is
 do
 end

 some_feature (d: DATA) is
 require
 d_not_void: d /= void
 d_equal_to_zero: d.x = 0 and d.y = 0
 do
 d.one
 io.put_integer (d.x)
 io.put_integer (d.y)
 ensure
 d_equal_to_one: d.x = 1 and d.y = 1
 end

 another_feature: INTEGER is
 do
 Result := data.x
 end

 third_feature (d: DATA; i: INTEGER) is
 require
 d_equal_to_one: d.x = 1 and d.y = 1
 i_not_zero: i /= 0
 do
 check
 d_not_void: d /= void
 end
 d.zero

 Page 130

 io.put_integer (d.x)
 check
 d_not_void: d /= void
 end
 io.put_integer (d.y)
 ensure
 d_equal_to_zero: d.x = 0 and d.y = 0
 end

end -- class PROCESS

 Page 131

Listing 2b. Generated PROCESS class

class
 PROCESS

inherit
 THREAD

create
 make,
 second_make

feature

 data: DATA

 execute is
 local
 some_feature_d: DATA
 some_feature_d_mutex: MUTEX
 third_feature_d: DATA
 third_feature_d_mutex: MUTEX
 third_feature_i: INTEGER
 do
 from
 until
 not is_requests_pended
 loop
 current_feature_args := get_feature_to_do
 current_feature_name ?= current_feature_args.item (2)
 if not current_feature_name.is_equal ("NOTHING") then
 if current_feature_name.is_equal
 ("NO_ARG_NO_RES_FEATURE_STRING") then
 no_arg_no_res_feature
 end
 if current_feature_name.is_equal
 ("SOME_FEATURE_STRING") then
 some_feature_d ?= current_feature_args.item (3)
 some_feature_d_mutex ?= current_feature_args.item (4)
 some_feature (some_feature_d, some_feature_d_mutex)
 end
 if current_feature_name.is_equal
 ("THIRD_FEATURE_STRING") then
 third_feature_d ?= current_feature_args.item (3)
 third_feature_d_mutex ?= current_feature_args.item (4)
 third_feature_i := current_feature_args.integer_item (5)
 third_feature (third_feature_d, third_feature_d_mutex,
 third_feature_i)
 end
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended - 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.start

 Page 132

 request_buffer.remove
 request_buffer_mutex.unlock
 end
 end
 end

 data_mutex: MUTEX
 -- Added by generator
 -- Added by generator

 requests_pended: INTEGER_REF

 requests_pended_mutex: MUTEX

 request_buffer: LINKED_LIST [TUPLE]

 request_buffer_mutex: MUTEX

 current_feature_args: TUPLE

 current_feature_name: STRING

 is_requests_pended: BOOLEAN is
 do
 Result := True
 requests_pended_mutex.lock
 if requests_pended.is_equal (0) then
 Result := False
 end
 requests_pended_mutex.unlock
 end

 set_feature_to_do (feature_params_arg: TUPLE) is
 do
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended + 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.extend (feature_params_arg)
 request_buffer_mutex.unlock
 end

 get_feature_to_do: TUPLE is
 do
 request_buffer_mutex.lock
 if not request_buffer.is_empty then
 Result := request_buffer.first
 else
 Result := [Current, "NOTHING"]
 end
 request_buffer_mutex.unlock
 end

 make (d: DATA; d_mutex: MUTEX; requests_pended_arg: INTEGER_REF;
requests_pended_mutex_arg: MUTEX) is
 do

 Page 133

 requests_pended := requests_pended_arg
 requests_pended_mutex := requests_pended_mutex_arg
 current_feature_name := "NOTHING"
 create current_feature_args.make
 create request_buffer.make
 create request_buffer_mutex.default_create
 create data_mutex.default_create
 data_mutex := d_mutex
 data := d
 data_mutex.lock
 data.one
 data_mutex.unlock
 end

 second_make (requests_pended_arg: INTEGER_REF; requests_pended_mutex_arg: MUTEX) is
 do
 requests_pended := requests_pended_arg
 requests_pended_mutex := requests_pended_mutex_arg
 current_feature_name := "NOTHING"
 create current_feature_args.make
 create request_buffer.make
 create request_buffer_mutex.default_create
 create data_mutex.default_create
 end

 no_arg_no_res_feature is
 do
 end

 some_feature (d: DATA; d_mutex: MUTEX) is
 local
 scoop_require_wait_flag: BOOLEAN
 do
 from
 scoop_require_wait_flag := False
 until
 scoop_require_wait_flag
 loop
 d_mutex.lock
 if (d /= void) then
 if (d.x = 0 and d.y = 0) then
 d.one
 io.put_integer (d.x)
 io.put_integer (d.y)
 scoop_require_wait_flag := True
 end
 end
 d_mutex.unlock
 end
 end

 another_feature: INTEGER is
 do
 data_mutex.lock
 Result := data.x
 data_mutex.unlock

 Page 134

 end

 third_feature (d: DATA; d_mutex: MUTEX; i: INTEGER) is
 require
 i_not_zero: i /= 0
 local
 scoop_require_wait_flag: BOOLEAN
 do
 from
 scoop_require_wait_flag := False
 until
 scoop_require_wait_flag
 loop
 d_mutex.lock
 if (d.x = 1 and d.y = 1) then
 check
 d_not_void: d /= void
 end
 d.zero
 io.put_integer (d.x)
 check
 d_not_void: d /= void
 end
 io.put_integer (d.y)
 scoop_require_wait_flag := True
 end
 d_mutex.unlock
 end
 end

end -- class PROCESS

 Page 135

Listing 3a. SCOOP DEMO_PROCESS class

separate class
 DEMO_PROCESS

create
 make

feature -- process_var: separate PROCESS

 process_var: PROCESS

 make (p: separate PROCESS) is
 do
 process_var := p
 end

 demo_feature (d: separate DATA) is
 local
 i: INTEGER
 do
 i := 10
 process_var.third_feature (d, i)
 end

end -- class DEMO_PROCESS

 Page 136

Listing 3b. Generated DEMO_PROCESS class

class
 DEMO_PROCESS

inherit
 THREAD

create
 make

feature

 process_var: PROCESS

 execute is
 local
 demo_feature_d: DATA
 demo_feature_d_mutex: MUTEX
 do
 from
 until
 not is_requests_pended
 loop
 current_feature_args := get_feature_to_do
 current_feature_name ?= current_feature_args.item (2)
 if not current_feature_name.is_equal ("NOTHING") then
 if current_feature_name.is_equal
 ("DEMO_FEATURE_STRING") then
 demo_feature_d ?= current_feature_args.item (3)
 demo_feature_d_mutex ?= current_feature_args.item (4)
 demo_feature (demo_feature_d, demo_feature_d_mutex)
 end
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended - 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.start
 request_buffer.remove
 request_buffer_mutex.unlock
 end
 end
 end

 process_var_mutex: MUTEX
 -- Added by generator
 -- Added by generator

 requests_pended: INTEGER_REF

 requests_pended_mutex: MUTEX

 request_buffer: LINKED_LIST [TUPLE]

 Page 137

 request_buffer_mutex: MUTEX

 current_feature_args: TUPLE

 current_feature_name: STRING

 is_requests_pended: BOOLEAN is
 do
 Result := True
 requests_pended_mutex.lock
 if requests_pended.is_equal (0) then
 Result := False
 end
 requests_pended_mutex.unlock
 end

 set_feature_to_do (feature_params_arg: TUPLE) is
 do
 requests_pended_mutex.lock
 requests_pended.copy (requests_pended + 1)
 requests_pended_mutex.unlock
 request_buffer_mutex.lock
 request_buffer.extend (feature_params_arg)
 request_buffer_mutex.unlock
 end

 get_feature_to_do: TUPLE is
 do
 request_buffer_mutex.lock
 if not request_buffer.is_empty then
 Result := request_buffer.first
 else
 Result := [Current, "NOTHING"]
 end
 request_buffer_mutex.unlock
 end

 make (p: PROCESS; p_mutex: MUTEX; requests_pended_arg: INTEGER_REF;
 requests_pended_mutex_arg: MUTEX) is
 do
 requests_pended := requests_pended_arg
 requests_pended_mutex := requests_pended_mutex_arg
 current_feature_name := "NOTHING"
 create current_feature_args.make
 create request_buffer.make
 create request_buffer_mutex.default_create
 create process_var_mutex.default_create
 process_var_mutex := p_mutex
 process_var := p
 end

 demo_feature (d: DATA; d_mutex: MUTEX) is
 local
 i: INTEGER
 do

 Page 138

 i := 10
 process_var_mutex.lock
 process_var.set_feature_to_do ([Current, "THIRD_FEATURE_STRING", d,
 d_mutex, i])
 process_var_mutex.unlock
 end

end -- class DEMO_PROCESS

 Page 139

Appendix G. Inheritance Anomaly

Listing 1. Java Buffer class

public class Buffer {

 protected Object[] buf;
 protected int MAX;
 protected int current = 0;

 Buffer(int max) {
 MAX = max;
 buf = new Object[MAX];
 }
 public synchronized Object item()
 throws Exception {
 while (current<=0) { wait(); }
 current--;
 Object ret = buf[current];
 notifyAll();
 return ret;
 }
 public synchronized void put(Object v)
 throws Exception {
 while (current>=MAX) { wait(); }
 buf[current] = v;
 current++;
 notifyAll();
 }
}

 Page 140

Listing 2. Java Buffer2 class

public class Buffer2 extends Buffer {
 boolean afterGet = false;

 public HistoryBuffer(int max) { super(max);

 public synchronized Object item2()
 throws Exception {
 while ((current<=0)||(afterGet)) {
 wait();
 }
 afterGet = false;
 return super.get();
 }
 public synchronized Object item()
 throws Exception {
 Object o = super.get();
 afterGet = true;
 return o;
 }
 public synchronized void put(Object v)
 throws Exception {
 super.put(v);
 afterGet = false;
 }
}

 Page 141

 References

Agha, G. (1986). "Actors: A Model of Concurrent Computation in Distributed Systems."

Series in Artificial Intelligence, MIT Press, Cambridge, MA.

Arjormandi, E., W. G. O'Farrel, I. Kalas, G. Koblents, F. C. Eigler and G. G. Gao (1995).
"ABC++: Concurrency by Inheritance in C++." IBM Systems Journal 34(1): 120-
136.

Briot, J.-P. (1996). An experiment in classification and specialization of synchronisation
schemes. Proceedings of the Second International Symposium on Object
Technologies for Advanced Software (ISOTAS '96). Computer Science, Springer-
Verlag, New York.

Briot, J.-P. (1998). "Concurrency and distribution in object-oriented programming." ACM
Computing Surveys Vol. 30(3).

Bruno, J. and M. Karaorman (1993). "Introducing concurrency to a sequential language."
ACM Computing Surveys ACM 36.(9): 103-116.

Caromel, D. (1989). "Service, Asynchrony, and Wait-by-Necessity." Journal of Object-
Oriented Programming 2(4):12--18.

Caromel, D. (1990). "Concurrency and reusability: From sequetial to parallel." Object
Oriented Program 3.

Compton, M. (2000). SCOOP: An Investigation of Concurrency in Eiffel. Department of
Computer Science, The Australian National University.

Garbinato, B., R. Guerraoui and K. Mazouni (1994). Distributed programming in GARF.
Workshop on Object-Based Distributed Programming, Springer-Verlag.

Gunaseelan, L. and R. LeBlank (1992). Distributed Eiffel: A language for programming
multi-granular distributed objects. Proceedings of the Fourth International
Conference on Computer Languages. IEEE Computer, Los Alamitos, Calif.

 Page 142

ISE (2003). Eiffel Software - the Home of EiffelStudio and Eiffel ENViSioN.

Jalloul (2000). "Communicating Sequential Systems." Journal of Object-Oriented
Programming: 7.

Jezequel, J.-M. (1993). "EPEE: An Eiffel Environment to program distributed-memory
parallel computers." Object Oriented Program 6(2).

Kafura, D. and K. Lee (1990). "ACT++: Building a concurrent C++ with actors." Object
Oriented Program 3(1).

Kiczales, G., D. Riviers and D. Bobrow (1991). "The Art of the Meta-Object Protocol."
MIT Press, Cambridge, MA.

Lohr, K.-P. (1993). "Concurrency annotations for reusable software." ACM Computing
Surveys ACM 36(9): 81-89.

Matsuoka, S. and A. Yonezawa (1993). "Analysis of inheritance anomaly in object-
oriented concurent programming languages." MIT Press(Research Directions in
Concurrent Object-Oriented Programming).

McAffer, J. (1995). Meta-level Programming with CodA. Proceedings of the European
Conference on Object-Oriented Programming (ECOOP '95), Springer-Verlag,
New York.

McDowell, E. and D. Helmbold (1989). "Debugging Concurrent Programs." ACM
Computing Surveys 21(4): 593-622.

Mellor, S. J. and M. J. Balcer (2002). Executable UML.

Meyer, B. (1997). Object-Oriented Software Construction, Second Edition, Prentice Hall.

Milicia, G. (2003). "The inheritance anomaly: ten years after." Chi Spaces Technologies
ltd.

Nienaltowski, P. (2003). "SCOOPLI: a library for concurrent object-oriented
programming on .NET."

 Page 143

P.H.M. America: A. Yonezawa and M. Tokoro (1987). "Pool-T: A parallel object-
oriented language." Eds. Computer Systems Series, MIT Press, Cambridge, MA.

Selic, B. (2003). "The Pragmatics of Model-Driven Development." IEEE Software.

Tokoro, M. and Y. Yokote (1987). Expirience and evolution of Concurrent SmallTalk.
Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languagesand Applications (OOPSLA '87). ACM SIGPLAN Not. ,22 12.

Tsichritzis, D. and O. Nierstrasz (1995). Concurrency in object-oriented programming
languages. Englewood Cliffs, NJ, Prentice Hall International.

Van den Bos, J. and C. Laffra (1991). "Procol - A concurrent object oriented language
with protocols, delegation and constraints." Acta Inf 28: 511-538.

Voss, M. J., I. Park and R. Eigenmann (1999). "On the Machine Independent Target
Language for Parallelizing Compilers."

Wegner, P. (1990). "Concept and Paradigms of Object-Oriented Programming." ACM
Computing Surveys 1(1).

Yonezawa, A., J.-P. Briot and E. Shibayama (1986). Object-Oriented Concurrent
Programming in ABCL/1. Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages and Applications(OOPSLA '86).
ACM SIGPLAN Not. 21, 11.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

