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Abstract. SCOOP is a concurrent programming language with a new semantics for contracts that applies
equally well in concurrent and sequential contexts. SCOOP eliminates race conditions and atomicity viola-
tions by construction. However, it is still vulnerable to deadlocks. In this paper we describe how far contracts
can take us in verifying interesting properties of concurrent systems using modular Hoare rules and show how
theorem proving methods developed for sequential Eiffel can be extended to the concurrent case. However,
some safety and liveness properties depend upon the environment and cannot be proved using the Hoare
rules. To deal with such system properties, we outline a SCOOP Virtual Machine (SVM) as a fair transition
system. The SVM makes it feasible to use model-checking and theorem proving methods for checking global
temporal logic properties of SCOOP programs. The SVM uses the Hoare rules where applicable to reduce
the number of steps in a computation.
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1. Introduction

Sequential programming has a widely accepted set of ideas such as standard control and data structuring
techniques, modularity, and information hiding constructs that now appear in object-oriented languages such
as Java and C#. There is also an increasing recognition that Design by Contract (DbC) plays an important
role in designing the system and documenting the contracts between classes [Mey97a, BLS02]. In DbC,
each class is described by a class invariant as well as preconditions and postconditions for each feature (i.e.
method or attribute). DbC is part of the Eiffel language and DbC extensions to Java (e.g. JML) and C#
(e.g. Spec#) have now been developed so as to make use of this specification facility for class interfaces
[LLM06, BCD+05, BDF+04, BDJ+05, BLS04, BCC+03, FLL+02, JLPS05, LLP+00, LM99, LM06].

Correspondence and offprint requests to: {jonathan, faraz, hhuang}@cse.yorku.ca, bernd.schoeller@inf.ethz.ch. This work was
conducted under an NSERC Discovery grant.

DOI 10.1007/s00165-008-0073-8
Published online February 2008, 
Formal Aspects of Computing (BCS)

See http://dx.doi.org/10.1007/s00165-008-0073-8 for the final paper

jonathan
Cross-Out



2 Jonathan S. Ostroff, Faraz Ahmadi Torshizi, Hai Feng Huang and Bernd Schoeller

The advantage of object-oriented information hiding and contracting mechanisms is that they allow
developers to reason statically about the code without the need to consider a vast number of program
executions that can occur at run-time. Developers can reason about the code in a modular (or compositional)
fashion, i.e. a feature implementation (that uses other supplier features) can be shown to satisfy its own
specification solely on the basis of the specifications of the suppliers without the need to refer to their
implementations.

Furthermore, contracts are checked dynamically at runtime (via runtime assertion checking) and are
therefore useful for testing the correctness of code. The authors of [BLS02] study the use of contracts
in practice in order to assess the benefits of doing so for the isolation of faults. Their study shows that
instrumenting code with contracts is a powerful lightweight method for detecting bugs and isolating faults.

Concurrency

The situation is somewhat different when it comes to object-oriented concurrent programming. Increas-
ingly, software developers use some variant of concurrency (e.g. multithreading, multiprocessing, distributed
computing, and web services). But the techniques commonly used to produce concurrent applications are
still elementary and often haphazard. The explicit specification and control of low-level parallelism in multi-
threading models such as Java is a source of new programming errors. Concurrency introduces problems such
as data races, atomicity violations and deadlock that make the development and debugging of such software
difficult and the resulting products are much more error prone than sequential products. The release of new
multi-core CPUs has also stimulated software companies to seek new concurrent languages. Adding more
cores to a chip is only half the battle. As stated in [Bie07], the next tricky stage is for software developers
to figure out how to program quad cores concurrently so as to avoid “the deadlock bug” and “solve another
type of parallel-programming problem called a race bug”.

A suitable concurrency model is clearly needed that provides basic safety and liveness guarantees and
that shields programmers from common mistakes and errors, or at the very least detects data races, atomicity
violations and deadlocks.

One approach is to extend DbC to the concurrent setting as has been done by JML and Spec#. In
[RDF+05], JML is extended to allow for the specification of multi-threaded Java programs. Method guards
are specified using the when keyword. If a feature is called in a state where the guard does not hold,
the feature is supposed to block until the guard holds. The new constructs rely on the non-interference
notion of method atomicity, and allow developers to specify locking and other non-interference properties of
methods. Atomicity enables the specification of method pre- and postconditions and supports Hoare-style
modular reasoning about methods. The above keyword is useful in static verification but programmers are
still forced to write the synchronization statements by hand. Thus there remain challenges of extending DbC
to the concurrent setting. The standard Hoare rules may fail to apply and more complex calculi are often
non-modular making it difficult for use by the developers.

Nevertheless, a consistent extension of DbC to the concurrent case would be useful if we could apply
sequential reasoning in specific concurrent situations thus allowing us to reason about the functional behavior
of concurrent programs in a natural way. Such an approach would allow the reuse of components written
for sequential applications in a concurrent context, without the need for extra specifications or annotations
[NM07].

As pointed out in [JLPS05], developing safe multithreaded software systems is difficult due to the potential
unwanted interference among concurrent threads. In [JLPS05], the Spec# Boogie methodology is extended
to the concurrent case. The paper presents a method that protects object structures against inconsistency
due to race conditions, where developers define aggregate object structures using an ownership system and
declare invariants over them. The methodology is supported by a set of language elements and by both a
sound modular static verification method and run-time checking support. The method thus ensures freedom
from data races and atomicity violations but does not yet treat properties such as freedom from deadlock
and other liveness properties.

The JML and Spec# approaches are both based on DbC. Java PathFinder (JPF) [HP00] takes a different
approach. JPF takes Java programs (no contracts) as input and provides an impressive verification environ-
ment for detecting deadlocks and assertion violations integrating program analysis and model-checking. The
following quote from [VHB+03] is instructive:
Although it is hard to quantify the exact size of program that JPF can currently handle—“small” programs might have “large”
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state-spaces—we are routinely analyzing programs in the 1,000 to 5,000 line range ... it is naive to believe that model-checking
will be capable of analyzing programs of 100,000 lines or more ...

Further progress has been made in the mean time and, undoubtedly, these new methods will be scaled up to
handle larger and more realistic examples. Even the ability to analyze small critical chunks of realistic code
is a welcome addition to bug detection. Nevertheless, it appears that we will still need to rely on testing for
the foreseeable future, with formal verification as a helpful technique for finding additional bugs.

This paper

In this paper, we focus on SCOOP (Simple Concurrent Object-Oriented Programming). SCOOP was origi-
nally proposed by Bertrand Meyer [Mey97a] with some subsequent attempts to refine or implement the model
[Com00, FOP04]. An interesting semantics for SCOOP using the process algebra CSP is provided in [BPJ07].
The work of Piotr Nienaltowski [Nie07] is a significant step forward in improving the computational model
and providing a working implementation which includes a library which implements the model (SCOOPLI )
and a compiler (scoop2scoopli) which type checks SCOOP code and translates it into pure threaded Eiffel1.

SCOOP introduces the concept of processors. Concurrency only happens between processors, not within a
single processor. Objects are distributed among these processors. References point to local objects or objects
on other processors. References that point to other processors are called separate references. An extension
is added to the type system and enforced by the type checker that marks entities as either separate or non-
separate. Calls within a single processor remain completely synchronous, calls to objects on other processors
are dispatched asynchronously to those processors for execution. The rules for feature invocation on separate
entities are adjusted to express locking and waiting.

SCOOP programs are free of data races and atomicity violations by construction. However, there is
no guarantee of freedom from deadlocks. Although the notion of Design by Contract is different to that
of sequential Eiffel, contracts in SCOOP permit the application of sequential reasoning techniques to the
concurrent programs. In this paper, we explore just how far sequential reasoning takes us and what is needed
for verifying arbitrary temporal logic properties of SCOOP programs beyond contracts. The paper proceeds
as follows:

• In Section 2 we provide a simple example (the dining philosophers) to illustrate the SCOOP mechanism.
We also discuss the difference between sequential Eiffel and SCOOP programs and provide a simple
example (class DATA) of how theorem proving would work via Hoare reasoning in the sequential case.

• In Section 3 we provide an informal discussion of the SCOOP computational model using a simple
example—zero-one—to motivate the discussion. The sequential class DATA is re-used in this example
without the need to make any changes to it for the concurrent case. A modified Hoare reasoning rule
for the concurrent case (as described in [Nie07]) may be used to verify contracts using a theorem prover
already in use for sequential Eiffel. The main purpose of this section is to describe the capabilities as well
as the limits of Hoare reasoning. We also illustrate how temporal logic may be used to express system
properties that are beyond the capabilities of the Hoare rule to verify.

• In Section 4 we provide the outline of a SCOOP Virtual Machine (SVM) together with its operational
semantics as a fair transition system. The SVM uses the Hoare rules where applicable to reduce the
number of steps in a computation. The SVM can be used as the formal basis for expressing temporal logic
properties and for building tools based on model-checkers and theorem provers to verify safety and liveness
properties. The SVM provides the semantics for a small but significant subset of SCOOP including the
rules for essential operations such as asynchronous command calls, query calls, and calls with separate
arguments. Although the SVM does not address the issue of inheritance, the conclusion (Section 5.1)
provides a discussion of how we intend to incorporate inheritance into the model. The concluding section
also provides a brief discussion of our current version of the SCOOP model-checker based on the SVM.
Finally, we provide a comparison between SCOOP and the Spec#/Boogie methodology for concurrency.

1 http://se.ethz.ch/research/scoop
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1 class ROOT CLASS create

2 make
3 feature
4 count: INTEGER is 3
5 philosophers: ARRAY [separate PHILOSOPHER]
6 forks: ARRAY [separate FORK]
7
8 make
9 local

10 i: INTEGER
11 p: separate PHILOSOPHER
12 fork: separate FORK
13 do

14 create forks.make (1, count)
15 create philosophers.make (1, count)
16 from i := 1 until i > count loop

17 create fork; forks.put(fork,i); i := i + 1
18 end

19
20 from i := 1 until i > count loop

21 p := philosophers[i]
22 create p.make (forks[i], forks[(i \\ count) + 1], i)
23 start (p); i := i + 1
24 end
25 end

26
27 start (p: separate PHILOSOPHER)
28 require
29 p /= Void

30 do

31 p.act
32 end

33
34 invariant

35 count >= 2 and philosophers.count = count and forks.count = count
36 end

Fig. 1. Class ROOT CLASS

Known Limitations

Although the Scoop Virtual Machine (SVM) presented in this paper deals with a significant subset of
SCOOP (such as contract handling and synchronous and asynchronous feature calls), there are also some
significant limitations to our approach. We assume that command/query separation is strict which is standard
practice in Eiffel (queries are simplified by evaluation in a global state). We also do not deal with language
constructs such as agents and tuples. Also, inheritance is not part of the formal SVM, although we do
describe (informally) how we would refine the rules in the presence of inheritance (Section 5.1).

2. Introduction to Concurrent Computation

Object-oriented computation (sequential or concurrent) is performed via the mechanism of the feature call
t .r(x ). If the target t is attached to some object obj then a processor may invoke the routine r with argument
x on the object obj . In the sequential case, there is only one processor.

In the concurrent case, we have two or more processors. A processor is an autonomous thread of control
capable of supporting the sequential execution of instructions for one or more objects. This definition assumes
that the processor is some device, which can be implemented either in hardware (e.g. a computer equipped
with its own central processor), or in software (e.g. a thread, task or stream). Hence, a processor in this
context is an abstraction and we may assume the availability of an unlimited number of processors.

As explained earlier, objects are distributed among processors. References that point to objects handled
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1 class FORK feature

2 inuse: BOOLEAN
3
4 grab
5 require

6 not inuse
7 do

8 inuse := True

9 ensure

10 inuse
11 end

12
13 release
14 require
15 inuse
16 do

17 inuse := False
18 ensure

19 not inuse
20 end

21
22 end

Fig. 2. Class FORK

by other processors (separate references) are indicated via the use of the keyword separate. Any feature
call to a separate object must be dispatched to the processor that handles the object for execution.

The SCOOP version of the well-known dining philosophers problem is provided as a simple illustration
of the main ideas. The root class (Fig. 1) creates three philosopher and three fork processors. Class FORK
is provided in Fig. 2 and PHILOSOPHER in Fig. 3. The keyword separate is used to denote an object that
may be handled by a processor that is separate from the current processor. In the root class, we could thus
declare:

philo1, philo2, philo3: separate PHILOSOPHER
fork1, fork2, fork3: separate FORK

which means that objects attached to attributes such as philo1 and fork1 may be handled by a different
processor than the current processor (the one handling the root class). A creation instruction such as “create
fork” results in the creation of a new processor and a new object of type FORK that is handled by the
processor. Calls within a single processor remain completely synchronous, but calls to objects on other
processors such as those that handle the forks and philosophers are dispatched asynchronously to those
processors for execution. The root class in Fig. 1 uses arrays of forks and philosophers as follows:

philosophers: ARRAY [separate PHILOSOPHER]
forks: ARRAY [separate FORK]

If we erase the separate key word in the code for the dining philosophers, then the example reduces to the
sequential case where there is only one processor. The resulting output is an infinite sequence of activity on
the part of the first philosopher. The others philosophers never get created because the start(p) command
(at line 23 in the root class) applied to the first philosopher never terminates (see the act command in class
PHILOSOPHER).

Philosopher 1 is idle, Philosopher 1 is thinking,

Philosopher 1 is hungry, Philosopher 1 is eating,

Philosopher 1 is idle, Philosopher 1 is thinking,

Philosopher 1 is hungry, Philosopher 1 is eating,

Philosopher 1 is idle ....

The separate keyword results in concurrency without any deadlock, so that the output now becomes:

Philosopher 1 is idle, Philosopher 2 is idle,

Philosopher 3 is idle, Philosopher 1 is thinking,

Philosopher 1 is hungry, Philosopher 2 is thinking,

Philosopher 2 is hungry, Philosopher 3 is thinking,
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1 class PHILOSOPHER create

2 make
3 feature
4 left, right: separate FORK
5 status, id: INTEGER
6 idle: INTEGER is 0; thinking: INTEGER is 1;
7 hungry: INTEGER is 2; eating: INTEGER is 3
8
9 make (l, r: separate FORK; an id: INTEGER)

10 require
11 l /= Void and r /= Void and l /= r
12 do

13 left := l; right := r; id := an id; print status
14 ensure
15 left = l and right = r and status = idle and id = an id
16 end

17
18 act
19 do

20 from until False loop

21 think; eat (left, right)
22 end

23 end

24
25 think
26 require

27 status = idle
28 do
29 status := thinking; print status
30 status := hungry; print status
31 ensure
32 status = hungry
33 end

34
35 eat (l, r: separate FORK)
36 require

37 not (l.inuse or r.inuse)
38 status = hungry
39 do

40 l.grab; r.grab
41 if l.inuse and r.inuse then −− wait by necessity
42 status := eating; print status
43 l.release; r.release
44 end

45 if not (l.inuse or r.inuse) then −− wait by necessity
46 status := idle; print status
47 end

48 ensure

49 not (l.inuse or r.inuse)
50 status = idle
51 end

52
53 print status ...
54
55 invariant

56 (left /= right) and 0 <= status and status <= 3
57 end

Fig. 3. Class PHILOSOPHER
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Philosopher 3 is hungry, Philosopher 1 is eating ...

The start(p) command dispatches the p.act command asynchronously to the processor handling the
philosopher and then terminates. There is no deadlock due to the way the code is structured using SCOOP
synchronization facilities. Command eat(left, right: separate FORK) in class PHILOSOPHER provides the
required deadlock-free synchronization. Because the arguments of the eat command are declared separate,
the SCOOP runtime (not the developer) is in charge of obtaining locks on both the left and the right forks
before the eat command is executed. The scheduling algorithm does this in a fair way so that the forks
remain unlocked unless locks on both forks can be obtained simultaneously.

This does not mean that deadlock cannot occur. If we divide the eat command into simpler commands
that work on one fork at a time (such as getting a fork and releasing a fork), then deadlock will occur.
However, by wrapping these two discrete synchronization events into a single routine, the SCOOP runtime
produces the deadlock free result for us without the need for any complicated locking or synchronization
primitives.

The SCOOP operational semantics developed in the sequel is used in our current experimental work
to develop a SCOOP model-checker. The current model-checker is limited to concurrent programs such as
the dining philosophers in which the basic types are booleans and integers, and classes or arrays of classes
built up from those types. The current version of the model-checker can only verify up to five forks and five
philosophers. The model-checker is able to verify the temporal logic properties provided below. Starvation-
freedom is the important liveness property

∀ i : INT |1 ≤ i ≤ count • 23(philos [i ].status = eating) (1)

which asserts that each philosopher eats infinitely often (for brevity, we use philos [i ] instead of philosophers [i ]).
Another liveness property (written in an abbreviated form) is that

∀ i • 2(philos [i ].status = eating → 3(philos [i ].status = thinking)) (2)

i.e. eating is, alas, not forever, and the philosopher will eventually resort to thinking. An important safety
property is the mutual exclusion property which states that if forks [i ] is in use, then it is only in use by one
philosopher at a time.

∀ i • 2(fork [i ].inuse → ¬ (philos [i ].status = eating ∧ philos [(i + 1)\\count ].status = eating)) (3)

2.1. Verifying the correctness of a class in sequential Eiffel

Class DATA (Fig. 4) is a simple example of a class written in standard sequential Eiffel. This class will
later be re-used to motivate the model for concurrent SCOOP programming. The contracts (preconditions,
postconditions and class invariants) document the specification and may also be used to find implementation
bugs and to demonstrate the correctness of the code.

Correctness of the implementation can be demonstrated either by run-time Assertion Testing or by static
compile-time Formal Verification. The Hoare correctness rule for a general feature call t .r(x ) is as follows
[Mey97b, Chapter 11]:

{prer ∧ I }dor{postr ∧ I }
[ SCR—Sequential Correctness Rule ]

{pre ′

r}t .r(x ){post ′r}

where prer , dor and postr are the precondition, body and postcondition of routine r respectively and I is
the invariant of the class in which r occurs. The primed notation used in the consequence of rule [SCR]
refers to the contracts suitably qualified to the target t and with actual arguments (e.g. x ) replacing formal
arguments (e.g. f ) (i.e. prer [x/f ] for the precondition and postr [x/f ] for the postcondition). For example,
for routine one of class DATA, rule [SCR] reduces to:

{x = 0 ∧ y = 0} x := 1; y := 1; c := c + 1 {x = 1 ∧ y = 1 ∧ c = old c + 1 ∧ b = old b}

{d .x = 0 ∧ d .y = 0} d .one {d .x = 1 ∧ d .y = 1 ∧ d .c = old d .c + 1 ∧ d .b = old b}

The rule captures the Hoare notion of modularity for feature calls. It asserts that if the body of a
supplier routine satisfies its specification (antecedent) then the effect of a call to the routine in the supplier
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1 class DATA feature

2 x,y,c: INTEGER −− ’c’ is a counter
3 b: BOOLEAN
4
5 zero is

6 require x = 1 and y = 1
7 do

8 x:=0
9 y:=0

10 c := c + 1
11 ensure

12 x = 0 and y = 0 and c = old c + 1 and b = old b
13 end

14
15 one is

16 require

17 x = 0 and y = 0
18 do

19 x:=1
20 y:=1
21 c := c + 1
22 ensure

23 x = 1 and y = 1 and c = old c + 1 and b = old b
24 end
25
26 stop is

27 do

28 b := true
29 x := 2
30 ensure

31 b and x = 2 and y = old y and c = old c
32 end

33
34 invariant

35 ((x = 0 and y = 0) or (y = 1 and x = 1)) or b
36
37 end

Fig. 4. Class DATA

may be judged solely in terms of the supplier’s specification without the need to refer to its implementation
(consequent). The job of a theorem prover with respect to class DATA is to show the correctness of the
antecedent of the rule. Thus, when class DATA is re-used in other classes, calls to routines in DATA may just
use the consequent of the rule. Provided the bodies of the routines in DATA have been checked for correctness,
clients of DATA may then assume that the contracts hold and reason about calls to DATA solely on the basis
of the contracts without the need to refer to the implementation.

Consider, for example, the code in class TEST (Fig. 5) which uses class DATA. The create d instruction
(in routine r) carries out a default initialization of all the attributes as shown in the immediately following
check statement. Will the feature call d.one in the above code succeed without contract violations? All
that we need check is that the postcondition of the creation instruction at line 6 entails the precondition of
the feature call d.one at line 8 (which it does). From the consequent of [SCR] we are guaranteed that the
postcondition of routine one holds as shown in the check statement at line 9. In modular reasoning, routine r
in TEST is verified only on the basis of its own implementation and the contract (but not the implementation)
of its supplier class DATA.

We have implemented such a theorem prover for a significant subset of sequential Eiffel [OWKT06]. This
theorem prover trivially verifies the correctness of DATA (Fig. 4) and the correctness of the routine r in class
TEST (Fig. 5).

In Assertion Testing, we enable run-time assertion checking and the compiler then generates code that
checks the contracts at each feature call (such as d.one). Assertion Testing is much weaker than Verification,
as [SCR] is only checked for the scenarios written in the testing suite. The benefit is that any code of any
size can be automatically checked in this manner without the need to provide complete contracts.
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1 class TEST feature

2 d: DATA
3
4 r is

5 do

6 create d
7 check d.x = 0 and d.y = 0 and not d.b and d.c = 0 end

8 d.one
9 check d.x = 1 and d.y = 1 and not d.b and d.c = 1 end

10 ensure
11 d.x = 1 and d.y = 1 and d.c = 1
12 end

13 end

Fig. 5. Class TEST

3. The concurrent SCOOP model

The following closely follows the summary of the SCOOP computational model provided in [Nie07, Section
2.4]. The feature call is the basic mechanism of object-oriented computation, and SCOOP builds on this
mechanism. Each object is under the control of a single processor referred to as the object’s handler. All
calls to features of a given object are executed solely by its handler. Several objects may have the same
handler, but the mapping between an object and its handler does not change over time.

If the client and supplier objects are handled by the same processor, a feature call is synchronous. If
they have different handlers, the call becomes asynchronous, i.e. the computation on the client’s handler can
move ahead without waiting and the call on the object is dispatched to the handler of the supplier object
for execution.

An object that is handled by a different processor is called separate with respect to the current processor
while objects handled by the same processor (as the current processor) are called non-separate. A concurrent
system may be seen as a collection of interacting sequential systems because each processor, together with
the objects that it handles, forms a sequential system. Conversely, a sequential system may be seen as a
particular case of a concurrent system with only one processor.

Since each object may be manipulated only by its handler, there is no object sharing between different
threads of execution. Thus, there is no shared memory. There is no intra-object concurrency because of the
sequential nature of processors. Thus, there is never more than one action performed on a given object as
is the case in a sequential system. This makes SCOOP programs data-race-free by construction. Locking is
used to eliminate atomicity violations due to illegal interleaving of calls from different clients. Thus, SCOOP
is free of data races and atomicity violations but it is still plagued by the possibility of deadlock.

For a feature call to be valid, it must appear in a context where the client’s processor holds a lock on
the supplier’s processor which is enforced by type rules. Locking is achieved through feature application.
The handler executing a routine with attached formal arguments blocks until the processors handling these
arguments have been locked (atomically) for the exclusive use of the handler. The routine thus serves as the
SCOOP version of a critical section. Since a processor may be locked and used by at most one other processor
at a time, and all feature calls on a given supplier are executed in a FIFO order, no harmful interleaving
occurs.

Condition synchronization is achieved via the preconditions. The precondition of a feature is treated as
a guard (rather than a correctness condition as in the sequential case) so that the feature waits for the
precondition to become true before executing. Clients re-synchronize with their suppliers only if and when
necessary. Commands (procedure calls) do not require any waiting because they do not yield results that
clients would need to wait for. Thus, clients wait only on queries (function or attribute calls). This is called
wait by necessity.

The language extensions supporting the model are minimal. SCOOP enriches Eiffel with type annotations
which express the relative locality of objects represented by entities and expressions. An entity may be
declared as:

• x: X
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Objects attached to x are handled by the same processor as the current object. We say that x is non-
separate with respect to Current.

• x: separate X
Objects attached to x may be handled by any processor; this processor may (but does not have to) be
different from the one handling the current object. We say that x is separate from Current.

• x: separate <p> X
Objects attached to x are handled by a processor known under the name p. The processor tag p may
have an unqualified form and be explicitly declared as p: PROCESSOR, or have a qualified form derived
from the name of another entity, e.g. ‘y.handler’. (y must be an attached read-only entity, e.g. a formal
argument.) We say that x is separate from Current, and handled by p.

Additionally, a type annotation may include the ‘?’ sign, e.g. x: ? separate X; this marks a detachable
type as in the new ECMA2 specification [ECM06], i.e. the decorated entity may be void (not attached to
any object) at run time. Entities not decorated with ‘?’ are attached, i.e. not void.

[Nie07, Chapter 6] provides a type system to track statically the assignment of objects to processors,
i.e. the type system tracks whether an object is local (on the current processor) or separate (on a different
processor). The processor tags allow one to express whether several separate objects are on the same processor
or not.

In the rest of this section we discuss the semantics of contracts in SCOOP. Of especial interest is the
extent to which SCOOP permits the application of sequential reasoning techniques to concurrent programs.

3.1. The zero-one example, schedules and contracts

In standard concurrent programming the naive re-use of library classes that have not been designed for
concurrency often leads to data races and atomicity violations. SCOOP allows for the re-use of sequential
classes without the need to change the code with synchronization constructs.

We use a very simple example—zero-one—to illustrate code re-use, the limits of SCOOP contracts, and
to motivate the semantics of the SVM (SCOOP Virtual Machine) which will be developed in the sequel.

In the zero-one example, we re-use class DATA (Fig. 4) without the need to add any further synchronization
constructs to its code. In addition to DATA, our system also includes classes ZERO, ONE (Fig. 6) and the root
class ROOT shown in (Fig. 7).

The notion of a schedule will be defined formally in Section 4.1. Informally, a schedule is an array of
processors with each processor having an action queue (i.e. the queue of requests to be handled by the
processor in FIFO order). The notion of a schedule simplifies the representation of the execution state.
Execution of the system begins in an initial state in which the root processor πr has been created and is
ready to execute the creation instruction make of class ROOT (Fig. 7) as shown by the schedule s0 below:

[ πr : make ] (4)

In the next state, feature call make is replaced by the body of the call and we have a new schedule:

[ πr : create d; S ] (5)

where S stands for the remaining statements in the constructor routine make. Object creation for separate
objects, as is the case for create d, creates a new processor πd that handles the instance of the data object
just created, and the schedule now looks like:

[

πr : S
πd :

]

(6)

Intuitively, a schedule is an array of processors where each row of the array is an action queue, i.e. a queue
of instructions and calls for the processor associated with that row. The action queue is handled in FIFO
order.

At line 11 and 12 of the root class (Fig. 7) an instance of class ZERO is created and handled under the

2 ECMA is a standardization organization and ECMA-367 is the standard for the Eiffel language approved by ECMA and ISO.
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1 class ONE create

2 make
3 feature
4 data: separate DATA
5 count: INTEGER
6
7 make(d: separate DATA) is

8 do

9 data := d
10 end
11
12 run is

13 do

14 from
15 until count = 1000
16 loop

17 do one(data)
18 end

19 ensure

20 count >= 1000
21 end
22
23 do one(d: separate DATA) is

24 require
25 not d.b and d.x = 0 and d.y = 0
26 count < 1000
27 local

28 test: BOOLEAN
29 do

30 d.one
31 if d.b then d.stop end −− stop never called
32 count := count + 1
33 test := d.x = 1
34 ensure

35 count = old count + 1
36 d.x = 1 and d.y = 1 and d.c = old d.c + 1 and not d.b
37 end

38 end −− class ONE

Fig. 6. Class ONE (similarly for class ZERO)

control of processor π0 and an instance of ONE is created and handled by processor π1.






πr :
πd :
π0 :
π1 : launch(zero, one)






(7)

The various processors with the objects they handle are shown in Fig. 8. The feature call launch(zero,one)
at line 13 in Fig. 7 has Current as its implicit target. The handler of Current is the same processor (πr ) as
the enclosing routine make, and thus this call is synchronous. Processor πr must (atomically) reserve both
processors π0 and π1 (the handlers of the arguments of launch) before proceeding to execute the body of
launch.

The calls z.run and o.run (lines 18 and 19 respectively) are asynchronous calls because π0 and πr (the
handlers of the objects attached to zero and one respectively) are different processors from the current
processor πr . Thus, these calls must be dispatched to their respective processors (handlers) for execution.

Suppose, instead of wrapping z.run in launch, we replace the call launch at line 13 with the call
zero.run. This would be a separate type error that would be caught at compile-time. Since zero is not
an argument of the enclosing routine make, it cannot be the target of a call in this routine as only those
processors associated with arguments are reserved. We do not allow feature calls on separate targets unless
these targets have been reserved (locked) in the current context.

It is instructive to follow an execution of processor π1 that has arrived at the call do one(data) at
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1 class ROOT create

2 make
3 feature
4 d: separate DATA
5 zero: separate ZERO
6 one: separate ONE
7
8 make is

9 do

10 create d
11 create zero.make(d)
12 create one.make(d)
13 launch (zero, one)
14 end
15
16 launch (z: separate ZERO; o: separate ONE) is

17 do
18 z.run
19 o.run
20 ensure

21 z.count = 1000 and o.count = 1000
22 end

23 end

Fig. 7. Class ROOT initiates the three systems

r

processor

separate reference

non-separate reference

1
d

(ROOT)

one

(ONE) (DATA)

data
(INTEGER)

x

y

0

zero

(ZERO)

(INTEGER)

Fig. 8. Processors of the zero-one example
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line 17 in the context of routine run (see Fig. 6). Under SCOOP semantics, the executing processor must
wait until (a) it gets a lock on the processor (πd ) that handles the argument data and (b) the precondition
¬data.b ∧ d .x = 0 ∧ d .y = 0 ∧ count < 1000 holds.

At this point modular reasoning breaks down. In the sequential case, it is possible to prove that the body
of run satisfies its contract (pre- and postconditions) merely by referring to the implementation of the body
and the contracts of the features called (such as the contract of do one). However, in the concurrent case,
processor π1 might block forever at line 17 as the processor πd may never become available. There is thus
potential for deadlock at line 17 that cannot be resolved by modular reasoning alone (as the progress of the
processor is dependent upon the environment). Thus, some kind of global reasoning will be required.

If the wait conditions (a) and (b) become true, execution continues in the body of do one at line 30 and
the schedule is now:







πr : S1
πd :
π0 : S2
π1 : data.one; S3






(8)

There are no calls pending on processor πd as the lock has just been obtained. However, execution may
proceed on other processors such as π0 and π1. For example, if processor π1 executes next, the feature call
data.one (line 30 in Fig. 6) will execute asynchronously, i.e. the call must be transferred over to processor
πd for execution. Since π1 has a lock on πd the call may be dispatched, immediately, and processor π1 may
continue executing at line 31. The schedule now looks as follows:







πr : S1
πd : data.one
π0 : S2
π1 : S3






(9)

Processor π1 waits by necessity at line 31 so that it can check the boolean in the conditional (d .b).
Execution then continues until line 33 where it carries out another wait by necessity for the check condition
data.x. At such waiting points, we wait for all calls to processor πd to terminate before checking the query.
In summary, the SCOOP semantics as proposed in [Nie07] is as follows:

• All preconditions have a wait semantics : before executing a routine, the executing handler waits until
the precondition is satisfied. A violated precondition results in (possibly infinite) waiting.

• Postconditions keep their usual meaning—they describe the result of a feature application—but each
postcondition clause is evaluated individually and asynchronously; a client does not wait unless its han-
dler is involved in a given clause. This increases the amount of concurrency without compromising the
guarantees given to the client.

• Loop assertions and check instructions follow a similar pattern as postconditions: they are evaluated by
the supplier handler without forcing the client to wait, while still delivering the required guarantees. On
the other hand, the individual evaluation of subclauses does not apply; the whole assertion has to hold
at the same time even if it involves multiple handlers.

• Class invariants keep their usual semantics because asynchronous calls are prohibited in invariants. This
is not imposed by any explicit rule for separate assertions but follows from the refined Call Validity Rule
[Nie07, Defn. 6.5.3] described as follows: Consider a call exp.f(a) appearing in class C; the call is valid
if and only if (a) exp is controlled and (b) the base class of exp has a feature f exported to C, and the
actual arguments a conform in number and type to the formal arguments f. The notion of a controlled
expression is defined formally in the sequel (Definition 1). In brief, an expression is controlled if the
expression occurs in the context of a routine that has a lock on the processor that handles the expression.
Thus expressions such as t.q(x) (where t is attached to an object handled by another processor) is
syntactically invalid in an invariant because there is no enclosing routine that locks t.

Every processor has a call stack and an action queue (in our case a row in the schedule). The call stack is
used for handling non-separate calls. The action queue stores the feature calls issued by other processors to
be handled by this processor. The requests are serviced in the order of their arrival (FIFO).

A processor may be in one of two states: locked or unlocked. The locked state means that the processor is
under the control of another processor and is ready to receive feature requests from that processor alone. The
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unlocked state means that the processor will not accept any feature calls until it is locked. Each processor
repeatedly performs the following actions:

• Request processing: if there is an item on the call stack, pop the item from the stack and process it, i.e.:

– (Feature application) if the item is a feature request, apply the feature;

– (Unlocking) if the action queue is empty, set the processor to the unlocked state.

• Request scheduling: if the call stack is empty but the action queue is not empty, dequeue an item and
push it onto the stack.

• Idle wait: if both the stack and the queue are empty, wait for new requests to be enqueued.

Before a feature call t.f(x) is applied, its formal arguments (suitably bound to actual arguments) must
be reserved (i.e. the corresponding processors must be locked) and the feature’s precondition must hold.
Thus, atomicity of feature calls is enforced and the processor executing feature f enjoys exclusive access to
the handlers of the formal arguments of f.

3.2. Controlled Calls and Hoare reasoning

Consider the following three calls in the zero-one example:

1. Call one.run is a separate call that is invoked asynchronously by the root processor πr (within the
context of routine launch in class ROOT) and sent to processor π1 for execution. We say that the client
πr invokes the call and the supplier π1 applies the feature call.

2. The subsequent call Current.do one(data) (at line 17 in the context of routine run in class ONE) is a
non-separate call invoked synchronously by the current processor π1.

3. The subsequent call data.one (at line 30 in the context of routine do one) is a separate call to processor
πd invoked asynchronously.

The first and third calls are asynchronous and do not wait in the invoking processors as the invoking
processor has a lock on the processors that applies the feature calls (at the point calls are invoked). Thus,
the calls can be dispatched, immediately, to the invoking processor.

However, as explained earlier, before processor π1 may invoke do one(data) (the second case above) it
must first obtain a lock on the processor πd handling the argument data before it can proceed. What this
means is that the enclosing routine run in class ONE cannot guarantee its own postcondition count ≥ 1000.
This is because there is no guarantee that the lock will be obtained on the processor of the data object.
Thus, we cannot reason modularly, i.e., we cannot use the contracts of do one(data) alone to deduce the
properties of the enclosing routine run. Global (non-modular) reasoning will be needed to verify that the
lock will eventually be obtained.

A feature call such as exp1.f(exp2) involves the evaluation of expressions such as exp1 and exp2. The
following definitions will help make the distinction between feature calls in enclosing routines such as run
(where global reasoning is required) and feature calls in enclosing routines such as do one(data) (where
modular reasoning is sufficient). The following definitions are from [Nie07]:

Definition 1 (Controlled Expression). An expression exp is controlled if and only if it is attached (ac-
cording to the ECMA definition [ECM06]) and either (a) exp can be shown to be statically non-separate,
or (b) exp appears in the context of a routine r in which the handler of exp is the same processor as the
handler of some attached formal argument of r.

Definition 2 (Controlled Clause). For a client performing the call t.f(a) in the context of a routine r,
a precondition clause or a postcondition clause of f is controlled if and only if, after the substitution of the
actual arguments a for the formal arguments, the clause involves only calls on entities that are controlled in
the context of r; otherwise, it is uncontrolled.

The check for Controlled Clauses can be done statically [Nie07]. Consider the call do one(data) at line
17. Its precondition (not data.b and data.x = 0 and data.y = 0) is uncontrolled in the context of the
enclosing routine run as data is handled by the separate processor πd and data is not an argument of run.
In fact, before the call can be invoked processor π1 must get a lock on the data processor πd .
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1 do one(d: separate DATA) is

2 require

3 not d.b and d.x = 0 and d.y = 0
4 count < 1000
5 local

6 test: BOOLEAN
7 do

8 −−{precondition holds}
9 d.one

10 −−{not d.b and d.x = 1 and d.y = 1 and d.c = old d.c + 1 and count < 1000}
11 if d.b then d.stop
12 −−{not d.b and d.x = 1 and d.y = 1 and d.c = old d.c + 1 and count < 1000}
13 count := count + 1
14 −−{not d.b and d.x = 1 and d.y = 1 and d.c = old d.c + 1 and count <= 1000 and count = old count + 1}
15 test := d.x = 1
16 −−{test and not d.b and d.x = 1 and d.y = 1 and d.c = old d.c + 1 and count <= 1000 and count = old

count + 1}
17 ensure

18 count = old count + 1
19 d.x = 1 and d.y = 1 and d.c = old d.c + 1 and not d.b
20 end

Fig. 9. Hoare reasoning (10) in the concurrent case for Controlled Routines

By contrast, the precondition data.x = 0 and data.y = 0 of call data.one at line 30 is controlled in
the context of routine do one as the calls in the precondition are handled by the same processor πd as the
argument of routine do one. As shown in [Nie07], the Hoare rule for a routine call r in SCOOP is:

{INV ∧ Prer} bodyr {INV ∧ Postr}

{Prectr
r [a/f ]} x .r(a) {Postctrr [a/f ]}

(10)

A Hoare style rule applies because the semantics of SCOOP guarantees that the routine body effectively
executes as in the sequential case. However, a limitation is that the rule only asserts partial correctness.
In general, termination cannot be guaranteed. We will describe below the notion of a controlled routine, in
which case full correctness (including termination) can be proved as if we were dealing with a sequential
routine.

In the hypothesis of the rule, there is no distinction between separate and non-separate assertions; both
preserve their contractual character. Only controlled assertion clauses are considered by the client; hence
the superscript ctr decorating them in the conclusion of the rule. From the point of view of the supplier, all
assertions occurring in Prer and Postr are controlled; that is why all of them appear in the antecedent.

Thus, the supplier may assume all the precondition clauses at the entry to the feature’s body and must
establish all postcondition clauses when the body terminates. The client must satisfy all the controlled
precondition clauses at the moment of the call, but may assume all the controlled postcondition clauses after
the call.

All the contracts of feature calls in routine do one are controlled and thus the above Hoare rule may be
used to demonstrate the correctness of the implementation with respect to its contracts in the same way as
is done in the sequential case as shown in Fig. 9. Thus, a theorem prover can be used to show that routines
with controlled contracts are correctly implemented using only the sequential reasoning of the Hoare rule
(10).

Since all the contracts of calls in the body of do one are controlled, the Hoare rule provides the client
π1 invoking d.one in the body of do one with the same guarantees as there would be in the synchronous
case but “projected” into the future. The postcondition of d.one is actually evaluated asynchronously by
processor πd in the future after all the calls in the body of routine d.one have been executed. However, in the
mean time, do one may progress as if the postcondition already holds because the postcondition will indeed
hold (eventually) when it becomes relevant at the statement test := d.x = 1 and again when checking the
postcondition of do one.

The same guarantees do not hold for routine run in class ONE because this routine contains the Uncon-
trolled Call do one(data) at line 17.
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As defined thus far, the Hoare rule (10) is applicable to feature call one.run invoked asynchronously by
the root processor πr (in the context of routine launch). The Hoare rule merely says that if routine run
satisfies its contract then the call one.run works according to the rule. However, we know that the current
implementation of run does not satisfy its postcondition (as discussed above), as the subsequent sub-call
do one(data) is not controllable and thus the postcondition cannot be guaranteed (purely on modular
reasoning).

For our SVM (SCOOP Virtual Machine) we will need to flag routines such as launch. Although all the
contracts of clauses in this routine are controlled, the feature calls that implement them are not and hence
the contracts cannot be guaranteed modularly via Hoare reasoning. The following definition of a Controlled
Routine can be checked statically:

Definition 3 (Controlled Routine). A routine r(a1, a2, ...) is controlled if and only if all feature
calls in the contract and implementation of the routine are (recursively) controlled.

Following the definition routine do one (in class ONE) is controlled but run (in class ONE) and launch (in
class ROOT) are not.

The implementation of a Controlled Routine can be verified using standard sequential reasoning. Thus,
the sequential Eiffel theorem prover developed in [OWKT06] can be used to verify that the implementation
of routine do one satisfies its contracts. Although the routine body can be verified, the call do one in routine
run is uncontrolled, i.e. we must first wait for the environment to satisfy the precondition before the routine
can be executed. However, once the precondition is satisfied, the theorem prover provides a guarantee that
the routine will terminate with the postcondition true.

As stated in [Nie07, Section 8.1], the run-time checking of controlled clauses is optimised to avoid infinite
waiting. If a controlled precondition clause is violated when it is supposed to hold, i.e. at the moment of
the feature application, waiting is useless because the state of the involved objects cannot change in the
meantime (the calling processor holds the lock preventing any other processor from effecting a change).
Thus, an exception is raised instead. It is in this way that the wait semantics reduces to the traditional
sequential semantics when no concurrency is involved. Controlled preconditions are an integral part of the
semantic model and are thus used in the Hoare rule (10).

In this paper, we have not dealt with inheritance. In the presence of inheritance, it becomes more difficult
to deal with Controlled Routines. Unlike controllability of entities, expressions, and assertions, Controlled
Routines cannot be decided statically in the presence of polymorphism and dynamic binding because it
requires some knowledge about the bodies of routines. Although we do not treat inheritance in this paper,
Section 5.1 will provide further details of how we intend to tackle the problems due to inheritance.

3.3. Detecting deadlocks and liveness properties beyond contracts

The Hoare rule (10) can take us only so far. There are properties beyond modular contractual reasoning
that depend upon the emergent behaviour of the complete system. We express these properties below using
temporal logic:

1. The safety property (πr .data.x = 0 = πr .data.y) ∨ (πr .data.x = 1 = πr .data.y) ∨ b can be shown with
the Hoare rule. However, the stronger safety property (πr .data.x = 0 = πr .data.y) ∨ (πr .data.x = 1 =
πr .data.y) cannot.

2. The property 2(atdo one ⇒ 3afterdo one) cannot be demonstrated with the Hoare rule.

3. The property 32(πr .data.count = 2000) cannot be demonstrated with the Hoare rule.

In the next section we outline a SCOOP Virtual Machine which can be used to build tools for checking
such properties using a combination of model-checkers and theorem provers.

4. Outline of a SCOOP Virtual Machine (SVM)

In this section we propose (in broad outline) a SCOOP Virtual Machine (SVM) using the Eiffel memory
model described in [Sch06] and the notion of fair transition systems of Manna and Pnueli [MP95] developed
in the context of procedural languages for reactive systems. Producing such a virtual machine is challenging
as it must integrate:
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Operations:

. : Obj × AttributeID → Loc

( ) : Heap × Loc → Obj

〈 := 〉 : Heap × Loc × Obj → Heap
∗ : Heap → Heap

newproc : Heap → Proc

inuse : Proc × Heap → Bool

new : Heap × ClassID × Proc → Obj

〈 on 〉 : Heap × ClassID × Proc → Heap

alloc : Obj × Heap → Bool

typeof : Obj → ClassID

procof : Obj → Proc

lockedby : Heap × Proc → Proc

〈lock by 〉 : Heap × Proc → Heap

locked : Proc × Heap → Bool

Axioms:

L 6= K ∨ f 6= g ⇒ H 〈L.f := X 〉(K .g) = H (K .g) (H1)

H 〈X .f := Y 〉(X .f ) = Y (H2)

H 〈C on P〉(L) = H (L) (H3)

H 〈lock P by 〉(L) = H (L) (H4)

alloc(X , H 〈L := Y 〉) ⇔ alloc(X , H ) (H5)

alloc(X , H ∗) ⇔ alloc(X , H ) (H6)

alloc(X , H 〈lock P by 〉) ⇔ alloc(X , H ) (H7)

alloc(X , H 〈C onP〉) ⇔ alloc(X , H ) ∨ X = new(H , C ,P) (H8)

alloc(H (L), H ) (H9)

¬alloc(new(H , C ,P), H ) (H10)

typeof(new(H , C ,P)) = C (H11)

procof(new(H , C ,P)) = P (H12)

inuse(P , H ∗) ⇔ inuse(P , H ) ∨ P = newproc(H ) (H13)

alloc(X , H ) ⇒ inuse(procof(X ), H ) (H14)

¬inuse(newproc(H ), H ) (H15)

lockedby(H 〈lock P by Q〉,P) = Q (H16)

lockedby(H 〈L := X 〉, P) = lockedby(H , P) (H17)

lockedby(H 〈C onQ〉, P) = lockedby(H , P) (H18)

P 6= Q ⇒ lockedby(H 〈lock Q by R〉, P) = lockedby(H , P) (H19)

locked(P , H ) = (lockedby(H , P) 6= const(VoidProc)) (H20)

Fig. 10. Abstract Data Type and consistency Axioms for specifying heaps of the SCOOP Virtual Machine

• The object-oriented memory model (reference semantics, heap, stack etc);

• Concurrent Processing;

• Concurrent Contracts and mechanical verification of these contracts where possible; and

• In the model it must be feasible to verify temporal logic properties.

The Eiffel memory model is based on a small language Eiffel0 which is a subset of the complete Eiffel
language. [Sch06] provides a heap model and operational semantics for the execution of Eiffel0 programs
within the heap. The semantics description of the Eiffel programming language has two parts to it. The
state model describes the state of a machine executing Eiffel code. The state is defined as an abstract data
type. The execution model describes the effect of executing Eiffel code using the state model.

We add to the Eiffel0 state model additional features for describing concurrent processors (e.g. see the
abstract data type defined in Fig. 10). Transition rules use the state model to describe the step by step



18 Jonathan S. Ostroff, Faraz Ahmadi Torshizi, Hai Feng Huang and Bernd Schoeller

execution of SCOOP code. Eiffel0 does not deal with inheritance, genericity, expanded types and exceptions.
Likewise, we only deal with the most significant SCOOP constructs such as creation instructions, precon-
ditions, wait-by-necessity and synchronous and asynchronous routine calls. For brevity, we omit important
constructs such as processor tags and runtime checking of postconditions. The intention is to provide an
outline of the SVM for the most significant SCOOP constructs.

A computation δ of the SVM for a SCOOP program S is a sequence of configurations :

δ = γ0 −→ γ1 −→ γ2 −→ . . . (11)

Configurations (denoted γ) will be defined shortly. In the zero-one example of Section 3.1 there were four
processors πr , πd , π0 and π1. The transition from one configuration to another is an atomic step of some pro-
cessor. Concurrency is represented by the interleaved execution of the atomic instructions of the participating
processors as in fair transition systems. Thus, in this approach, concurrency is reduced to nondeterminism
where a given concurrent execution gives rise to many possible interleaving orders. Some scheduling con-
straints will be imposed on computations as the underlying SCOOP scheduler must be fair.

A configuration γ is a tuple γ = (α, σ) where α is a schedule and σ is a state. We must now define these
notions of schedules and states.

4.1. Schedules and Configuration transitions

An example of a transition from a pre-configuration to a post-configuration is:






πr : S1
πd :
π0 : S2
π1 : data.one; S3






, σ −→







πr : S1
πd : data.one
π0 : S2
π1 : S3






, σ (12)

which was discussed in Section 3.1 for the zero-one example. There is no change in state only a reorganization
of the queues of the processors involved in the computation. In Section 3.1 the intuitive notion of a schedule
was an array of processors where each row of the array is an action queue, i.e. a queue of instructions and
calls for that processor handled in FIFO order. Since the processor is locked by the calling processor, the
FIFO order guarantees sequential reasoning of the calling processor code free from interference by other
processors.

In [Sch06], Instruction is a set of statements of the Eiffel0 language such as assignments, alternatives, loops
and calls. We let Statement be the set Instruction together with two additional meta-constructs popUnlock
and unlock which will be defined in Section 4.7. These meta-constructs are used solely in schedule queues at
the end of a routine to unlock the processors that the routine has reserved. They are not part of the proper
SCOOP language itself.

We let Statement∗ be a (possibly empty) sequence of statements. In the sequel, Proc is an unbounded
set of SCOOP processors. Then, a schedule α is defined as a map

α : Proc → Statement∗

We use the concrete notation [π0 : S1, π1 : S2, ...] as in Section 3.1 for schedules where π0, π1 ∈ Proc
and S ,S1,S2 ∈ Statement∗. If we write [π0 : S1, π1 : S2] then it is understood that there is an implicit
ellipsis as in [π0 : S1, π1 : S2, ...]. There are an unbounded number of processors but they may not all be in
use. Creation instructions on separate targets cause a processor to go to the in-use status.

A computation starts in an initial configuration and goes step by step from a configuration (α, σ) to a
configuration (α′, σ′). We use the “small-step”-like notation:

α, σ −→ α′, σ′ (13)

to denote a transition from the pre-configuration (α, σ) to the post-configuration (α′, σ′) as described by the
state transition rules in the sequel.

4.2. States and Environments

A state σ is a tuple σ = (h, e) consisting of a heap h and an environment function e : Proc → STACK [Env].
We use the notation σh and σe to refer to the heap and environment function respectively, i.e. σ = (σh , σe).
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Feature calls are executed with the help of a stack of environments. Through the execution of each
routine, this call stack keeps track of arguments and local variables as part of the state. Each processor has
its own local stack. Thus we may write the first configuration in (12) as:







πr : S1
πd :
π0 : S2
π1 : data.one; S3






, (σh ,







σπr
e

σπd
e

σπ0

e

σπ1

e






) (14)

where the type of σπ

e is STACK [Env], i.e. σπ

e is the stack for processor π. If σ = (h, e) then e(π) = σπ

e . The
functions used in the ADT for environments is:

( ) : Env × LocalID → Obj

〈 := 〉 : Env × LocalID ×Obj → Env

i.e. an environment is just a store. Obj is the set of objects on the heap (defined in Subsection 4.3). LocalID
is the set of local entities of routines including local variables, routine arguments, Current and Result. The
environment consistency constraints (axioms) are:

E 〈x := y〉(x ) = y (E1)

x 6= z ⇒ E 〈x := y〉(z ) = E (z ) (E2)

Since the type of σπ

e is STACK [Env], all the stack operations apply. Thus top(σπ

e ) yields the environment
at the top of the stack and pop(σπ

e ) yields a new stack the same as the original but with the top environment
removed. We may push an environment such as env = 〈Current := object1, arg1 := object2, ...〉 onto the
stack via push(σπ

e , env) since:

push : STACK [Env] × Env → STACK [Env]

The environment stores the object attached to Current and in the case of a query the object returned by
the special return variable Result.

If we are currently executing in state σ = (h, e) on processor π, then we access the current object as
top(σπ

e )(Current). We use the abbreviations σπ or eπ for the top environment, i.e. σπ = eπ = top(σπ

e ).
Thus, we can access the object attached to Current as σπ(Current). The notation for environment function
override is e[π := push(e(π), env)], i.e. e[π := push(e(πe ), env)] is an environment function the same as e
except that the call stack for processor π is push(e(π), env) which is the same as the old call stack with the
additional environment env at the top.

Processors only execute code of objects that they handle. Thus, given a configuration

[· · · , π : S , · · · ], (σh , [· · · , σ
π, · · · ])

then, we add to the environment axioms (E1) and (E2) defined above the additional axiom

procof(σπ(Current)) = π (E3)

where procof returns the processor that handles a given object (as defined in Fig. 10). Also, local identifiers
(L) in an environment (E ) are always allocated on the heap (H ). Thus, the final axiom for environments is

alloc(E (L),H ) (E4)

where alloc returns true if a given object is allocated on the heap (as defined in Fig. 10).

4.3. The Heap

The precise effect of SCOOP instructions (e.g. creation instructions, assignments and feature calls) on the
state will be defined in detail below. For that we will need abstract data types for expressing updates to the
heap as shown in Fig. 10. The first three Heap operations in Fig. 10 are:
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. : Obj ×AttributeID → Loc

( ) : Heap× Loc→ Obj

〈 := 〉 : Heap× Loc×Obj → Heap

Obj (set of objects), Loc (the set of locations, or fields of an object), and Proc (the set of concurrent
processors) are disjoint sets. Given an object o ∈ Obj (say of type DATA with integer attribute “x” ), we
may use the first operation (e.g. o.x ) to access the location (i.e. the field in o associated with attribute x ).
The second operation allows us to obtain the object associated with a field in a heap (e.g. h(o.x ) = o).

The third operation allows us to update a field (e.g o.x ) in a heap (e.g. h). Thus, h〈o.x := 3〉 is a heap
the same as h, except with the field o.x set to integer constant 3. We can thus use the notation repetitively
to get a set of simultaneous updates, e.g. h〈o.x := 1〉〈o.y := 1〉 is the heap the same as heap h except where
the fields associated with x and y in the data object have both been updated to the integer constant 1.

4.4. Creation instructions

Consider the following operations of the memory model as defined in Fig. 10:

∗ : Heap→ Heap

newproc : Heap→ Proc

inuse : Proc×Heap→ Bool

new : Heap× ClassID × Proc → Obj

〈 on 〉 : Heap× ClassID × Proc → Heap

alloc : Obj ×Heap→ Bool

typeof : Obj → ClassID

procof : Obj → Proc

We describe the effect of these operations with respect to the code snippet below which is taken from rule
[T1] in Fig. 11):

1 class ROOT create

2 make
3 feature

4 d: separate DATA
5 ...
6 create d
7 ...
8 end

Informally, the separate creation semantics is:

a. Create a new processor (say πd ).

b. Create a new object od of type DATA that runs on processor πd .

c. Attach the field of the object associated with the entity “d” to the new object od .

Rule [T1] uses the memory model to specify the precise relationship of the post-state σ′ to the pre-state σ
for the separate creation instruction at line 6.

The antecedent of rule [T1] is empty meaning that the state transition can always be taken from the
configuration associated with the pre-state. Other rules in the sequel will have enabling conditions (or proof
obligations) which state under what conditions the transition occurs. These enabling conditions will be stated
above the line in the rule

The “where” conditions underneath rule [T1] are just definitions. As defined by the heap abstract data
type (Fig. 10), a heap has an unbounded registry of processors, some of which are in use and some not. The
creation instruction should cause one of the unused processors to be put in use. This is achieved via the σ∗

h

operator on the right hand side of definition (1) of [T1]. The star operator changes the heap to a new heap
with one extra processor (say πd ) that is now in use. The heap axiom (H13) allows us to obtain the new
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Consider the separate creation instruction:

1 d: separate DATA
2 ...
3 create d

[ T1—Separate Create ]

[πr : create d; ...] , σ −→

[

πr : ...
πd :

]

, (σ′

h , σe)

where
(1) σ′

h = σ∗

h 〈DATA on πd 〉〈σ
πr (Current).d := od 〉

(2) od = new(σh ,DATA, πd)
(3) πd = newproc(σh )

Fig. 11. Rule T1: separate create

For the non-separate creation instruction:

1 a: CA
2 ...
3 create a

[ T2—Non-separate Create ]
[

πr : create a ; ...
...

]

, σ −→

[

πr : ...
...

]

, (σ′

h , σe)

where
σ′

h = σh 〈CA on πr 〉〈σ
πr (Current).a := oa 〉

oa = new(σh ,CA, πr )

Fig. 12. Rule T2: non-separate create

processor via the query newproc(σh ). This query on the initial heap σh yields the processor that would be
put to use if the star operator is invoked. We have thus “created” a new processor as required by (a).

We must now create a new object od of type DATA that runs on processor πd as required by (b). This
is achieved by the operation σ∗

h〈DATA on πd 〉 as shown on the right hand side of definition (1) of rule
[T1]. This asserts that an instance of class DATA (say od ) is added to the heap and is handled by the new
processor πd .

The final requirement (c) is that we must attach the field of the object associated with the entity “d” to
the new object od . This is achieved by the notation σ∗

h 〈DATA on πd 〉〈σ
πr (Current).d := od 〉 on the right

hand side of definition (1) of rule [T1].
We do not need to specify that πd is initially not in use (i.e. ¬inuse(πd , σh )) in the antecedent of the rule.

This is because we may use the heap rule (H15) and the definition (3) in rule [T1] to deduce this fact. The
heap axioms can be used to show that processor πd is in use in the post-configuration of rule [T1] as follows:

(3) of Rule T1
≡ πd = newproc(σh )
⇒ 〈 Propositional Logic 〉

πd = newproc(σh ) ∨ inuse(πd , σh)
≡ 〈 heap rule H13 〉

inuse(πd , σ
∗

h )

Creation instructions may also have a creation procedure. In such a case, the application processor is
locked, the creation routine is asynchronously dispatched to the application processor for execution as in
rule [T4] in the sequel (allowing the invoking processor to make progress), and the lock is then released.
The attribute d is attached to the newly created object as soon as the object is created but without waiting
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for the creation procedure to terminate. As a result, d is now pointing to an inconsistent object. However,
this is not harmful because the object cannot be accessed before its handler is released. This in turn cannot
happen until the creation routine terminates and the processor is unlocked, at which point the object is in
a consistent state.

An entity a of type CA which is declared as non-separate has the simpler creation rule [T2]. In this rule
there is no need to create a new processor. The new instance of class CA is handled by the current processor.
There is no need to specify that the processor πr is already in use in the antecedent because the initial
schedule, the heap rule (H14) and the environment rule (E3) produce the required result as follows:

(E4)
≡ 〈 by substitution 〉

alloc(σπr (Current), σh)
⇒ 〈 by (H14) 〉

inuse(procof(σπr (Current)), σh)
≡ 〈 by (E3), procof(σπr (Current)) = πr 〉

inuse(πr , σh )

4.5. Expressions

Following [Sch06] we describe below the operation Expr that is applied to a SCOOP expression to compute
its value. The value of an expression is always an object in Obj. As in [Sch06], expressions are assumed to
be side-effect free following the command-query separation rule. Thus commands can change the state but
queries cannot.

Expressions such as constants, attributes and query calls are used in contracts and program instructions.
For example, in the assignment z := t.q(x) the expression t.q(x) is a query routine that returns an object
o and the heap must be updated so that attribute z now points to o. For simplicity we allow only those
query routines where all calls in the body of the query are handled by a single processor (as is the case in
the zero-one example). Thus (unlike command routines) we do not allow a query routine handled by some
processor to make a call to another processor. If a query is handled by the current processor then it may be
evaluated immediately (as all relevant commands that determine the value of the query will already have
been executed). If the query is handled by a separate processor, then the current processor must wait until
all the commands sent to that processor’s action queue have been executed (and the action queue is empty)
before the query can be evaluated. As mentioned earlier—this is called “wait by necessity”—and its rule will
be provided in the sequel.

To retain a pure object-oriented logic based on objects and references, we model the basic value types
such as booleans and integers through immutable objects. Constant identifiers (of the set ConstID) describe
these objects. The set contains identifiers such as true, false, Void and VoidProc. The related immutable
object can be looked up through the function const : ConstID → Obj.

The evaluation function Expr in [Sch06] of an expression returns an object in Obj that corresponds to the
evaluation of the expression in a state (where the state is a tuple consisting of a heap and an environment)
using a terminating “big-step”-like semantics. Since queries in this paper are handled atomically by some
processor (perhaps different from the current processor) and are side-effect free we may re-use the semantics
in [Sch06] by adding to the state the processor that evaluates the expression. In [Sch06], an expression E is
evaluated in a state consisting of the tuple (heap, environment) whereas, for us, expression E is evaluated in
the tuple (π, σ) where π is the processor and σ is the state as defined in Section 4.2.

We cannot re-use the semantics of [Sch06] for commands. This is because commands change the state
and must be executed in order on the correct processors as will be described in transition rules [T4]—[T6].

In the definitions below, c ∈ ConstID. In the query q(arg1, . . . ) let l , arg1, arg2 ∈ LocalID (i.e. these
are local entities of the query including local variables, arguments, Current and Result).
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ExprJcK(π, σ) = const(c) (15)

ExprJlK(π, σ) = σπ(l) (16)

ExprJCurrentK(π, σ) = σπ(Current) (17)

ExprJaK(π, σ) = σh (σπ(Current).a) (18)

ExprJE .aK(π, σ) = σh (ExprJEK(π, σ).a) (19)

ExprJE1 = E2K(π, σ) = (ExprJE1K(π, σ) = ExprJE2K(π, σ)) (20)

To evaluate a side-effect free query routine, the rule is:

env = 〈Current := ExprJT K(π, σ), arg := ExprJA1K(π, σ), . . . 〉
Bodyq , (σh , env) −→ (h′, env ′)

ExprJT .q(A1,A2, . . . )K(π, σ) = env ′(Result)

The above rule is in the format of [Sch06] and can thus use the sequential machinery of [Sch06] to evaluate
the value returned by the query.

In postconditions (ensure clauses), old references the pre-state of the computation. Thus, a postcondition
is a double state formula Post , i.e. it is a relation between the pre-state and the post-state. As in the case of
single state formulas we can define an operation OExprJPostK(π, σ, σ′) by analogy with the same operation
in [Sch06].

The transition rules for the standard Eiffel0 commands of SCOOP follow [Sch06] adapted for configuration
transitions as in this paper. For example, for the alternative if b then S1 else S2 we have two rules: one
for the case where the boolean guard b evaluates to true and one for where it evaluates to false. In the former
case, the rule is:

ExprJbK(π, σ) = const(true)
[ Alternate—ExprJbK holds ]

[

π : if b then S1 else S2; S3
...

]

, σ −→

[

π : S1; S3
...

]

, σ

4.6. Wait by Necessity

Transition Rule [T3] (Fig. 13) shows the move from a pre-configuration to a post-configuration for an
assignment on processor πa given by z := t.q(x) where the processor that handles the query routine q is
πb as shown in the enabling condition (3).

The transition may only be taken when the action queue of πb is empty (i.e. has already processed the
commands command1 and command2) and the precondition of query routine q must be true (6). The pre-
configuration schedule thus indicates an empty action queue for processor πb . The precondition may only
be evaluated after the formal argument of the query arg is bound to the actual argument x as described in
(4) and (5). Finally, once the transition is taken, z is attached to the value calculated by the query which is
the heap update shown in (7).

4.7. Command routine calls—Controlled and Uncontrolled

In the zero-one example of Section 3.1, calls such as one.run (in routine launch of class ROOT) and d.one
(in routine do one of class ONE) are invoked asynchronously. In each case, the invoking processor already
has a lock on the application processor and thus the feature call can be transferred over, immediately, from
the invoking processor to the application processor. The Asynch Call Rule [T4] provides a description of
such state configuration transitions where a call t.f(a) is transferred from a processor πa to a processor πb

provided the target t is handled by processor πb (this is the enabling condition of this state transition).
The compile-time check enforces the Call Validity Rule [Nie07, Rule 6.5.3], i.e. the target of a feature

call must be controlled (the target is controlled if and only if it is attached and non-separate or has the
same processor as some attached formal argument of the enclosing routine). The attachability requirement
eliminates calls on void targets. The additional conditions ensure the correct locking of the target—the
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Consider the code:

1 z: separate Z
2 ...
3 r(t: separate T; x: separate X)
4 do

5 t.command1
6 t.command2
7 z := t.q(x) −− wait by necessity
8 end

The inference rule for the wait by necessity z := t.q(x) is:

(1) πa 6= πb

(2) σ = (h, e)
(3) procof (o) = πb where o = ExprJtK(πa , σ)
(4) env = 〈Current := o, arg := ExprJx K(πa , σ)〉
(5) e ′ = e[πb := push(e(πb), env) ]
(6) ExprJq.preK(πb , (h, e

′)) = const(true)
(7) h′′ = h〈ExprJCurrentK(πa , σ).z := ExprJt .q(x )K(πa , σ)〉

[ T3—Wait by Necessity ]
[

πa : z := t.q(x); S1
πb :

]

, (h, e) −→

[

πa : S1
πb :

]

, (h′′, e)

Fig. 13. Rule T3: Wait by Necessity

Consider the code:

1 r(t: separate T)
2 do

3 t.command1 −− Asynch Call
4 end

πa 6= πb

procof (o) = πb where o = ExprJtK(πa , σ)
[ T4—Asynch Call ]

[

πa : t.f(a); S1
πb : S2

]

, σ −→

[

πa : S1
πb : S2; t.f(a)

]

, σ

Fig. 14. Rule T4: Asynch Call

target must be handled either synchronously by the current processor or asynchronously by the application
processor handling one of the locked arguments, in which case the current processor has a lock on the call
application processor. Thus, the Call Validity Rule ensures that whenever we have a pre-schedule as the one
shown in Rule [T4], the handler πb of the entity t will be locked by πa . Rule [T4] enforces the FIFO nature
of the call queue of πb because the call t.f(a) is placed at the end of the call queue of πb as shown in the
post schedule.

The Uncontrolled Synchronous Rule [T5a] applies to feature calls such as launch(zero,one) in class
ROOT. The call is initiated only if the root processor πr is able to obtain locks on the processors of zero
and one, i.e. they are currently unlocked (5) and the precondition of routine launch holds (6). Under
these conditions the body of launch can be executed provided the actual arguments are substituted for the
formal arguments. [T5a] replaces the feature call with its body. When the body terminates (reaches its end
statement) the calling processor unlocks the application processors as shown in [T5b] and [T5c].

Rule [T5] also applies to the routine call do one(data) in class ONE. However, in this case we can
obtain a significant reduction in the number of steps that must be executed using Rule [T6]. Since all the
feature calls in the contracts and implementation of do one(data) are controlled, we can demonstrate the
correctness of the implementation of this routine with respect to its contracts using a theorem prover (using
Hoare reasoning (10) as shown in Fig. 9). Thus, once the locks are obtained on the processors of the formal
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[T5]—Uncontrolled Synchronous Call
Uncontrolled synchronous routine invocation t.r(x1,x2) on some processor πa with separate arguments
x1 and x2 not yet reserved. The formal arguments of routine r are arg1 and arg2 for actual arguments x1
and x2 respectively.

(1) πa 6= πb ∧ πa 6= πc

(2) σ = (h, e)
(3) procof(o) = πa with o = ExprJtK(πa , σ)
(4) procof(ExprJx1K(πa , σ)) = πb ∧ procof(ExprJx2K(πa , σ)) = πc

(5) ¬locked(πb , σh ) ∧ ¬locked(πc , σh)
(6) ExprJr .preK(πa , (h′, e′)) = const(true)
(7) h′ = h < lock πb by πa >< lock πc by πa >
(8) e′ = e[πa := push(e(πa ), < Current := o, arg1 := ExprJx1K(πa , σ), arg2 := ExprJx2K(πa , σ) >)

[ T5a ]




πa : t.r(x1, x2); S1

πb :
πc :



 , (h, e) −→





πa : bodyr ; popunlock(πb , πc); S1

πb :
πc :



 , (h′, e′)

Rule [T5b] for popunlock(πb , πc):

[ T5b ]




πa : popunlock(πb , πc); S1

πb : S2
πc : S3



 , (h, e) −→





πa : S1
πb : S2; unlock
πc : S3; unlock



 , (h, e[πa := pop(e(πa ))])

Rule [T5c] for unlock :

[ T5c ]
[

π : unlock
· · ·

]

, (h, e) −→

[

π :
· · ·

]

, (h < lock π by VoidProc >, e)

Fig. 15. Rules T5a, T5b and T5c: Uncontrolled Synch Call

arguments (in this case data) and the precondition holds, the SVM can move to a new configuration that
satisfies the postcondition of the routine (without the need to execute the body of the routine).

Rule [T6] results in fewer transition steps than [T5] due to the fact that the many steps in the body are
replaced by single step involving the contractual relation ρ(σ, σ′) between the pre-state and the post-state.
The downside is that the computation now becomes symbolic because the contracts do fully specify the
changes to the state. This problem can be ameliorated by the use of dynamic frames suggested in [SO06].

4.8. Fair transition systems and Temporal Logic

The SVM executes the configuration transitions defined in the previous subsections, i.e. a computation δ of
the SVM is given by

δ = γ0 −→ γ1 −→ γ2 −→ . . . (21)

where each change in configuration is an action taken by one of the processors of the SVM.
We require that the scheduling be fair. Rules [T5] and [T6] have enabling conditions that depend upon

getting the lock on multiple processors and thus will require a strong fairness constraint called compassion
on the computations [MP95]. In compassion, it is not the case that the transition is enabled infinitely many
times but not taken beyond some point. Thus, in these rules, if the associated configuration transitions
continually become simultaneously available (perhaps interspersed with periods of unavailability) they must
eventually be taken. The implementation of SCOOP in [Nie07] via a global scheduler guarantees the fairness
of the transitions described in [T5] and [T6] of the SVM.
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Rule for a synchronous routine call t.r(x1,x2) where the routine itself is controlled i.e. all feature calls
in its contracts and implementation are themselves controlled as in Definition 3 and the implementation
satisfies the contract. The routine has a precondition r .pre and a postcondition r .post .

(1) πa 6= πb ∧ πa 6= πc

(2) procof(o) = πa with o = ExprJtK(πa , σ)
(3) procof(ExprJx1K(πa , σ)) = πb ∧ procof(ExprJx2K(πa , σ)) = πc

(4) lockedby(σh , πb) = πa ∧ lockedby(σh , πc) = πa

(5) ExprJr .preK(πa , (σh , σe [πa := push(σe (πa ), env)]) ) = const(true)
where env = 〈Current := o, arg1 := ExprJx1K(πa , σ), arg2 := ExprJx2K(πa , σ)〉
(6) ρ(σ, σ′) ∧ ¬locked(πb , σ′

h
) ∧ ¬locked(πc , σ′

h
)

where ρ(σ, σ′)
def
= ExprJr .preK(πa , σ) = const(true) ∧ ExprJINV K(πa , σ) = const(true) ∧

OExprJr .postK(πa , σ, σ′) = const(true) ∧ ExprJINV K(πa , σ′) = const(true)
[ T6 ]





πa : t.r(x1, x2); S1

πb :
πc :



 , σ −→





πa : S1
πb :
πc :



 , σ′

Note that ρ(σ, σ′) holds provided the implementation of r satisfies its contract (e.g. as shown by a theorem prover).

Fig. 16. Rule T6: Controlled Routine

For the rest of the rules we require justice, i.e. it is not the case that the transition associated with the
rules is continuously enabled beyond some point and yet not taken.

For a SCOOP program S , we let ∆S be the set of all computations generated by the SVM via the rules
with the fairness constraints. As mentioned at the beginning of this section the transitions of the processes
are interleaved in a given computation and thus concurrency is modeled by non-determinism. The fairness
constraints remove from ∆S those computations that do not meet these constraints and thus ∆S distinguishes
concurrency from pure nondeterminism [MP92, p129].

In Section 3.3 we showed that certain temporal logic properties such as 32(πr .data.count = 2000) are
beyond the proof capabilities of the Hoare rule (10). The SVM provides us with the necessary machinery
for defining when a SCOOP program satisfies a temporal logic property. We can interpret a temporal logic
formula ψ in a computation δ in the standard way (notation: δ � ψ). Thus, given a SCOOP program S and
a temporal logic formula ψ

(SCOOP program S satisfies temporal logic formula ψ) iff (∀ δ ∈ ∆S • δ � ψ) (22)

We have thus provided an outline of the SVM that can be used to check the correctness of temporal logic
properties. To check system properties beyond the ones that the theorem prover for contracts can handle,
we could rely on model-checking and theorem proving techniques for fair transition systems. For example,
we could envisage using the SPIN tool [Hol97] or other such efficient state exploration tools to implement
the SVM.

5. Conclusion and future work

SCOOP eliminates race conditions and atomicity violations by construction. However, it is still vulnerable
to deadlocks.

In this paper we described how far the SCOOP notion of contracts can take us in verifying interesting
properties of concurrent systems using modular Hoare rules. The Hoare rule can be used to verify termination
and the contracts in the case that the routine is controlled. Techniques developed for sequential Eiffel can
be applied as is to these routines (Section 3.2).

Some safety and liveness properties depend upon the environment and cannot be proved using the Hoare
rules. To deal with such system properties, we described, in outline, a SCOOP Virtual Machine (SVM) as
a fair transition system (Section 4). The SVM makes it feasible to use model-checking and theorem proving
methods for checking global temporal logic properties of SCOOP programs. The SVM uses the Hoare rules
where applicable to reduce the number of steps in a computation.

We are currently exploring the SPIN model-checker [Hol97] for implementing the SVM. We have been
able to verify small programs such as the dining philosophers and zero-one examples discussed in this paper.
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Objects on the heap are instances of SPIN’s record data type (typedef ) stored in an array (the heap array).
Object attributes are record fields where references to other objects are integers that are indices back into
the heap array where the object is stored. SPIN’s notion of asynchronous processes (proctype) are used to
model SVM processors. In SPIN, buffered message channels are used to exchange data between processes.
We use these channels to represent action queues in schedules. An array of such processors is maintained
and each object on the heap array has a special integer index that points to the processor on the processor
array that handles the object. Our implementation of the SVM allows us to check the relevant temporal
logic properties as described in Section 4.8. However, we have not yet used symbolic execution as proposed
in rule [T6] to handle larger and more realistic cases. We hope to develop the model-checker further and
report on this work at a later time.

As pointed out in [Jon03], compositionality (or modularity) is considered a key property for a development
method because it ensures that the method can scale up to cope with large applications. However, the inherent
interference of other processors makes it difficult to devise development methods for concurrent programs
or systems. There are a number of proposals such as rely/guarantee conditions but the overall search for a
satisfactory compositional approach to concurrency is still an open problem. The work in [Jon03] identifies
some issues including granularity and the problems associated with ghost variables and it also discusses using
atomicity as a design abstraction. The work in [Ost99] which combines theorem proving and model-checking
via the use of modules may also provide further insight.

5.1. Inheritance

As stated in the introduction, this paper does not deal with the complete set of SCOOP language features.
An important construct is inheritance. We conclude this paper by discussing how we aim to refine the rules
in the presence of inheritance.

Rule [T5a] describes how the instructions “t.r(x1, x2); S1” involving routine r on processor πa are
replaced by the instructions “bodyr ; popunlock(πb , πc); S1” involving the body of the routine. This rule
works in the absence of inheritance. However, in the presence of inheritance, we would need to specify which
body is used in the rule.

Here is a brief outline of how the operational semantics could be extended to deal with inheritance. An
Eiffel program is defined by a set of types. The subtype relation is a partial ordering over all types; it is
reflexive, transitive and anti-symmetric. We thus have a type lattice with ANY as the top element and
NONE as the bottom element.

Consider a call x .f . We do not know which precise feature f denotes in the presence of dynamic binding.
The feature to be selected depends on the type of the objects to be attached to x during a particular
execution. This cannot be predicted from the static text of the software.

We could proceed as follows: a type defines a set of features, elements of the set Feature. Features are thus
always relative to a type. When we write x .f , we mean the call to the feature f of the static type (declaration
type) of x . This feature is called the static feature.

At runtime, the object contained in x may be of the static type of x or any of its subtypes. We call this
the dynamic type of x . Dynamic binding means to find the correct feature in the dynamic type of x that
corresponds to the static feature f . This feature is called the dynamic feature.

What the Eiffel compiler does is it builds an efficient two dimensional lookup table. We describe this
table using the function asIn below. It is a curried function with two arguments: the first argument is the
dynamic type of the target, the second is the static feature to be called. The result is the dynamic feature
that will be executed at runtime. The lookup table asIn is a partial function, as not every feature defined
in one type has a corresponding feature in every other type. On the other hand, static typing enforces that
the lookup in asIn will always be defined. body is the function that relates features to their implementations.
It is partial as features can be deferred for a specific type, but as the dynamic type will always be effective
(not deferred), the body will be defined as well.

asIn : Type → (Feature 9 Feature) (23)

body : Feature 9 Instruction (24)

Given the call x .f , with x dynamically bound to an object of type t , we may obtain the actual feature
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associated with f by asIn(t, f). Features may carry implementations defined by the body function above. In
rule [T5a], the body of routine r may now be defined as

bodyr = body(asIn(typeof(o), r)) (25)

Unlike the controllability of entities, expressions, and assertions, Controlled Routines as in rule [T6]
cannot be decided statically in the presence of polymorphism and dynamic binding because it requires some
knowledge about the bodies of the routines. One possibility is to do the check via global analysis. Another
possibility is to strengthen the language rules to prohibit redefinition of Controlled Routines into uncontrolled
ones. A careful study of the different proposals needs to be undertaken.

5.2. Comparison to Concurrency using the Boogie method

The work by Bart Jacobs et. al. using the Boogie methodology goes in the same direction and tries to solve
similar problems as SCOOP [JSPS06]. It aims at solving the problems of data races and deadlock within
the multi-threaded Java and C# paradigm. In contrast to SCOOP, Boogie keeps the orthogonality between
threads and objects and does not try to integrate concurrency as a fundamental concept of object oriented
programming.

The approach taken by Boogie to solve the problem of data races is very similar to the approach taken
in SCOOP. Objects are distributed over threads using the concept of access sets. Threads may only read
from and write to objects that are contained in its own access set. Access sets of different threads are always
disjoint. In contrast to SCOOP processors, access sets are dynamic. Objects can move between access sets or
are not contained in any access set at all. To cover the common case of non-separate objects (using SCOOP
terminology), Boogie introduces the concept of unshared objects.

Because access sets are dynamic, Boogie needs a significant specification overhead to maintain the dis-
jointness of these sets. This makes access sets more cumbersome for the developer who has to come up
with the appropriate specifications. On the other hand, access sets support object migration, which is not
supported in SCOOP.

A deadlock occurs if threads are waiting for resources and thereby create a circular structure of lock
requests. To prevent the creation of these circular structures, Boogie annotates all resources (in this case
shared objects) with a so-called lock level. All lock levels form a partial order. Acquisition of locks always
needs to happen in the ordering enforced by this partial order. This prevents a circular structure of lock
requests, and thus prevents deadlocks.

SCOOP does not yet prevent deadlocks. The approach taken by Boogie seems to be very simple and
powerful. Further investigations have to show if the same approach can be applied to SCOOP and what the
implications with respect to the programming paradigm are.

As Boogie keeps the separation of threads and objects as introduced by Java and C#, it can be assumed
that reasoning about the functional behavior of object-oriented programs requires a large amount of extra
specifications. As already mentioned, SCOOP integrates concurrency and object-orientation into a single
paradigm. As a result, we are able to apply sequential reasoning in specific concurrent situations. This
enables SCOOP to reason about the functional behavior of concurrent programs in a very natural way. It
allows the reuse of components written for sequential applications in a concurrent context, without the need
for extra specifications.
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